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We extend the injectivity theorem of Esnault and Viehweg to a class of non-
normal log varieties, which contains normal crossings log varieties, and is closed
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AMS 2010 Subject Classification: Primary: 14F17 Secondary: 14E30.

Key words: normal crossings singularities, residues, vanishing theorems.

1. INTRODUCTION

The birational classification of complex manifolds rests on vanishing the-
orems for Cartier divisors of the form L ∼Q KX + B, where (X,B) is a log
smooth variety (i.e. X is a smooth complex variety and B =

∑
i biEi is a

boundary with coefficients bi ∈ Q∩ [0, 1], such that
∑

iEi is a normal crossings
divisor on X). In the order in which one may prove these vanishing theorems,
they are Esnault-Viehweg injectivity, Tankeev-Kollár injectivity, Kollár’s tor-
sion freeness, Ohsawa-Kollár vanishing, Kawamata-Viehweg vanishing. The
injectivity theorems imply the rest. Modulo cyclic covering tricks and Hiron-
aka’s desingularization, the injectivity theorems are a direct consequence of the
E1-degeneration of the Hodge to de Rham spectral sequence associated to an
open manifold.

To study the category of log smooth varieties, it is necessary to enlarge it
to allow certain non-normal, even reducible objects, which appear in inductive
arguments in the study of linear systems, or in compactification problems for
moduli spaces of manifolds. The smallest such enlargement is the category
of normal crossings log varieties (X,B), which may be thought as glueings
of log smooth varieties, in the simplest possible way. By definition, they are
locally analytically isomorphic to the local model 0 ∈ X = ∪i∈I{zi = 0} ⊂ AN ,
endowed with the boundary B =

∑
j∈J bj{zj = 0}|X , where I, J are disjoint

subsets of {1, . . . , N} and bj ∈ Q ∩ [0, 1]. Since X has Gorenstein singulari-
ties, the dualizing sheaf ωX is an invertible OX -module. We denote by KX a
Cartier divisor on X such that ωX ' OX(KX). By definition, B is Q-Cartier.
Normal crossings varieties are build up of their lc centers, closed irreducible
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subvarieties, which on the local analytic model correspond to (unions of) affine
subspaces ∩i∈I′{zi = 0} ∩ ∩j∈J ′{zj = 0} ⊂ AN , where I ′ ⊂ I is a non-empty
subset, and J ′ ⊂ {j ∈ J ; bj = 1} is a possibly empty subset. For example, the
irreducible components of X are lc centers of (X,B). Inside the category of
normal crossings log varieties, log smooth varieties are exactly those with nor-
mal ambient space. The aim of this paper is to show that the above mentioned
vanishing theorems remain true in the category of normal crossings varieties.

Theorem 1. Let (X,B) be a normal crossings log variety, L a Cartier
divisor on X, and f : X → Y a proper morphism.

1) (Esnault-Viehweg injectivity) Suppose L ∼Q KX +B. Let D be an effec-
tive Cartier divisor supported by B. Then the natural homomorphisms
Rqf∗OX(L)→ Rqf∗OX(L+D) are injective.

2) (Tankeev-Kollár injectivity) Suppose L ∼Q KX + B + H, where H is
an f -semiample Q-divisor. Let D be an effective Cartier divisor which
contains no lc center of (X,B), and such that D ∼Q uH for some u > 0.
Then the natural homomorphisms Rqf∗OX(L) → Rqf∗OX(L + D) are
injective.

3) (Kollár’s torsion freeness) Suppose L ∼Q KX+B. Let s be a local section
of Rqf∗OX(L) whose support does not contain f(C), for every lc center
C of (X,B). Then s = 0.

4) (Ohsawa-Kollár vanishing) Let g : Y → Z be a projective morphism. Sup-
pose L ∼Q KX + B + f∗A, where A is a g-ample Q-Cartier divisor on
Y . Then Rpg∗R

qf∗OX(L) = 0 for p 6= 0.

The notation L ∼Q M means that there exists a positive integer r
such that both rL and rM are Cartier divisors, and OX(rL) ' OX(rM).
Kawamata-Viehweg vanishing is the case dimZ = 0 of the Ohsawa-Kollár
vanishing.

Theorem 1.2)-4) was proved by Kawamata [7] if B has coefficients strictly
less than 1, and it was proved for embedded normal crossings varieties (X,B)
in [1, Section 3]. We remove the global embedded assumption in this paper,
as expected in [1, Remark 2.9]. Theorem 1.1) is implicit in the proof of [1,
Theorem 3.1], in the case when (X,B) is embedded normal crossings and D
is supported by the part of B with coefficients strictly less than 1, which is
the original setting of Esnault and Viehweg. We observed in [2] that the same
results holds if D is supported by B, and Theorem 1.1) extends [2] to the
normal crossings case.
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Theorem 1 is proved by reduction to the log smooth case. There are
two known methods of proof. Let X̄ → X be the normalization, let Xn =
(X̄/X)n+1 for n ≥ 0. With the natural projections and diagonals, we obtain a
simplicial algebraic variety X•, together with a natural augmentation ε : X• →
X. The key point is that each Xn is smooth, so we may really think of ε as
a resolution of singularities. The method in [7] is to use the descent spectral
sequence to deduce a statement on X from the same statement on each Xn.
The method in [1] is to lift the statement from X to a statement on X•, and
imitate the proof used in the log smooth case in this simplicial setting. In this
paper we use the method in [7]. The new idea is an adjunction formula

(KX +B)|Xn ∼Q KXn +Bn,

for a suitable log smooth structure (Xn, Bn), for each n. Moreover, (Xn, Bn)
glue to a log smooth simplicial variety. To achieve this, we observe that
each irreducible component of Xn is the normalization of some lc center of
(X,B). Then the adjunction formula follows from the theory of residues for
normal crossings varieties developed in [4]. To construct residues for normal
crossings varieties we have to deal with slightly more general singularities,
namelygeneralized normal crossings log varieties. The motivation for this en-
largement, is that if X has normal crossings singularities, then SingX may not
have normal crossings singularities. But if X has generalized normal crossings
singularities, so does SingX. We actually prove Theorem 1 in the category
of generalized normal crossings singularities (Theorems 12, 14, 15, 16). The
same proof works in the category of normal crossings log varieties, provided
their residues to lc centers are taken for granted. Note that generalized nor-
mal crossings singularities in our sense are more general than those defined
by Kawamata [7]. For example, every seminormal curve is generalized normal
crossings.

To illustrate how generalized normal crossings appear, let us consider
two examples of residues. First, consider the log smooth variety (A2, H1 +H2),
where H1, H2 are the standard hyperplanes, intersecting at the origin 0. We
want to perform adjunction from (A2, H1 + H2) to its lc center 0. We may
first take residue onto H1, and end up with the log structure (H1, 0), and then
take residue from (H1, 0) to 0. But we may also restrict to (H2, 0), and then
to 0. The two chains of residues do not coincide; they differ by −1. Since
an analytic isomorphism interchanges the two hyperplanes, none of the above
compositions of residues is canonical. But they become canonical if raised to
even powers. We obtain a canonical residue isomorphism

Res
[2]
A2→0

: ωA2(logH1 +H2)⊗2|0
∼→ω⊗2

0

Now we construct the same residue isomorphism, without coordinates. Denote
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C = H1+H2. Let ωC be the sheaf whose sections are rational differential forms
which are regular outside 0, and on the normalization H1 t H2 of C induce
forms with logarithmic poles along the two points O1, O2 above the origin, and
have the same residues at O1, O2. One checks that ωC is an invertible OC-
module. The residues from A2 to the irreducible components of normalization
of C glue to a residue isomorphism

Res
[2]
A2→C : ωA2(logC)⊗2|C

∼→ω⊗2
C .

Since the forms of ωC have the same residues above the origin, we also obtain
a residue isomorphism

Res
[2]
C→0 : ω⊗2

C |0
∼→ω⊗2

0 .

The composition Res
[2]
C→0 ◦Res

[2]
A2→C is exactly Res

[2]
A2→0

. It is intrinsic, inde-
pendent of the choice of coordinates, or analytic isomorphisms. Note that ωC
differs from the Rosenlicht dualizing sheaf ΩC , but ω⊗mC = Ω⊗mC for m ∈ 2Z (at
the origin, the local generator for ωC is (dz1z1 ,

dz2
z2

), and for ΩC is (dz1z1 ,−
dz2
z2

)).

Second, let S be the normal crossings surface (xyz = 0) ⊂ A3, set B = 0.
We want to perform adjunction from S to its lc center the origin. As above,
we may first restrict to a plane, then to a line, and then to the origin. There
are several choices of chains, which coincide up to a sign. If we raise to an
even power, we obtain residue isomorphisms from S to 0. These are invariant
under analytic isomorphisms, since we can also define them in the following
invariant way. Let C = SingS. Then C is the union of coordinate axis in A3, a
seminormal curve which is not Gorenstein. The usual dualizing sheaf is useless
in this situation. We may define ωC as above (requiring same residues over
the origin), and then ωC is an invertible OC-module (at the origin, the local
generator is (dz1z1 ,

dz2
z2
, dz3z3 )), and residues from S to the irreducible components

of the normalization of C glue to a residue isomorphism

Res
[2]
S→C : ω⊗2

S |C
∼→ω⊗2

C .

The singular locus of C is 0, and we again obtain a residue isomorphism

Res
[2]
C→0 : ω⊗2

C |0
∼→ω⊗2

0 .

The composition Res
[2]
C→0 ◦Res

[2]
S→C is exactly Res

[2]
S→0, defined from coordi-

nates.

The conclusion we draw from these two examples is that we must redefine

the powers of log canonical sheaf ω
[n]
(X,B) (n ∈ Z) (without dualizing property),

and we must allow singularities which are not normal crossings, but very close.
In [4], we constructed residues for so called n-wlc varieties. Generalized normal
crossings varieties are a special case of n-wlc varieties.
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The goal of this paper is to have a simple technique which glues injec-
tivity theorems on log smooth varieties to injectivity theorems on glueings of
log smooth varieties. To keep the paper short, we do not present new appli-
cations. But the reader should easily extend the applications in Sections 5
and 6 of [2] to the setting of quasi-log varieties, as a corollary of Theorem 1.
An application of Section 3 is that the usual vanishing theorems are valid for
the simplest examples of weakly log canonical varieties, introduced in [4] as a
natural generalization of semi-log canonical singularities. It is an interesting
question if the Base Point Free and the Cone Theorem are valid in the category
of weakly log canonical varieties.

We outline the structure of this paper. In Section 1, we construct the
simplicial log variety induced by a n-wlc log variety. The reader should be
familiar with [4, Sections 3 and 5]. In Section 2, we define generalized normal
crossings log varieties, and analyze the induced simplicial log variety. In Section
3, we prove the vanishing theorems. The injectivity theorems are reduced
to the smooth case, using the simplicial log structure induced. The torsion
freeness and vanishing theorems are deduced then by standard arguments. In
Section 4, we collect some inductive properties of generalized normal crossings
varieties. The key inductive property is that the LCS-locus of a generalized
normal crossings log variety is again a generalized normal crossings log variety,
for a suitable boundary, and we can perform adjunction onto the LCS-locus.
We hope that in the future one may be able to use these inductive properties
to reprove the vanishing theorems in Section 3.

2. PRELIMINARIES

All varieties are defined over an algebraically closed field k, of character-
istic zero.

A log smooth variety is a pair (X,B), where X is a smooth k-variety and
B =

∑
i biEi is a boundary such that bi ∈ Q∩ [0, 1] and

∑
iEi is a NC divisor.

We refer the reader to [4] for the definition and basic properties of wlc
varieties (X/k,B), and some special cases: toric and n-wlc. We will remove the

fixed ground field k from notation; for example we denote ω
[n]
(X/k,B) by ω

[n]
(X,B).

Lemma 2. Let (X ′, BX′) and (X,B) be normal log pairs, let f : (X ′, BX′)→
(X,B) be étale and log crepant. Let Z ′ ⊂ X ′ be a closed irreducible subset.
Then Z ′ is an lc center of (X ′, BX′) if and only if f(Z ′) is an lc center of
(X,BX).

Proof. Cutting f(Z ′) with general hyperplane sections, we may suppose
Z ′ is a closed point P ′. Since f is open, we may replace X by the image of f and
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suppose f is surjective. After removing from X ′ the finite set f−1f(P ′) \ P ′,
we may also suppose f−1f(P ′) = P ′. Then the claim follows from [8, page 46,
2.14.(2)].

2.1. Simplicial log structure induced by a n-wlc log variety

Let (X,B) be a n-wlc log variety (see [4, Section 5]). Let r ∈ (2Z)>0

such that rB has integer coefficients and ω
[r]
(X,B) is an invertible OX -module.

Let π : X̄ → X be the normalization. Then Xn = (X̄/X)n+1 (n ≥ 0) are
the components of a simplicial k-algebraic variety X•, endowed with a natural
augmentation ε : X• → X.

Proposition 3. The following properties hold:

a) Each Xn is normal. Let Zn be an irreducible component of Xn. Then
εn : Zn → X is the normalization of an lc center of (X,B). Let (Zn, BZn)
be the n-wlc log variety structure induced by the residue isomorphism

Res[r] : ω
[r]
(X,B)|Zn

∼→ω[r]
(Zn,BZn ) (see [4, Theorem 5.9]).

Let (Xn, Bn) = tZn(Zn, BZn) be the induced structure of normal log vari-
ety, with n-wlc singularities (independent of the choice of r). We obtain
isomorphisms

Res
[r]
X→Xn

: ε∗nω
[r]
(X,B)

∼→ω[r]
(Xn,Bn).

Moreover, each lc center of (X,B) is the image of some lc center of
(Xn, Bn).

b) Let ϕ : Xm → Xn be the simplicial morphism induced by an order preserv-
ing morphism ∆n → ∆m, for some m,n ≥ 0. It induces a commutative
diagram

Xm

εm !!

ϕ // Xn

εn}}
X

Let Zm be an irreducible component of Xm. Then ϕ : Zm → Xn is the

normalization of an lc center of (Xn, Bn). Let Res[r] : ω
[r]
(Xn,Bn)|Zm

∼→ω[r]
(Zm,BZm )

be the induced residue isomorphism. Let Res
[r]
ϕ : ϕ∗ω

[r]
(Xn,Bn)

∼→ω[r]
(Xm,Bm) be

the induced isomorphism. Then

Res[r]
ϕ ◦ ϕ∗Res

[r]
X→Xn

= Res
[r]
X→Xm

.

In particular, ω
[r]
(Xn,Bn) and Res

[r]
ϕ form an OX•-module ω

[r]
(X•,B•)

, endowed

with an isomorphism ε∗ω
[r]
(X,B)

∼→ω[r]
(X•,B•)

.
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Proof. By [5], we may suppose (X,B) coincides with a local model. That
is X = Spec k[M] is the toric variety associated with a monoidal complex
M = (M,∆, (Sσ)σ∈∆), X has normal irreducible components, B is an effective
boundary supported by invariant prime divisors at which X is smooth, and
(X,B) has wlc singularities.

Let X = ∪FXF be the decomposition into irreducible components, where
the union runs after all facets F of ∆. Let ψ ∈ ∩F 1

rSF be the log discrepancy
function of (X,B). By assumption, each irreducible component XF is normal.
Therefore X̄ = tFXF . We obtain

Xn = tF0,...,FnXF0∩···∩Fn .

Since ψ ∈ F0 ∩ · · · ∩ Fn, each XF0∩···∩Fn is an lc center of (X,B). The toric
log structure induced via residues on XF0∩···∩Fn is that induced by the log
discrepancy function ψ ∈ F0 ∩ · · · ∩ Fn.

An lc center of (X,B) is of the form Xγ , with ψ ∈ γ ∈ ∆. If F is a facet of
∆ which contains γ, then Xγ is also an lc center of the irreducible component
(XF∩···∩F , Bn) of (Xn, Bn). This proves a).

For b), recall that any simplicial morphism is a composition of face mor-
phisms δi : Xn+1 → Xn and degeneracy morphisms si : Xn → Xn+1. Hence
suffices to verify b) for face and degeneracy morphisms. For our local model,
δi embeds XF0∩···∩Fn+1 into X

F0∩···F̂i···∩Fn+1
, and si maps XF0∩···∩Fn isomorphi-

cally onto XF0∩···∩Fi∩Fi∩···∩Fn . Then b) holds in our case, since all log structures
involved have the same log discrepancy function ψ.

3. GNC LOG VARIETIES

Recall first some standard notation. The set {1, 2, . . . , N} is denoted by
[N ], the k-affine space ANk has coordinates (zi)i∈[N ], and Hi = {z ∈ AN ; zi =
0} is the standard i-th hyperplane. For a subset F ⊆ [N ], denote AF =
∩i∈[N ]\F {z ∈ AN ; zi = 0}. It is an affine space with coordinates (zi)i∈F .

Definition 4. A GNC (generalized normal crossings) local model is a pair
(X,B), of the following form:

a) X = ∪FAF ⊂ ANk , where the union is indexed after finitely many subsets
F ⊆ [N ] (called facets), not contained in one another. We assume X
satisfies Serre’s property S2, that is for any two facets F 6= F ′, there
exists a chain of facets F = F0, F1, . . . , Fl = F ′ such that for every
0 ≤ i < l, Fi ∩ Fi+1 contains F ∩ F ′ and it has codimension one in both
Fi and Fi+1.
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b) Denote σ = ∩FF . If σ ≺ τ ≺ F and τ has codimension one in F , then
there exists a facet F ′ such that τ = F ∩ F ′.

c) B = (
∑

i∈σ biHi)|X , where bi ∈ Q∩ [0, 1] and Hi = {z ∈ AN ; zi = 0}. We
may rewrite B =

∑
F

∑
i∈σ biAF\i.

We claim that (X,B) is a toric wlc log variety. Note first that X is the toric
variety Spec k[M] associated to the monoidal complex M = (M,∆, (Sσ)σ∈∆),
where M = ZN , ∆ is the fan consisting of the cones

∑
i∈F R≥0mi and all their

faces, and Sσ = ZN ∩ σ for σ ∈ ∆. Here m1, . . . ,mN denotes the standard
basis of the semigroup NN . Each irreducible component of X is smooth. The
normalization of X is X̄ = tFAF . Denote ψ =

∑
i∈σ(1 − bi)mi. On AF , ψ

induces the log structure with boundary

BAF
=

∑
i∈F\σ

AF\i +
∑
i∈σ

biAF\i.

Let C̄ ⊂ X̄ be the conductor subscheme. By a), C̄|AF
≤

∑
i∈F\σ AF\i. Equality

holds if and only if b) holds. Therefore

BAF
= C̄|AF

+
∑
i∈σ

biAF\i = (C̄ + B̄)|AF
.

We conclude that the irreducible components of (X̄, C̄+B̄) have the same
log discrepancy function ψ, and therefore (X,B) is a toric wlc log variety, by [4,
Proposition 4.10]. Note that X is Q-orientable by [4, Lemma 4.7 and Example

4.8.(2)]. If 2 | r and rbi ∈ Z for all i ∈ σ, then ω
[r]
(X,B) ' OX . Given a),

properties b) and c) are equivalent to

b’) (X, 0) is a toric wlc log variety.

c’) B is a torus-invariant boundary whose support contains no lc center of
(X, 0).

The Q-divisors B, B=1, B<1 are Q-Cartier (so is the part of B with
coefficients in a given interval in R).

Example 5. A NC (normal crossings) local model is a pair (X,B), where
X = ∪i∈IHi ⊂ ANk and B = (

∑
i/∈I biHi)|X , where I is a non-empty subset of

[N ] and bi ∈ Q ∩ [0, 1]. If we set F = [N ] \ i (i ∈ I), we see that (X,B) is a
GNC local model. Here we have σ = [N ] \ I.

Example 6. Let σ ( [N ], let |σ| ≤ p < N . Let {F} consist of all subsets
of [N ] which have cardinality p, and contain σ. Let bi ∈ Q ∩ [0, 1], for i ∈ σ.
Then (X = ∪FAF ⊂ ANk , (

∑
i∈σ biHi)|X) is a GNC local model.
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Example 7. Let X = A12 ∪ A23 ∪ A34 ⊂ A4
k and B = A1 + A4. Then

(X,B) is a toric wlc log variety (with log discrepancy function ψ = 0), but not
a GNC local model.

Definition 8. A GNC (NC) log variety (X,B) is a wlc log variety such
that for every closed point x ∈ X, there exists a GNC (NC) local model
(X ′, B′) and an isomorphism of complete local k-algebras O∧X,x ' O∧X′,0, such

that (ω
[r]
(X,B))

∧
x corresponds to (ω

[r]
(X′,B′))

∧
0 for r sufficiently divisible.

By [5], there exists a common étale neighborhood

(U, y)

i

zz

i′

$$
(X,x) (X ′, 0)

and a wlc log variety structure (U,BU ) on U such that i∗ω
[n]
(X,B) = ω

[n]
(U,BU ) =

i′∗ω
[n]
(X′,B′) for all n ∈ Z.

It follows that (X, 0) is a GNC (NC) log variety, and B, B=1, B<1 are
Q-Cartier divisors.

Remark 9. Let (X,B) be a NC log variety. Let ωX be the canonical
choice of dualizing sheaf, defined by Rosenlicht. It is an invertible OX -module,
since X is locally complete intersection. If rB has integer coefficients and r is

divisible by 2, then ω⊗rX ⊗OX(rB) = ω
[r]
(X,B) (see [4]).

3.1. Simplicial log structure induced by a GNC log variety

Let (X,B) be a GNC log variety. Let ε : X• → X be the simplicial
resolution induced by the normalization of X. A GNC log variety is n-wlc.
By Proposition 3, residues induce a natural simplicial log variety structure
(X•, B•). In this case (Xn, Bn) is a disjoint union of log smooth log varieties,
and we have residue isomorphisms

Res
[r]
X→Xn

: ε∗nω
[r]
(X,B)

∼→ω[r]
(Xn,Bn)

for r ∈ (2Z)>0 such that rB has integer coefficients.

Lemma 10. The following properties hold:

1) ε : X• → X is a smooth simplicial resolution, and OX → Rε∗OX• is a
quasi-isomorphism.
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2) The lc centers of (X, 0) are the images of the irreducible components of
Xn (n ≥ 0).

3) (Xn, Bn) is a log smooth variety, for all n.

4) The support of B contains no lc center of (X, 0), and each ε∗nB is sup-
ported by Bn.

Proof. We may suppose (X,B) is a GNC local model. Then

(Xn, Bn) = tF0,...,Fn(AF0∩···∩Fn ,
∑

i∈F0∩···∩Fn

AF0∩···∩Fn\i +
∑
i∈σ

biAF0∩···∩Fn\i).

1) Each Xn is smooth, so ε : X• → X is a smooth simplicial resolution.
By [3, Theorem 0.1.b)], OX → Rε∗OX• is a quasi-isomorphism.

2) The log variety (X, 0) has log discrepancy function ψ =
∑

i∈σmi ∈
relintσ. Therefore its lc centers are Xγ , where σ ≺ γ ∈ ∆. We claim that each
such γ is an intersection of facets of ∆. Indeed, if γ is a facet, the claim holds.
Else, choose a facet F which contains γ. Since γ ( F , γ is the intersection
after all codimension one faces τ ≺ F which contain γ. Each τ contains the
core σ. Therefore τ = F ∩ F ′ for some facet F ′, by axiom b) in the definition
of GNC local models. We conclude that γ = F0 ∩ · · · ∩ Fn for some n ≥ 0.
Therefore Xγ appears as an irreducible component of Xn.

3) This is clear from the explicit formula for (Xn, Bn).

4) The support of B does not contain the core Xσ. Since the image on
X of an irreducible component of Xn does contain Xσ, we obtain that ε∗nB is
well Q-Cartier defined for all n. Moreover,

(Bn − ε∗nB)|AF0∩···∩Fn
=

∑
i∈F0∩···∩Fn

AF0∩···∩Fn\i.

4. VANISHING THEOREMS

Lemma 11. Let (X,B) be a log smooth variety. Let L be a Cartier divisor
on X such that L ∼Q KX +B. Let D be an effective Cartier divisor supported
by B. Let f : X → Z be a proper morphism. Then the natural homomorphisms
Rqf∗OX(L)→ Rqf∗OX(L+D) are injective.

Proof. We may suppose X is irreducible, f is surjective, and Z is affine.
Let Z ↪→ AN be a closed embedding into an affine space. Compactify AN ⊂ PN
by adding the hyperplane at infinity H0. Let Z ′ ⊂ PN be the closure of Z. Let
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H = H0|Z′ . Then Z ⊂ Z ′ is an open dense embedding, whose complement H
is a hyperplane section.

By Nagata, there exists an open dense embedding X ⊂ X ′′ such that
X ′′ is proper. The induced rational map f : X ′′ 99K Z ′ is regular on X. By
Hironaka’s desingularization, there exists a birational contraction X ′ → X ′′,
which is an isomorphism over X, such that X ′ is smooth and f induces a
regular map f ′ : X ′ → Z ′. We may also suppose Σ = X ′ \X is a NC divisor,
and (X ′, B′ + Σ) is log smooth, where B′ =

∑
i bi(Ei)

′ is the closure of B in
X ′ (defined componentwise). We obtained a diagram

X

f
��

// X ′

f ′

��
Z // Z ′

where the vertical arrows are open dense embeddings, Z ′ is projective and X ′

is proper. The properness of f is equivalent to X = f ′−1(Z), so the diagram
is also cartesian.

We represent L by a Weil divisor on X. Let L′ be its closure in X ′.
Then L′ ∼Q KX′ + B′ + N , where N is a Q-divisor supported by Σ. Denote
P = L′ − bNc and ∆ = B′ + {N}. Then P ∼Q KX′ + ∆ and (X ′,∆) is log
smooth. The closure D′ of D in X ′ is supported by B′, hence it is supported
by ∆.

Let m be a positive integer. Let S be a general member of the free linear
system |f ′∗(mH)|. Then P + f ′∗(mH) ∼Q KX′ + ∆ + S, (X ′,∆ + S) is log
smooth, and D′ is supported by ∆ + S. Denote F = OX′(P ). By [2, Theorem
0.1], the natural homomorphism

Hn(X ′,F(f ′
∗
(mH)))→ Hn(X ′,F(f ′

∗
(mH) +D′)) (n ≥ 0)

is injective. We have the Leray spectral sequence

Epq2 = Hp(Z ′, Rqf ′∗F(m)) =⇒ Hp+q(X ′,F(f ′
∗
(mH))).

Suppose m is sufficiently large. Serre vanishing gives Epq2 = 0 if p 6= 0. There-
fore we obtain a natural isomorphism

H0(Z ′, Rnf ′∗F(m))
∼→Hn(X ′,F(f ′

∗
(mH) +D′)).

By the same argument, we have a natural isomorphism

H0(Z ′, Rnf ′∗F(D′)(m))
∼→Hn(X ′,F(D′ + f ′

∗
(mH))).

The injective homomorphism above becomes the injective homomorphism

H0(Z ′, Rnf ′∗F(m))→ H0(Z ′, Rnf ′∗F(D′)(m)).
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Since OZ′(m) is very ample, this means that Rnf ′∗F → Rnf ′∗F(D′) is injec-
tive. But X = f ′−1(Z), P |X = L, F|X = OX(L) and D′|X = D, so the
restriction of this injective homomorphism to Z is just the injective homomor-
phism Rnf∗OX(L)→ Rnf∗OX(L+D).

Theorem 12 (Esnault-Viehweg injectivity). Let (X,B) be a GNC log

variety. Let L be an invertible OX-module such that L⊗r ' ω
[r]
(X,B) for some

r ≥ 1 such that rB has integer coefficients. Let D be an effective Cartier
divisor supported by B. Let f : X → Z be a proper morphism. Then the
natural homomorphism Rif∗L → Rif∗L(D) is injective, for every i.

Proof. We may suppose Z is affine. Denote Σ = SuppB and U = X \Σ.
Since rB is Cartier, we have an isomorphism

lim−→
m∈N

H i(X,OX(mrB))
∼→H i(U,L|U ).

The claim for all D is thus equivalent to the injectivity of the restriction ho-
momorphisms

H i(X,L)→ H i(U,L|U ).
Let ε : X• → X be the smooth simplicial resolution induced by the nor-
malization of X. Let Σn = ε−1

n (Σ) and Un = Xn \ Σn. The restriction
ε : U• → U is also a smooth simplicial resolution. By Lemma 10, L → Rε∗L•
and L|U → Rε∗L•|U• are quasi-isomorphisms. Therefore the claim is equivalent
to the injectivity of the restriction homomorphisms

α : H i(X•,L•)→ H i(U•,L•|U•).

Both spaces are endowed with simplicial filtrations S. The Godement reso-
lutions Lp → K∗p (p ≥ 0) glue to a simplicial resolution L• → K∗•. Denote
Aqp = ΓΣp(Xp,Kqp), Bq

p = Γ(Xp,Kqp) and Cqp = Γ(Up,Kqp). The associated
simple complexes fit into a short exact sequence

0→ A→ B → C → 0

which induces in homology the long exact sequence

· · · → H i
Σ•(X•,L•)→ H i(X•,L•)→ H i(U•,L•|U•)→ · · · .

Let S be the simplicial filtration (naive with respect to p) on A,B,C. For each
p, the short exact sequence

0→ ΓΣp(Xp,K∗p)→ Γ(Xp,K∗p)→ Γ(Up,K∗p)→ 0

is split. That is 0→ E0A→ E0B → E0C → 0 is a split short exact sequence.
Passing to homology, we obtain that 0 → E1A → E1B → E1C → 0 is a split
short exact sequence. Iterating this argument, we conclude that 0 → ErA →
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ErB → ErC → 0 is a split short exact sequence, for every r. Therefore
0 → E∞A → E∞B → E∞C → 0 is a short exact sequence, which induces in
homology the long exact sequence

· · · → GrS H
i
Σ•(X•,L•)→ GrS H

i(X•,L•)→ GrS H
i(U•,L•|U•)→ · · · .

Step 1. Hq
Σp

(Xp,Lp)→ Hq(Xp,Lp) is zero for all p, q. Indeed,

L⊗2r
p = L⊗2r|Xp ' ω

[2r]
(X,B)|Xp

∼→ω[2r]
(Xp,Bp),

(Xp, Bp) is a log smooth variety, Up ⊇ Xp \Bp by Lemma 10.4), and Xp → Z
is proper. By Lemma 11, Hq(Xp,Lp) → Hq(Up,Lp|Up) is injective for all p, q.
Equivalently,

Hq
Σp

(Xp,Lp)→ Hq(Xp,Lp)
is zero for all p, q.

Step 2. GrS α is injective. Indeed, E1A → E1B is the direct sum of
Hq

Σp
(Xp,Lp) → Hq(Xp,Lp). By Step 1, E1A → E1B is zero. Step by step,

we deduce that ErA → ErB is zero for every r ≥ 1. Then E∞A → E∞B is
zero, that is GrSH

i
Σ•

(X•,L•) → GrS H
i(X•,L•) is zero. Therefore the last

long exact sequence breaks up into short exact sequences

0→ GrS H
i(X•,L•)→ GrS H

i(U•,L•|U•)→ GrS H
i+1
Σ•

(X•,L•)→ 0.

Step 3. Since Si+1H
i(X•, L•) = 0, the filtration S on H i(X•, L•) is finite.

Therefore the injectivity of GrS α means that α is injective and strict with
respect to the filtration S.

Lemma 13. Let (X,B) be a log smooth variety, let f : X → Z be a proper
morphism. Let L be a Cartier divisor such that the Q-divisor A = L−(KX+B)
is f -semiample. Let D be an effective Cartier divisor on X such that D ∼Q uA
for some u > 0, and D contains no lc center of (X,B). Then the natural
homomorphism Rqf∗OX(L)→ Rqf∗OX(L+D) is injective, for all q.

Proof. We may suppose Z is affine, and A is f -semiample.

Step 1. Suppose (X,B+ εD) is log smooth, for some 0 < ε < 1
u . We have

L = KX +B + εD + (A− εD) ∼Q KX +B + εD + (1− εu)A.

Let n ≥ 1 such that OX(nA) is generated by global sections. Let S be the zero
locus of a generic global section. Then

L ∼Q KX +B + εD +
1− εu
n

S,

the log variety (X,B + εD+ 1−εu
n S) is log smooth, and its boundary supports

D. By Lemma 11, Hq(X,OX(L))→ Hq(X,OX(L+D)) is injective, for all q.
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Step 2. By Hironaka, there exists a desingularization µ : X ′ → X such
that the exceptional locus of µ and the proper transforms of B and D are
supported by a NC divisor on X ′. Let µ∗(KX + B) = KX′ + BX′ , let E =
d−B<0

X′ e. Then

µ∗L+ E = KX′ +B≥0
X′ + {B<0

X′ }+ µ∗A.

The log variety (X ′, B≥0
X′ + {B<0

X′ }+ εµ∗D) is log smooth for 0 < ε� 1, by the
choice of the resolution, and since D contains no lc centers of (X,B). We also
have µ∗D ∼Q uµ

∗A. By Step 1, the natural homomorphisms

Hq(X ′,OX′(µ∗L+ E))→ Hq(X ′,OX′(µ∗L+ E + µ∗D))

are injective. Consider now the commutative diagram

Hq(X ′,OX′(µ∗L+ E))
α′ // Hq(X ′,OX′(µ∗L+ E + µ∗D))

Hq(X,OX(L))
α //

β

OO

Hq(X,OX(L+D))

OO

From above, α′ is injective. If β is injective, it follows that α is injective. To
show that β is injective, suffices to show that OX → Rµ∗OX′(E) has a left
inverse. The Cartier divisor E′ = KX′ − µ∗KX is effective, and −BX′ ≤ E′.
Therefore E ≤ E′. We obtain homomorphisms

OX → Rµ∗OX′(E)→ Rµ∗OX′(E′).

Suffices to show that the composition has a left inverse. Tensoring with ωX ,
this is just the homomorphism ωX → Rµ∗ωX′ , which admits a left inverse
defined by trace (see the proof of [6, Proposition 4.3]).

Theorem 14 (Tankeev-Kollár injectivity). Let (X,B) be a GNC log va-
riety, let f : X → Z be a proper morphism. Let L be an invertible OX-module

such that L⊗r ' ω
[r]
(X,B) ⊗ H, where r ≥ 1 and rB has integer coefficients,

and H is an invertible OX-module such that f∗f∗H → H is surjective. Let
s ∈ Γ(X,H) be a global section which is invertible at the generic point of each
lc center of (X,B), let D be the effective Cartier divisor defined by s. In par-
ticular, D contains no lc center of (X,B). Then the natural homomorphism
Rqf∗OX(L)→ Rqf∗OX(L+D) is injective, for all q.

Proof. We may suppose Z is affine. In particular, H is generated by
global sections. Let U = X \ SuppD. The claim for D and all its multiples
is equivalent to the injectivity of the restriction homomorphisms H i(X,L) →
H i(U,L|U ).
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The proof is the same as that of Theorem 12, except that in Step 1 we use

Lemma 13 instead of Lemma 11. Indeed, L⊗2r
p

∼→ω[2r]
(Xp,Bp) ⊗ H

⊗2
p , (Xp, Bp) is

log smooth, Hp is generated by global sections, and ε∗pD ∈ |Hp| contains no lc
center of (Xp, Bp). Therefore Hq(Xp,Lp) → Hq(Up,Lp|Up) is injective, where
Up = ε−1

p (U) = Xp \ Supp ε∗pD.

Theorem 15 (Kollár’s torsion freeness). Let (X,B) be a GNC log vari-

ety. Let L be an invertible OX-module such that L⊗r ' ω[r]
(X,B) for some r ≥ 1

such that rB has integer coefficients. Let f : X → Z be a proper morphism.
Let s be a local section of Rqf∗L whose support does not contain f(C), for
every lc center C of (X,B). Then s = 0.

Proof. Suppose by contradiction that s 6= 0. Choose a closed point P ∈
Supp(s). We shrink Z to an affine neighborhood of P . There exists a non-zero
divisor h ∈ OZ,P which vanishes on Supp(s), but does not vanish identically
on f(C), for every lc center C of (X,B). There exists n ≥ 1 such that hns = 0
in (Rqf∗L)P .

After shrinking Z near P , we may suppose that 0 6= s ∈ Γ(Z,Rqf∗L),
h ∈ Γ(Z,OZ) is a non-zero divisor, hns = 0, and h is invertible at the
generic point of f(C), for every lc center C of (X,B). Since Z is affine,
we have an isomorphism Γ(Z,Rqf∗L) ' Hq(X,L). Therefore the multipli-
cation ⊗f∗hn : Hq(X,L) → Hq(X,L) is not injective. But f∗h ∈ Γ(X,OX)
is invertible at the generic point of each lc center of (X,B). By Theorem 14
with H = OX , the multiplication ⊗f∗h : Hq(X,L) → Hq(X,L) is injective.
Contradiction!

Theorem 16 (Ohsawa-Kollár vanishing). Let (X,B) be a GNC log vari-
ety, let f : X → Y be a proper morphism and g : Y → Z a projective morphism.

Let L be an invertible OX-module such that L⊗r ' ω[r]
(X,B) ⊗ f

∗A, where r ≥ 1
and rB has integer coefficients, and A is a g-ample invertible OY -module.
Then Rpg∗R

qf∗L = 0 for p 6= 0.

Proof. We use induction on the dimension of X. We may suppose Z is
affine. Replacing r by a multiple, we may suppose A is g-generated. Let m
be a sufficiently large integer, to be chosen later. Let S be the zero locus of a
general global section of A⊗m. Denote T = f∗S.

Consider the short exact sequence

0→ L → L(T )→ L(T )|T → 0.

The connecting homomorphism ∂ : Rqf∗L(T )|T → Rq+1f∗L is zero by The-
orem 15, since the image is supported by T , which contains no lc center of
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(X,B), and L⊗r ' ω
[r]
(X,B) locally over Y . Therefore the long exact sequence

in cohomology breaks up into short exact sequences

0→ Rqf∗L → Rqf∗L(T )→ Rqf∗L(T )|T → 0.

We have Rpg∗R
qf∗L(T ) ' Rpg∗(R

qf∗L(S)) ' Rpg∗(R
qf∗L ⊗ Am). If

m is sufficiently large, Serre vanishing gives Rpg∗R
qf∗L(T ) = 0 for p 6= 0.

By [4], (X,B + T ) is a GNC log variety, T is S2 and there exists a natural
boundary BT = B|T such that (T,BT ) is a GNC log variety, and codimension
one residues glue to residue isomorphisms

Res
[2r]
X→T : ω

[2r]
(X,B+T )|T

∼→ω[2r]
(T,BT ).

From L(T )⊗r ' ω[r]
(X,B+T )⊗ f

∗A we obtain L(T )|⊗2r
T ' ω[2r]

(T,BT )⊗ (f |T )∗(A|⊗2
S ).

Since dimT < dimX, we obtain by induction Rpg∗R
qf∗L(T )|T = 0 for p 6= 0.

From the short exact sequence above, we deduce Rpg∗R
qf∗L = 0 for

p ≥ 2. For p = 1, consider the commutative diagram

R1+q(g ◦ f)∗L
β // R1+q(g ◦ f)∗L(T )

R1g∗R
qf∗L //

OO

R1g∗R
qf∗L(T ) = 0

OO

The vertical arrows are injective, from the Leray spectral sequence. The ho-
momorphism β is injective by Theorem 14, since T ∈ |f∗A⊗m| contains no lc
centers of (X,B). A diagram chase gives R1g∗R

qf∗L = 0.

5. INDUCTIVE PROPERTIES OF GNC LOG VARIETIES

Proposition 17. Let (X,B) be a GNC log variety. Let Y = LCS(X,B)
and (Y,BY ) the n-wlc structure induced by glueing of codimension one residues.
Then BY = (B − B=1)|Y and (Y,BY ) is a GNC log variety. If 2 | r and

rB has integer coefficients, then Res[r] : ω
[r]
(X,B)|Y

∼→ω[r]
(Y,BY ) is an isomorphism.

Moreover,

1) Let π : (X̄, BX̄) → (X,B) be the normalization of X, with induced log
variety structure (with log smooth support). Let Ȳ = LCS(X̄, BX̄). Let
n : Y n → Y and n̄ : Ȳ n → Ȳ be the normalizations. In the commutative
diagram

X̄

π
��

Ȳ

π
��

oo Ȳ n

g

��

n̄oo

X Yoo Y nnoo
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each square is both cartesian and a push-out, and g is an étale covering.
With the log structures induced by glueing of codimension one residues,
we obtain a commutative diagram of GNC log varieties and log crepant
morphisms

(X̄, BX̄)

π

��

(Ȳ , BȲ )

π

��

oo (Ȳ n, BȲ n)

g

��

n̄oo

(X,B) (Y,BY )oo (Y n, BY n)
noo

2) The lc centers of (X,B) are the irreducible components of X and the lc
centers of (Y,BY ).

Proof. 1) We may suppose (X,B) is a GNC local model. Let X =
∪FAF ↪→ AN and B =

∑
i∈σ biHi|X , with core σ = ∩FF . Denote σ′ = {i ∈

σ; bi < 1}. Then ψ =
∑

i∈σ(1− bi)mi =
∑

i∈σ′(1− bi)mi, which belongs to the
relative interior of σ′. We deduce that Xγ is an lc center of (X,B) if and only
if σ′ ≺ γ ∈ ∆. Therefore Y = ∪τAτ ↪→ AN is an irreducible decomposition,
where the union is taken after all codimension one faces τ ∈ ∆ which contain
σ′. In particular, the core of Y is σ′. One checks that (Y, 0) satisfies properties
a) and b) of the GNC local model. The boundary induced by codimension
one residues is BY =

∑
i∈σ′ biHi|Y = (B − B=1)|Y , which satisfies c). The

commutative diagram becomes

tFAF
π

��

tF ∪τ≺F Aτ
π

��

oo tF tτ≺F Aτ
g

��

n̄oo

∪FAF ∪τAτoo tτAτnoo

and one checks that both squares are push-outs and cartesian, using axioms
a) and b) of the GNC local models. Over Aτ , g consists of several identical
copies of Aτ , one for each facet F which contains τ . Therefore g is an étale
covering. All log structures have the same log discrepancy function ψ, hence
the morphisms of the diagram are log crepant.

2) Step 1. The claim holds if (X,B) is a GNC local model. Indeed, the
lc centers of (X,B) are the invariant cycles Xγ such that ψ ∈ γ and γ ∈ ∆,
and the lc centers of (Y,BY ) are the invariant cycles Xγ such that ψ ∈ γ and
γ ∈ ∆ is a face of positive codimension.

Step 2. We reduce the claim to the case when (X,B) has log smooth
support. Indeed, consider the commutative diagram of log structures in 1).
The log structure on the normalization (X̄, BX̄) has log smooth support. By
Lemma 2 for g and a diagram chase, the claim for (X,B) and its LCS-locus is
equivalent to the claim for (X̄, BX̄) and its LCS-locus.
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Step 3. Let (X,B) have log smooth support. Then Y = B=1 and the
induced boundary is BY = (B − Y )|Y . We have to show that for a closed
subset Z ⊆ Y , Z is an lc center of (X,B) if and only if Z is an lc center of
(Y,BY ), i.e. the image of an lc center of the normalization (Y n, BY n). We
may cut with general hyperplane sections, and suppose Z is a closed point P .
Note that if f : (X ′, BX′) → (X,B) is étale log crepant, then Y ′ = f∗Y , and
since normalization commutes with étale base change, we obtain a cartesian
diagram

(Y ′n, BY ′n)

n′

��

g // (Y n, BY n)

n

��
(X ′, BX′)

f // (X,B)

with f, g étale log crepant. By Lemma 2 for f and g, the claim holds for n if
and only if it holds for n′. By the existence of a common étale neighborhood [5]
and Step 1, we are done.

Corollary 18. Let X be a GNC log variety. Then S = SingX coincides
with the non-normal locus of X, and with LCS(X, 0). The n-wlc structure
induced by glueing of codimension one residues is (S, 0), a GNC log variety,

and Res[2] : ω
[2]
X |S

∼→ω[2]
S is an isomorphism. Moreover,

1) Let π : (X̄, C̄)→ (X, 0) be the normalization of X, with induced log vari-
ety structure (with log smooth support). Note that C̄ = LCS(X̄, C̄). Let
n : Sn → S and n̄ : C̄n → C̄ be the normalizations. In the commutative
diagram

X̄

π
��

C̄

π
��

oo C̄n

g

��

n̄oo

X Soo Sn
noo

each square is both cartesian and a push-out, and g is an étale covering.
With the log structures induced by glueing of codimension one residues,
we obtain a commutative diagram of GNC log varieties and log crepant
morphisms

(X̄, C̄)

π

��

(C̄, 0)

π

��

oo (C̄n,Cond n̄)

g

��

n̄oo

(X, 0) (S, 0)oo (Sn,Condn)
noo

2) The lc centers of X are the irreducible components of X and the lc centers
of S.
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Proof. It remains to check that S = C = LCS(X, 0). First of all, we claim
that S = C. Indeed, let x ∈ X. We show that OX,x is normal if and only if
OX,x is nonsingular. We may suppose x ∈ X is a local model X = ∪FXF and
x belongs to the closed orbit of X. Then OX,x is normal if and only if there
is only one facet F . As XF is smooth, the latter is equivalent to OX,x being
smooth.

SinceX\S is smooth, LCS(X, 0) ⊆ S. On the other hand, each irreducible
componentQ of S is an irreducible component of C. ThereforeQ is an lc center.
We conclude that LCS(X, 0) = S.

Remark 19. Let (X,B) be a GNC log variety. Let S = SingX and
BS = B|S . One can also show that (S,BS) is a GNC log variety, induced by
codimension one residues. If 2 | r and rB has integer coefficients, the glueing

of codimension one residues induces an isomorphism Res[r] : ω
[r]
(X,B)|S

∼→ω[r]
(S,BS).

Lemma 20. Let (X,B) be a GNC log variety. Let π : (X̄, BX̄)→ (X,B)
be the normalization of X, with the induced log variety structure. Let Y =
LCS(X,B). Let Z be a union of lc centers of (X,B).

1) Z ∩ Y is a union of lc centers of (Y,BY ).

2) π−1(Z) is a union of lc centers of (X̄, BX̄).

3) We have a short exact sequence 0→ IZ∪Y⊂X → IZ⊂X
|Y→ IZ∩Y⊂Y → 0.

Proof. 1) We may suppose Z is an lc center. If Z ⊆ Y , the claim is
clear. Therefore we may suppose Z is an irreducible component of X. Then
the normalization Z̄ of Z is an irreducible component of the normalization X̄
of X. We have π−1(Y ) = Ȳ = LCS(X̄, BX̄). Therefore Z ∩Y = π(Z̄ ∩ Ȳ ). We
have Z̄ ∩ Ȳ = LCS(X̄, BX̄)|Z̄ , we deduce that Z̄ ∩ Ȳ is a union of lc centers
of (X̄, BX̄) contained in Ȳ . Therefore Z ∩ Y is a union of lc centers of (X,B)
contained in Y , hence lc centers of (Y,BY ), by Proposition 17.

2) We use induction on dimX. We may suppose Z is an lc center. If Z
is an irreducible component of X, then its normalization Z̄ is an irreducible
component of X̄, and π−1(Z) = Z̄ ∪ π−1(Z ∩ Y ), since Y contains the non-
normal locus of X. By induction, the claim holds.

Suppose Z is not an irreducible component of X. Then Z ⊆ Y , by
Proposition 17. By induction, n−1(Z) is a union of lc centers of (Y n, BY n).
Let W be such an lc center. Since g is finite flat, each irreducible component
of g−1(W ) dominates W . Therefore g−1n−1(Z) is a union of lc centers of
(Ȳ n, BȲ n), by Lemma 2. Equivalently, n̄−1π−1(Z) is a union of lc centers of
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(Ȳ n, BȲ n). Therefore π−1(Z) is a union of lc centers of (Ȳ , BȲ ). The latter lc
centers are also lc centers of (X̄, BX̄).

3) The sequence is exact if and only if |Y : IZ⊂X → IZ∩Y⊂Y is surjective,
if and only if |Y : IZ⊂Z∪Y → IZ∩Y⊂Y is surjective, if and only if the diagram

Y

��

Y ∩ Z

��

oo

Y ∪ Z Zoo

is a push-out. By [9], this diagram is a push-out if Y ∪Z is weakly normal. To
show this, consider the normalization π : X̄ → X. Denote W = π−1(Y ∪ Z).
Since

X̄

��

Ȳ

��

oo

X Yoo

is a push-out and Y ∪ Z contains Y , the diagram

X̄

��

W

��

oo

X Y ∪ Zoo

is also a push-out. But X̄ is smooth, and W is the union of Ȳ with the irre-
ducible components of X̄ which are mapped into Z. Therefore the singularities
of W are at most normal crossings. We conclude that X, X̄,W are weakly nor-
mal. From the last push-out diagram, we deduce that Y ∪Z is weakly normal
as well.

The results of this section can be used to reduce Kollár’s torsion freeness
theorem and Ohsawa-Kollár vanishing theorem from the GNC varieties to log
smooth varieties. This is done by a using the push-out and cartesian diagram
obtained from normalization and restriction to the LCS-locus. We were unable
to use the same argument to reduce the injectivity theorems from GNC varieties
to log smooth varieties, but we expect this is possible.
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