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INDECOMPOSABLE FILTRABLE VECTOR BUNDLES ON
OELJEKLAUS-TOMA MANIFOLDS
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In this short note, we prove that there are finitely many indecomposable filtrable
bundles with trivial determinant and vanishing second Chern class on Oeljeklaus-
Toma manifolds that satisfy certain conditions. With few precise exceptions,
they are simple bundles.
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1. INTRODUCTION

Let X be a complex manifold and E a holomorphic rank-r vector bundle
on X. The bundle E is called filtrable if there exists an ascending chain of
coherent sheaves

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr−1 ⊂ Fr = E

with rk(Fi) = i for any i = 0, . . . , r. The bundle E is called reducible if there
exists a subsheaf 0 6= F ⊂ E with rk(F) < rk(E), and in rank-two the two
notions coincide.

If X is projective (or more generally if X is algebraic) it is well-known
that any vector bundle is filtrable. By way of contrast, if X is non-algebraic,
there may exists non-filtrable vector bundles on X. One of the first examples
was given by Elencwajg-Forster on two-dimensional tori X with NS(X) = 0
[6]. The next example, found by Schuster [12], is the tangent bundle of a K3-
surface X with Pic(X) = 0. For 2-dimensional tori, Br̂ınzănescu-Flondor found
a necessary numerical criterion for the existence of filtrable vector bundles [2],
and this criterion was extended by Bănică-Le Potier for arbitrary non-algebraic
surfaces [5]. We refer to [3], [4] for extensive surveys on the subject and a
comprehensive literature.
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In this note we focus on Oeljeklaus-Toma manifolds (short, OT man-
ifolds). Their class provides a fertile ground for testing various statements
concerning non-algebraic manifolds, and they are relevant for the theory of
vector bundles. In the main result Theorem 1 we prove that, under certain
conditions which are satisfied for infinitely many OT manifolds and in arbi-
trarily high dimension, there are only finitely many isomorphism classes of
indecomposable filtrable vector bundles of rank two with trivial determinant
and vanishing second Chern class. In the process, we prove a result on the
first cohomology of line bundles over such manifolds, see Proposition 2.1. This
Proposition also gives a precise classification, in terms of extensions of all the
indecomposable filtrable vector bundles of rank two with trivial determinant
and vanishing second Chern class. Finally, we obtain a precise description of
the simple ones.

2. OELJEKLAUS-TOMA MANIFOLDS AND LINE BUNDLES

2.1. Oeljeklaus-Toma manifolds

We recollect the definition and some basic properties of Oeljeklaus-Toma
manifolds (OT, for short). The basic reference is the original paper of K.
Oeljeklaus and M. Toma [8].

Let K be an algebraic number field; K admits n = s + 2t embeddings
in C, more precisely, s real embeddings σ1, . . . , σs : K → R, and 2t complex
embeddings σs+1, . . . , σs+t, σs+t+1 = σs+1, . . . , σs+2t = σs+t : K → C. Note
that, for any choice of natural numbers s and t, there is an algebraic number
field with s real embeddings and 2t complex embeddings [8, Remark 1.1].

Denote by OK the ring of algebraic integers of Kand by O∗K the multi-
plicative group of units of OK , namely, invertible elements in OK . Denote by
O∗,+K the subgroup of finite index of O∗K whose elements are totally positive
units, namely, units being positive in any real embedding: u ∈ O∗K such that
σj(u) > 0 for any j ∈ {1, . . . , s}.

Let H := {z ∈ C : Im z > 0} denote the upper half-plane. On Hs × Ct,
consider the following actions:

T : OK 	 Hs × Ct,

Ta(w1, . . . , ws, zs+1, . . . , zs+t) := (w1 + σ1(a), . . . , zs+t + σs+t(a)),
(1)

and

R : O∗,+K 	 Hs × Ct,

Ru(w1, . . . , ws, zs+1, . . . , zs+t) := (w1 · σ1(u), . . . , zs+t · σs+t(u)).
(2)



3 Indecomposable filtrable vector bundles 229

For any subgroup U ⊂ O∗,+K , one has the fixed-point-free action OK o
U 	 Hs × Ct. One can always choose an admissible subgroup [8, page 162],
namely, a subgroup such that the above action is also properly discontinuous
and cocompact. In particular, the rank of admissible subgroups must be s.
Conversely, when either s = 1 or t = 1, every subgroup U of O∗,+K of rank s is
admissible.

One defines the Oeljeklaus-Toma manifold associated to the algebraic
number field K (with s > 0 and t > 0) and to the admissible subgroup U of
O∗,+K as

X(K,U) := Hs × Ct
/
OK o U.

The couple (s, t) will be referred as the algebraic type of X.
In particular, for an algebraic number field K with s = 1 real embeddings

and 2t = 2 complex embeddings, choosing U = O∗,+K we obtain that X(K,U)
is an Inoue-Bombieri surface of type SM .

The Oeljeklaus-Toma manifold X(K,U) is called of simple type when
there exists no proper intermediate field extension Q ⊂ K ′ ⊂ K with U ⊆ O∗,+K′ .

The topology of OT manifolds is rather clear. Letting Ts for the real
s-dimensional torus Ts =

(
S1
)s

one can see that an OT-manifold X of alge-
braic type (s, t) is a Ts+2t-bundle over Ts (but not a principal bundle). Com-
bined with the Leray spectral sequence, this leads to a clear description of
the DeRham cohomology of X, see [7]. On the other hand, the torsion part
of H i(X,Z) is also well understood, at least in the case i = 2. Indeed, one
can show [1, Proposition 5], that the commutator [π1(X), π1(X)] equals J(U)
where J(U) ⊂ OK is the ideal generated by all the elements of the form 1− u
with u ∈ U. In particular

Tors (H1(X,Z)) ' OK/J(U).(3)

The analytic geometry of these manifolds is rather special. As they have alge-
braic dimension zero, there are at most finitely many divisors on X. In fact,
much more has been shown: any OT manifolds contains no (closed) curves
(see [13]), the OT manifolds of algebraic type (s, 1) contain no proper closed
analytic subspaces [9], and the same holds good more generally, if any element
u in the admissible group of units U is a primitive element [10].

2.2. Line bundles on OT manifolds

Since we will use some facts about line bundles and their Dolbeault co-
homology on OT manifolds, we gather here the information needed. We shall
restrict to the case when X is of simple type and such that H1(X,Z) is torsion-
free, since this is the case we will further work on.
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First, we notice that if X is an OT manifold of simple type of algebraic
type (s, t) then, by [11, Corollary 4.6], respectively [11, Corollary 4.10], we
have h1(X,OX) = s and respectively h2(X,OX) =

(
s
2

)
. On the other hand, by

[8, Proposition 2.3] we have that b1(X) = s and b2(X) =
(
s
2

)
hence the natural

maps H1(X,C) → H1(X,OX) and H2(X,C) → H2(X,OX) are bijective.
Since flat line bundles on X are parametrized by H1(X,C∗) it follows that all
line bundles on X are flat, i.e. induced by representations % : π1(X)→ C∗.

Proposition 2.1. Let X be an OT manifold of simple type and such that
H1(X,Z) is torsion free, let % : π1(X) → C∗ be a representation and L% the
associated holomorphic line bundle on X. Then

h1(X,L%) =


s, if % ≡ 1;
1, if % = (σi)

−1 for some i = s+ 1, . . . , s+ t;
0, otherwise.

Proof. We will use the following well-known result by Mumford: if π :
X̃ → X is a cover of complex manifolds and F is a coherent sheaf of X such
that π∗(F) is acyclic on X̃ then one has a canonical isomorphism

H i(X,F) ' H i(π1(X), H0(X̃, π∗(F))

where the right-hand side stands for group cohomology.
Take X to be our OT manifold, X̃ = Hs × Ct its universal cover and

F = L%. Then the above isomorphism works well, since X̃ is Stein. Notice
that π∗(L%) is in fact trivial, hence H0(X̃, π∗(L%)) identifies with the ring R of
global holomorphic functions on Hs × Ct. Notice that under the isomorphism
π ∗ (L%) ' OX̃ the structure of π1(X)−module on R is given by

γ · f := %(γ) (f ◦ γ) , ∀γ ∈ π1(X), f ∈ R.

Let Xab := X̃/OK ; then Xab is a Galois cover of X with deck group U. Notice
that Xab is an open subset of the Cousin group Cs+t/OK whose preimage in
Cs+t is convex, [11]. From the exact sequence of groups

1→ OK → π1(X)→ U → 1

we get the Lyndon-Hochschild-Serre spectral sequence for group cohomology

Epq
2 = Hq(U,Hp(B,R)).

This induces the exact sequence

0→ H1(U,ROK )→ H1(X,L%)→ H1(OK ,R)U → H2(U,ROK )(4)

Next, notice that by the above result of Mumford one hasROK ' H0(Xab, p∗(L%)))
and H1(OK ,R) ' H1(Xab, p∗(L%)) (where p : Xab → X is the canonical
projection). Now p∗(L%) is the flat line bundle on Xab corresponding to the
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representation %|OK
; as H1(X,Z) is torsion-free, we see OK is actually the

commutator [π1(X), π1(X)] hence %|OK
is trivial. We get that p∗(L%) ' OXab .

But H0(Xab,OXab) consists of constants only, by [11, Proposition 2.3], so the
above sequence (4) becomes

0→ H1(U,C)→ H1(X,L%)→ H1(Xab,OXab)U → H2(U,C).(5)

Note that by [11, Theorem 3.1], the set

{dzi, i = s+ 1, . . . , s+ t}
is a basis for H1(Xab,OXab).

We next investigate the possible situations for %. The case when % is trivial
is already treated in [11, Corollary 4.6], hence we assume % is nontrivial. By the
description of the structure of π1(X)-module of R we get that H1(U,C) = 0
since u ·z = %(u)z for any u ∈ U and z ∈ C so if %(u) 6= 1 for some u ∈ U forces
z = 0. One also has H2(U,C) = 0; this is immediate for U of rank one, and
for higher ranks doing induction on rank using the Hochschild-Lyndon-Serre
spectral sequence and using again the nontriviality of %. So we are left with an
isomorphism

H1(X,L%)→ H1(Xab,OXab)U .
Taking into account the description of the basis of H1(Xab,OXab) we see that
for any u ∈ U one has

R∗u(dzi) = %(u)σi(u)dzi

hence dzi ∈ H1(Xab,OXab)U if and only f %(u) = (σi)
−1(u) for any u ∈ U .

Since X of simple type, it cannot happen that for two different i, j on has
(σi)

−1(u) = (σj)
−1(u) (for otherwise all u ∈ U would live in a proper subfield

L of K, namely in L := {x ∈ K|σi(x) = σj(x)}, and this would contradict
the assumption that X is of simple type) so the subspace of invariants is at
most one-dimensional, and this can happen only when %(u) = (σi)

−1(u) for
any u ∈ U. Since OK = [π1(X), π1(X)], this implies % = (σi)

−1, as stated.

Remark 2.2. Notice that the above result generalizes the case (s, t) =
(1, 1), that is, the case of Inoue-Bomberi surfaces. Indeed, if X is such a
surface and L ∈ Pic(X) then H1(X,L) 6= 0 forces (by Riemann-Roch) that
H0(X,L) 6= 0 or H2(X,L) 6= 0. Since X has no curves, in the first case we get
L = OX while in the second L = KX . It is not hard to see that the canonical
bundle KX of X is the flat line bundle associated to σ1σ2 = (σ2)

−1.

3. THE MAIN RESULTS

Theorem 1. Let X = X(K,U) be an OT manifold of algebraic type (s, t)
with s = 1. Assume that U is generated by a primitive element u0 of K (in par-
ticular, X is of simple type) and that H1(X,Z) is torsion-free. Then X carries
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finitely many indecomposable filtrable rank-2 holomorphic vector bundles with
trivial determinant and vanishing second Chern class.

Proof. We start with the particular case t = 1, which is especially enlight-
ening for the proof of the general case. In this case, X is an Inoue-Bombieri
surface. If E is filtrable of rank 2 with vanishing Chern classes, then E sits in
an extension of the form

0→ L→ E → L∨ ⊗ IZ → 0(6)

But c2(E) = 0 and c1(L) = 0 as b2(X) = 0. Taking the second Chern class
in the above extension we get deg(Z) = h0(Z,OZ) = 0 and hence Z is empty.
If E is is indecomposable, we must have H1(X,L⊗2) 6= 0; but this leads to
L⊗2 = OX or L⊗2 = KX . Since Pic(X) ' C∗ we see there are exactly 4
possible choices for L. Noticing that in any of these cases one has in fact
Ext1(L∨, L) ' H1(X,L⊗2) ' C, we see that there are precisely 4 filtrable
indecomposable rank-2 vector bundles E with trivial determinant.

We next move to the general case, t ≥ 2. Recall from [11, Corollary 4.6]
that in this case we have again h1(X,OX) = 1. Note also that the second Betti
number b2(X) vanishes. Indeed, by [7, Theorem 3.1], it suffices to show that for
any multiindex I of length |I| ≤ 2 it is impossible to find σI such that σI |U = 1.
This is obvious if |I| = 1; now if I = {i, j} is such that σi(u0)σj(u0) = 1 then it
follows that the unit u0 is palindromic (reciprocal), in particular its degree is
odd. But this is a contradiction, since the degree of u0 divides [K : Q] = 1+2t.
Hence h2(X,C) = 0. But on OT manifolds, the Hodge decomposition holds well
by [11, Theorem 4.5.], and hence we obtain h2(X,OX) = 0.

If E is a filtrable rank-two vector bundle with trivial determinant on X,
it sits in a an extension of the form

0→ L→ E → L∨ ⊗ IZ → 0(7)

with Z ⊂ X a locally complete intersection of codimension two. Since t > 1
we get dim(X) ≥ 3, hence dim(Z) ≥ 1. Applying [10], we deduce that Z is
empty, hence (7) becomes

0→ L→ E → L∨ → 0.(8)

Since X has no divisors, we see that for any E there exists at most two
possible line bundles L as above which are also dual one to another. Proposition
2.1 implies h1(X,L⊗2) ≤ 1 for any L ∈ Pic(X) and h1(X,L⊗2) = 0 for all but
finitely many L. In particular, except for finitely many L, the bundle given
by the extension (7) is decomposable. Therefore, there are only finitely many
indecomposable filtrable bundles E.
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Remark 3.1. The indecomposable filtrable bundles obtained in the proof
Theorem 1 are simple with the exception of the unique non-split extension

0→ OX → E → OX → 0,

and its twists with a line bundle L with L⊗2 ∼= OX .
Indeed, assume that the line bundle L defining the extension (8) satisfies

L⊗2 6∼= OX . Recall that non-trivial line bundles on X have no global sections.
By twisting (8) by L, we obtain h0(X,E ⊗L) = 0, and twisting it with L∨ we
get h0(X,E⊗L∨) = 1. Since E ∼= E∨, the claim follows from (8) again twisted
by E.

If L is trivial, it is clear that the unique non-trivial extension (8) admits
endomorphisms that are not homotheties, e.g. the composition E → OX ↪→ E.
In fact, one can prove that h0(X,E ⊗ E∨) = 2 in this case. Similarly if L is a
square root of OX .

Even though the hypotheses of Theorem 1 are non–trivial, they are sat-
isfied by a reasonably large class of OT manifolds.

Proposition 3.2. There exist OT manifolds of arbitrarily high dimen-
sion satisfying the assumptions of Theorem 1.

Proof. Recall that an algebraic unit u is called exceptional 1 − u is an
algebraic unit too. To prove the assertion stated in the Remark, using 3 we need
to construct exceptional units of arbitrary high degree which are also totally
positive. Consider the polynomial P (X) = X3 + X − 1; it is immediate that
P is irreducible and has a single real root α ∈ (0, 1). Because P is monic and
as P (0) = −1 it follows that α is an algebraic unit. Since Q(X) := −P (1−X)
is also monic and its free term is −1 we get that 1 − α is also a unit, so α
is a totally positive exceptional unit. Now for any n ∈ N, n ≥ 1, consider
εn := 2n+1

√
α; it follows plainly that εn is also a totally positive exceptional

unit, of degree 3(2n+ 1).
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[3] V. Br̂ınzănescu, Holomorphic Vector Bundles Over Compact Complex Surfaces. Lec-
ture Notes in Mathematics, 1624. Springer, Berlin, 1996.
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