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CONES OF POSITIVE VECTOR BUNDLES

MIHAI FULGER

We introduce and study extensions of the nef cone of divisors to the full numerical
ring of a projective manifold. These are convex cones generated by positive and
in one case also semistable vector bundles of arbitrary rank. They share some
of the properties of the nef cone. Drezet’s log-Chern character motivates us to
revisit Bogomolov’s inequality, and we find a version for threefolds that involves
asymptotic cohomological functions.
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1. INTRODUCTION

Let X be a projective variety of dimension n over an algebraically closed
field k. A line bundle on X is a vector bundle L of rank 1. The isomorphism
classes of line bundles on X form the Picard group PicX. The group operation
here is tensor product, and inverses are given by taking duals. If X is embedded
in a projective space PN of rank 1 quotients of kN`1, an example of a nontrivial
line bundle is the restriction of the universal quotient bundle OPN p1q|X . Such a
line bundle is called very ample. If Lbm is very ample for some m ą 0, then L
is ample. Ampleness is stable under tensor product. The set of ample elements
of PicpXq is similar to a convex cone. To get an actual cone, one considers
their classes in the Néron–Severi space N1pXq, the R-span of numerical classes
of line bundles. The space N1pXq is finite dimensional, and the ample classes
span the open convex cone AmppXq. Its topological closure is the nef cone
Nef1pXq. It is a fundamental invariant of X, controlling morphisms to other
projective varieties. See for example [13, 14].

It is also interesting to consider vector bundles of higher rank. Modulo
short exact sequences, they generate the K-theory ring KpXq with operations
given by direct sum and tensor product. A prototypical example of a positive
bundle is the universal quotient bundle of a Grassmann variety. The standard
positivity notions for bundles such as ampleness, global generation, or nefness
are again stable under tensor product, but also direct sum. Inspired by the
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rank 1 case, we look for a suitable ambient space for a cone of positive bundles.
If V is a positive vector bundle, we could look at c1pVq, the class of detV
in N1pXq, but this does not capture enough information about V. Instead
we look at all characteristic classes of V in the graded numerical R-algebra
N˚pXq “

Àn
k“0N

kpXq, which also verifies dimRN
˚pXq ă 8.

We highlight three ways of packaging the characteristic classes of a vector
bundle V of rank r:

1. The total Chern class cpVq “ 1` c1pVq ` c2pVq ` . . .` cnpVq.

2. The Chern character chV “ r ` ch1pVq ` . . . ` chnpVq “ r ` c1pVq `
c21pVq´2c2pVq

2 ` . . .

3. The log-Chern character lcV :“ log chV “ log r ` lc1 V ` . . . ` lcn V “
log r ` c1pVq

r `
2r ch2pVq´c21pVq

2r2
` . . .

If L is a line bundle, then cpLq “ 1 ` c1pLq, while chL “ 1 ` c1pLq ` . . . `
1
n!c

n
1 pLq “ exppc1pLqq and lcL “ c1pLq. The Chern classes, the graded compo-

nents of the total Chern classes, are the classical way of looking at the char-
acteristic classes of V. However the Chern character and log-Chern character
are better suited for convexity purposes. The Chern character determines a
morphism of rings ch : KpXq Ñ N˚pXq, and lcpV bWq “ lcV ` lcW. We will
show (cf. 2.1) that the Chern character morphism is surjective after tensor-
ing by R. Motivated by the additive and multiplicative properties of positive
bundles and of the Chern and log-Chern characters, we consider the following
cones:

1. C pXq is the closure of the convex span of monomials of form
ś

ipchViqai P
N˚pXq, where the Vi are nef vector bundles, and ai P R`. The power
pchViqai is computed formally as a power series.

2. NefpXq is the closure in N˚pXq of the convex span of classes lcV with V
a nef vector bundle.

The presence of the coefficients ai guarantees that the formal exponential exp :
N˚pXq Ñ N˚pXq maps NefpXq in C pXq. Both C pXq and NefpXq surject
onto the nef cone of divisors Nef1pXq, therefore both deserve the nomenclature
cone of nef vector bundles of X. We assign it to NefpXq, since we also have
Nef1pXq Ă NefpXq via lcL “ c1pLq when rk L “ 1. Furthermore, tensor
products are the ones that seem to improve positivity (e.g., ample line bundles
have globally generated and even very ample high tensor powers), while direct
sums only preserve it. Of the two cones, NefpXq is the one that focuses on
tensor powers.
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Example 1.1 (3.3, 4.6). Let X be a smooth projective curve. Then
N˚pXq » Rrxs{px2q where x is the class of a point. We have C pXq “ NefpXq “
x1, xy.

Example 1.2 (3.10, 4.9). Let X be a smooth projective surface. Then
N˚pXq » R¨ 1 ‘ N1pXq ‘ R¨ p, where p is the class of any point on X. We
have C pXq “ NefpXq “ x1,Nef1pXq,˘py. In particular the cones contain
the line R¨ p through the origin and so they are not pointed. We see in this
example that usually the class lc2 is useful for studying positivity only when
seen together with the other lck.

Concerning the generators and shape of these cones, we prove extensions
of known properties of the nef cone of divisors.

Theorem 1.3 (3.12, 3.13, 4.10, 4.11). Let X be a projective variety over
an algebraically closed field. Then

(i) One can replace nef by ample for the bundles Vi and V in the definition
of C pXq and NefpXq respectively. If the characteristic of the base field
is zero, then nef can also be replaced by globally generated.

(ii) The cones C pXq and NefpXq are full-dimensional, i.e., they generate
N˚pXq as a vector space.

Returning to the log-Chern character lcV, observe that lc1 V is relevant
for computing slopes. Recall that if H is an ample divisor class on X, then

the slope of V with respect to H is µHpVq :“ c1pVq¨Hn´1

rk V . Thus µHpVq “
plc1 Vq ¨Hn´1. Furthermore, lc2 V “ ´∆pVq

2r2
, where ∆pVq is the discriminant of

V. Both the slope and the discriminant are important invariants for studying
slope semistability. Bogomolov’s famous inequality states that if V is slope
semistable on a complex projective surface, then ∆pVq ě 0. Generalizations to
arbitrary dimension exist, but usually give information about ∆pVq only.

We suspect that the higher log-Chern classes play a role in the study or
refinement of semistability. We give here an inequality for threefolds. If V is a
vector bundle of rank r, set

qhipVq :“ lim inf
mÑ8

hipX,Symm Vq
mn`r´1{pn` r ´ 1q!

.

For L “ OPpVqp1q, these are conjecturally equal to the asymptotic cohomolog-

ical functions phipLq of [10] where lim sup was used.

Theorem 1.4 (5.2). Let pX,Hq be a polarized smooth complex projective
threefold. Let V be a µH-semistable vector bundle with detV “ 0. Then

´qh1pVq ď c3pVq ď qh2pVq.
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The proof is analogous to the proof of Bogomolov’s inequality in [9, Theorem
3.4.1] or [12, Theorem 1.3.1], which follows [16]. It is also similar to Gieseker’s
argument by reduction to positive characteristic in [6].

The Bogomolov inequality suggests a fix for NefpXq not always being pointed.
Assume that pX,Hq is a polarized projective manifold, and let StabHpXq be
the closure of the convex cone generated in N˚pXq by classes lcV with V nef
and µH -semistable. Clearly StabHpXq Ď NefpXq. The cone StabHpXq also
projects onto Nef1pXq in N1pXq.

When X is a surface, the Bogomolov inequality forces StabHpXq Ď
x1,Nef1pXq,´py. In fact equality holds (cf. 4.9). In particular StabHpXq
is a pointed cone in this case and the inclusion StabHpXq Ă NefpXq is strict.

2. NOTATION, CONVENTIONS, BACKGROUND

Throughout, X denotes a projective variety of dimension n over an alge-
braically closed field.

2.1. Numerical ring, K -theory, Chern character

Let AkpXq denote the Chow group of k-cycles with integer coefficients.
If V is a vector bundle on X, then cipVq induces an additive map cipVq X :
AkpXq Ñ Ak´ipXq. The degree map deg : A0pXq Ñ Z is the additive map
determined by deg x “ 1 for all points x P X.

Say that α P AkpXq is numerically trivial if degpP X αq “ 0 for all
polynomial expressions P of weight k in Chern classes of possibly distinct
vector bundles on X. For example, if V and W are vector bundles on X, then
c3pVq ´ c1pVqc2pWq is such an expression of weight 3. The numerical space
NkpXq is the tensor product with R of the group of numerical equivalence
classes of AkpXq. It is a finite dimensional vector space by [5, Example 19.1.4].
Denote NkpXq :“ NkpXq

_. It is naturally generated by polynomial Chern
expressions P as above. For example N1pXq is the real Néron–Severi space. If
V is a vector bundle, its Chern class ckpVq can be seen as an element of NkpXq.

The graded group N˚pXq :“
Àn

k“0N
kpXq is naturally a finite dimen-

sional R-algebra, and N0pXq » R. Multiplication is induced from the mul-
tiplication of polynomials. The multiplicative unit 1 is the class of c0pOXq

which acts as the identity on all AkpXq. The algebra N˚pXq is functorial for
morphisms of projective varieties.

By [5, Example 19.1.5], when X is also smooth, the intersection pairing
AkpXq ˆAn´kpXq Ñ Z descends to a perfect pairing NkpXq ˆNn´kpXq Ñ R,
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and in particular NkpXq » Nn´kpXq. In this case, multiplication in N˚pXq is
induced from the intersection pairing.

The Chern character of a vector bundle V is the unique natural (for pull-
backs) characteristic class chV P N˚pXq determined by the following proper-
ties:

• chpLq “ exppc1pLqq “ 1` c1pLq` 1
2c

2
1pLq` . . .` 1

n!c
n
1 pLq when L is a line

bundle,

• chpBq “ chpAq ` chpCq whenever 0 Ñ AÑ B Ñ C Ñ 0 is a short exact
sequence.

We have chV “ rkV`c1pVq` 1
2

`

c2
1pVq´2c2pVq

˘

`. . . If x1, . . . , xr are the Chern
roots of V, then the degree k part of chV is chk V “ 1

k!

řr
i“1 x

k
i . Furthermore,

chpV b V 1q “ chV ¨ chV 1 whenever V, V 1 are vector bundles.

The K-theory ring of X is denoted KpXq. It is the free abelian group
generated by vector bundles on X modulo relations rBs “ rAs ` rCs whenever
0 Ñ A Ñ B Ñ C Ñ 0 is a short exact sequence of vector bundles. The ring
structure is induced linearly from the tensor product of vector bundles. The
Chern character descends to a morphism of rings ch : KpXq Ñ N˚pXq.

Proposition 2.1. Let X be a projective variety over an algebraically
closed field. Then the induced Chern character morphism ch : KpXq bZ R Ñ
N˚pXq is surjective. In particular N˚pXq is generated linearly by chV with V
ranging though the vector bundles on X.

Proof. Assume first that X is also smooth. In this case coherent sheaves
on X admit finite resolutions by vector bundles. Consequently the KpXq
theory ring is isomorphic as a group with the K-theory group of coherent
sheaves modulo short exact sequences. In the smooth case, the ring N˚pXq
is the usual space of cycles modulo numerical equivalence (cf. [5, Example
19.1.5]). A form of Grothendieck-Riemann-Roch ([5, Example 15.2.16]) says
that the Chern character map ch : KpXq Ñ A˚pXq is an isomorphism after
tensoring by Q, where A˚pXq is the Chow ring of X. Since the class map
A˚pXq bZ RÑ N˚pXq is clearly onto, the conclusion follows.

Assume now that X is an arbitrary projective variety. We claim that
there exists an embedding ı : X ãÑ Y into a smooth projective variety Y such
that ı˚ : N˚pY q Ñ N˚pXq is surjective.

Since N˚pXq is finitely generated, there exist V1, . . . ,Vm, finitely many
bundles, such that N˚pXq is generated by all monomials in all Chern classes
of the Vi. Let H be a very ample divisor on X such that VipHq is globally
generated for all i. Each VipHq induces a Gauss map γi : X Ñ Gi, where Gi
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is the Grassmann variety of rk Vi-dimensional quotients of H0pX,VipHqq. Let
f : X ãÑ PN be the embedding induced by H. Let Y :“ PN ˆG1 ˆ . . .ˆGm,
and let ı :“ pf, γ1, . . . , γmq. Let Qi be the pullback to Y of the universal
quotient bundle on Gi. Let A be the pullback to Y of the hyperplane class
on PN . We have VipHq “ ı˚Qi and H “ ı˚A. The monomials in Chern
classes of the Vi are in the linear span of monomials in the Chern classes of
OXpHq,V1pHq, . . . ,VmpHq. See [5, Example 3.2.2]. By naturality, these are
all pulled back from Y . This proves the claim.

Since Y is smooth, by finite dimensionality there exist finitely many bun-
dlesWj on Y such thatN˚pY q is generated by chWj . ThenN˚pXq is generated
by ch ı˚Wj .

2.2. Exponential and logarithm

Let S “
Àn

k“0 Sk be a finite dimensional graded commutative R-algebra
with S0 “ R. For v P S with graded components vk P Sk, denote by v` :“
řn

k“1 vk “ v ´ v0 the part of positive degree. We have vn`1
` “ 0, so v` is

nilpotent. In particular 1{v exists if and only if v0 ‰ 0.
We also call v0 the rank rk v, inspired by chV “ rkV ` c1pVq ` . . . if V is

a vector bundle.
The formal exponential of v is exp v :“ ev0 ¨

řn
k“0

1
k!v

k
` P S. It verifies

exppv ` wq “ exp v ¨ expw.
Denote H :“ tv P S

ˇ

ˇ v0 ą 0u. If v P H, the formal logarithm of v is

log v :“ log v0 `

n
ÿ

k“1

p´1qk´1 1

k

ˆ

v`
v0

˙k

.

It verifies exp log v “ v and logpv ¨ wq “ log v ` logw, for all v, w P H. Fur-
thermore log exp v “ v for all v P S.

By looking at coordinates with respect to a basis of S, one sees that the
operations on S are polynomial. Then log : H Ñ S is a diffeomorphism with
inverse exp. The algebraic/analytic structure on S is that of an affine space
over R, and H is an open subset with the induced structure.

If v P H, and a is a real number, we can also define the a-th formal power
of v as

va :“ exppa log vq.

2.3. Positivity and twists

The projectivization of a coherent sheaf V on X is PpVq “ Proj Sym˚V
with natural projection π : PpVq Ñ X. Recall that if L is a line bundle, then
PpVq “ PpV b Lq, and OPpVbLqp1q “ OPpVq b π

˚L.
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A coherent sheaf V is called ample (or nef) if the line bundle OPpVqp1q
is ample (respectively nef). If V is a vector bundle, we also have that V is
globally generated if and only if OPpVqp1q is globally generated.

Let L P PicpXq bZ R. The formal twist of V by L is the pair pV, Lq, and
it is denoted V xLy. As in [14, Section 6.2], we generally do not attach a more
concrete meaning to the formal twists. When L P PicpXq is Cartier, then V xLy
is seen as V b L. We can twist twists by pVxLyqxL1y :“ VxL ` L1y. With a
similar formula, we tensor twisted bundles.

Define OPpVxLyqp1q :“ OPpVqp1qxπ
˚Ly. With this, ampleness and nefness

for sheaves extend formally to twists. If L is ample, then V is nef if and only
if VxεLy is ample for all ε ą 0.

If V is a vector bundle, define chpVxLyq :“ chV ¨ expL, where by abuse
we identify L with its class in N1pXq.

2.4. Semistable bundles

Let X be a smooth projective variety of dimension n over an algebraically
closed field of characteristic zero. Let H be an ample divisor on X. If F is a
coherent torsion-free sheaf on X, its slope with respect to H is

µpFq “ µHpFq “
`

c1pFq ¨Hn´1
˘

rkF
.

The Chern classes of coherent sheaves F on projective manifolds can be defined
by using the multiplicativity of the total Chern class in exact sequences, and the
existence of finite resolutions of F by vector bundles. For example, if D Ă X
is an effective divisor, then cpODq “ cpOXq{cpOXp´Dqq “ 1`D ` pD2q ` . . .

A coherent torsion-free sheaf V on X is said to be µ-semistable if µpVq ě
µpFq for all nonzero coherent F Ď V. If L is a line bundle, then V is semistable
iff V b L is semistable. Inspired by this, we say that a twisted bundle VxLy is
semistable iff V is.

The Mehta-Ramanathan theorem implies that a twisted bundle is semi-
stable if and only if its restriction to a general complete intersection of high
degree is semistable. On curves, semistability can be reduced by a suitable twist
to twisted bundles of degree 0, where by Hartshorne’s theorem [14, Theorem
6.4.15] semistability is equivalent to nefness. As a consequence, semistability
is homogeneous for tensor products: If V is a vector bundle and m ě 1, then
V is semistable iff Vbm is. Note that µpVbWq “ µpVq`µpWq for any twisted
bundles V and W.

The Bogomolov inequality states that if V is semistable on a smooth
complex projective surface, then 2 rkV¨ ch2 V ´ c2

1pVq ď 0. It is also valid for
twisted bundles.
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Versions of the results above also exist in positive characteristic at the
cost of replacing semistability by strong semistability, a notion that also takes
into account Frobenius pullbacks. See [11] for details.

3. THE CONE OF POSITIVE CHERN CHARACTERS

The nefness of vector bundles, and even of coherent sheaves, is preserved
under direct sums and tensor product (e.g., by [Corollary 3.31, Lemma 3.32][4]).
A direct sum of bundles is nef iff each summand is nef. If V is a bundle, then
Vbm is nef iff V is nef, as follos from [4, Lemma 3.25, Theorem 3.12]. It
then natural to put structure on the set of isomorphism classes of nef bundles.
However this is quite a large space. The classes of nef bundles in the K-theory
ring KpXq form a set that is closed under addition and multiplication. While
KpXqR :“ KpXq bZ R may also be infinitely dimensional, it has a natural
quotient ring ch : KpXqR Ñ N˚pXq that is a finite dimensional R-algebra.
These motivate the consideration of the following convex cone.

Definition 3.1. Let X be a projective variety over an algebraically closed
field. The cone of positive Chern characters C pXq of N˚pXq is the closure of
the convex span of expressions of form

m
ź

i“1

pchViqai ,

where m P N˚, where Vi are nef vector bundles on X, and ai P R`.

Remark 3.2. The projection of N˚pXq onto N1pXq maps C pXq onto the
usual nef cone Nef1pXq. (Indeed the degree 1 part of

ś

ipchViqai is a positive
combination of c1pdetViq. Conversely, if limmÑ8 amc1pDmq “ α P Nef1pXq
with am P Q`, then pchOpDmqq

am limits to expα which projects onto α in
N1pXq.)

Example 3.3 (Curves). If X is a smooth projective curve, then N˚pXq »
Rrxs{px2q, where x is the class of any point. Identifying N˚pXq as vector space
with R2, we have C pXq “ R2

ě0. Generators are 1 “ chpOXq and x seen as limit
of 1

m chpOXpmxqq “
1
m ` x.

Example 3.4 (Totally split bundles). If L1, . . . , Lr are nef line bundles on
the projective variety X, then Vm “ Lbm1 ‘ . . . ‘ Lbmr is nef, hence chVm “

exppmc1pL1qq ` . . .` exppmc1pLrqq P C pXq.

Example 3.5 (Duals of kernel bundles). Let H be a globally generated
line bundle on X. Let NH be the dual of the kernel of the evaluation map

H0pX,OXpHqq bOX � OXpHq.



9 Cones of positive vector bundles 293

It is a globally generated bundle, and

chNH “ h0pX,OXpHqq ´ expp´Hq P C pXq.

Example 3.6 (Generic cokernels). Let X have dimension n, and consider
H an ample divisor on X. Let F be any vector bundle of rank n ` r on X,
where r ě n. By [14, Theorem 6.3.65], for all large d, the cokernel of a general
map OXp´dHq

‘n Ñ F is an ample bundle V of rank r. In particular

chF ´ n expp´dHq P C pXq.

After scaling and taking limits, we find p´1qn`1pHnq P C pXq.

Example 3.7 (Bundles of large rank). Let V be a globally generated vector
bundle of rank r ą n “ dimX. Then

chV ´ pr ´ nq P C pXq.

(By a Bertini type argument (cf. [8, Exercise II.8.2]), if W Ă H0pX,Vq is a
general subspace of dimension r ´ n, then the cokernel of the evaluation map
W bOX Ñ V is a globally generated bundle of rank n. Its Chern character is
chV ´ pr ´ nq.)

Corollary 3.8. If V is a globally generated vector bundle, then ch` V P
C pXq.

Proof. We have chpV‘mq “ m chV. From Example 3.7, n ` m ch` V P
C pXq for large m. The conclusion follows after scaling by 1

m and taking limits.

At least when the dimension of the ambient space is even, the cone C pXq
may not be the best extension of Nef1pXq in N˚pXq.

Corollary 3.9. If dimX is even, then C pXq is not a pointed cone, i.e.,
it contains lines through the origin.

Proof. Let H be an ample divisor on X. Example 3.6 shows that ´pHnq P

C pXq. After scaling by dn{n!, the classes chpOXpdHqq P C pXq approach pHnq

as d grows.

Example 3.10 (Surfaces). Let X be a smooth projective surface. Then
N˚pXq “ R¨ 1‘N1pXq ‘ R¨ p, where p is the class of any point. We show

C pXq “
@

1,Nef1pXq,˘p
D

.

First, we have 1 “ chOX P C pXq. Let h be a very ample divisor class on
X From the proof of Corollary 3.9, we obtain ˘h2 P C pXq. From Corollary
3.8, we deduce h ` 1

2h
2 P C pXq. But ´h2 P C pXq now implies h P C pXq.
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The arguments above prove C pXq Ě
@

1,Nef1pXq,˘p
D

. The reverse inclusion
is clear.

The cone C pXq does share some of the other useful properties of Nef1pXq.

Remark 3.11. If f : X Ñ Y is a morphism of projective varieties, then
f˚C pY q Ď C pXq. (Indeed pullbacks preserve nefness and commute with char-
acteristic classes.)

Proposition 3.12. The cone C pXq is full dimensional, i.e., it generates
N˚pXq as a vector space.

Proof. By Proposition 2.1, N˚pXq is generated by chV for all vector
bundles V, not necessarily nef. Let L be an ample line bundle on X. There
exists t0 ě 0 such that V b Lbt is globally generated, hence nef, for all t ě t0.
Since chpV b Lbtq “ chV ¨ exppt ¨ c1pLqq, it is enough to prove that 1 is in the

linear span of texppt ¨ c1pLqq
ˇ

ˇ t ě t0u. From exppt ¨ c1pLqq “
řn

k“0
tk

k! c
k
1pLq,

using that the Vandermonde matrix ppt0`iq
jqi,jPt0,1,...,nu is invertible, we deduce

the result.

Proposition 3.13. Let X be a projective variety. Up to closure, the
monomials

śm
i“1pchViqai generate C pXq where m P N˚, ai P R`, and the Vi

are all

(i) nef vector bundles;

(ii) ample vector bundles;

(iii) (in characteristic zero) globally generated vector bundles;

(iv) twisted nef bundles;

(v) twisted ample bundles;

Proof. piq is the definition of C pXq. For piiq, let
ś

ipchViqai with Vi nef.
Let H be an ample divisor. For all t P N˚, the bundle Vbti pHq is ample. The
class

ś

ipchViqai is the limit of the classes
ś

ipchpV
bt
i pHqqq

ai{t.
In characteristic zero, if V is ample, then Vbm is globally generated for all

sufficiently large m. Indeed Vbm is a direct sum of (co)Schur functors indexed
by partitions of m with at most r “ rkV parts. Each such functor is a direct
summand of SymmpV‘rq. Since V is ample, so is V‘r, hence SymmpV‘rq is
globally generated for all sufficiently large m. This settles piiiq using piiq since
pchViqai “ pchpVbmi qqai{m.

Assume VxLy is a nef twisted bundle, where L is an R-Cartier R-divisor.
Let H be an ample divisor. Let ε ą 0 The twisted bundle VbmxmpL ` εHqy



11 Cones of positive vector bundles 295

is ample by [4, Lemma 3.29, Corollary 3.31]. Write L “
ř

i aiLi where ai P R
and Li are Cartier divisors. Let tmpL ` εHqu :“

ř

itmaiu ` tmεu. The vector
bundle VbmbOXptmpL` εHquq is ample for large m, since ampleness is open
(if V is a bundle, then the set of classes rLs P N1pXq such that VxLy is ample is
open) and limmÑ8

1
m tmpL` εHqu “ L` εH. We also have limmÑ8 chpVbmb

OXptmpL` εHquqq
1{m “ chpVxL` εHyq. Part pivq follows by shrinking ε to 0.

Part pvq is similar.

In positive characteristic p, in order to involve global generation, it is
sufficient to replace ampleness by the stronger cohomological Γ-ampleness, and
nefness by the corresponding limiting condition.

Remark 3.14. In a weak sense, the cone C pXq is also preserved by push-
forward. Let f : X Ñ Y be a flat morphism of complex projective manifolds.
Let V be an ample vector bundle on X. For large m ą 0 we have:

f˚
`

pchVqm td f
˘

“ ch
`

f˚pVbmq
˘

P C pY q,

where td f is the formal fraction td X{f˚ td Y , which agrees with the Todd
class of the relative tangent space when f is smooth. (The idea is to prove that
for large enough m we have Rif˚pVbmq “ 0 for i ą 0, and f˚pVbmq is an ample
and globally generated vector bundle. The statement is then a consequence of
the Grothendieck-Riemann-Roch theorem.)

An analogue of this result for the usual nef cone of divisors is the following:

Proposition 3.15. If f : X Ñ Y is a surjective equidimensional mor-
phism of relative dimension d of smooth projective varieties, and if H is an
ample divisor class on X, then f˚ppH

d`1qq is an ample divisor class on Y .

The proposition follows from the previous remark by setting V “ OXpHq
and letting m grow. We also include a direct proof for comparison.

Proof. Since f is equidimensional, a general hyperplane section of large
enough degree of X is still equidimensional over Y by [3, Lemma 4.9]. Such
a hyperplane is also smooth by Bertini. By induction we reduce to the case
where d “ 0. Then f is a finite covering between smooth varieties, hence it is
flat. Flat pullbacks preserves effectivity. We conclude by the Moishezon–Nakai
criterion and the projection formula.

Remark 3.16 (Semistability). We have seen (e.g., Corollary 3.9) that
C pXq does not satisfy all the properties of Nef1pXq. One possible attempt
to fix this could be to shrink it further by refining the generating set. Let
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pX,Hq be a polarized projective manifold. All line bundles on X are semi-
stable with respect to any ample polarization. Instead of considering all nef
bundles, we could focus on the semistable ones.

Denote by CHpXq the closure in N˚pXq of the cone generated by products
śm

i“1 chpViqai where Vi are µH -semistable and nef, and ai P R`. This is not a
convex cone. Semistability is preserved by tensor products, but not by direct
sums unless the summands have the same slope.

By [15], the cone CHpXq generates N˚pXq as a vector space.
We do get a convex cone if we fix the slope. When the slope is zero, or

equivalently c1pVq “ 0, the resulting convex cone C 0
HpXq is also closed under

products.

Remark 3.17 (Why not positive coherent sheaves?). Tensor products of
coherent sheaves preserve positivity. This is not observed by the Chern charac-
ter, which is no longer multiplicative. In fact, if V and W are coherent sheaves
on a projective manifold, then chV¨ chW “

ř

iě0p´1qi ch TorOX
i pV,Wq.

4. THE CONE OF POSITIVE VECTOR BUNDLES

Definition 4.1. Let V be a nonzero (twisted) vector bundle on X, so that
ch0pVq “ rkV ą 0. Following Drezet, define the log-Chern character of V as
the formal logarithm of the Chern character

lcV :“ log chV “ log rkV `
n
ÿ

k“1

p´1qk´1 1

k

ˆ

ch` V
rkV

˙k

.

If V and V 1 are vector bundles, then lcpV b V 1q “ lcV ` lcV
prime.

Example 4.2. If L is a line bundle, then lcL “ log chL “ log exp c1pLq “
c1pLq.

Remark 4.3. Denote r :“ rkV, and let lck V denote the degree k compo-
nent of lcV. Then

lc0 V “ log r

lc1 V “
c1pVq
r

lc2 V “
2 ch0 V ch2 V ´ ch2

1 V
2r2

“ ´
2r¨ c2pVq ´ pr ´ 1q¨ c2

1pVq
2r2

“ ´
∆pVq
2r2

,

where ∆pVq is the discriminant of V. Furthermore

lc3 V “
3r2¨ ch3 V ´ 3r¨ ch1 V ch2 V ` ch3

1 V
3r3
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“
pr ´ 1qpr ´ 2q¨ c3

1pVq ´ 3rpr ´ 2q¨ c1pVqc2pVq ` 3r2¨ c3pVq
6r3

.

In particular lc3 V “ 0 when r P t1, 2u.

Example 4.4. If V is a vector bundle, then lcpEndVq “ lcpV b V_q “
lcpVq ` lcpV_q “ 2

ř

kě0 lc2k V.

If V and V 1 are ample/nef/globally generated vector bundles, then so is
V b V 1. The same holds true for the ampleness and for the nefness of twisted
bundles. Through lc, positivity becomes an additive property. In character-
istic zero, µ-semistability of bundles is presevered by tensor product. Then
µ-semistability is also additive for lc.

Definition 4.5. Let X be a projective variety over an algebraically closed
field. The closure of the convex span in N˚pXq of the classes lcV for all nef
vector bundles V on X is the cone of positive vector bundles NefpXq Ă N˚pXq.

Let now pX,Hq be a polarized complex projective manifold. Consider
the closure of the convex span in N˚pXq of classes lcV, where V is an µH -slope
semistable and nef vector bundle on X. Denote it StabHpXq, or StabpXq when
no confusion may arise.

Example 4.6 (Curves). Let C be a smooth projective curve so N˚pCq “
Rrxs{px2q, where x is the class of any point. By fixing x P C and considering
the nef bundles OCpxq

‘r whose log-Chern characters are log r`x, we see that
in fact NefpCq “ StabHpCq “ R2

ě0 for any ample H.

Remark 4.7. If L is a line bundle, then lcL “ c1pLq. We deduce that
Nef1pXq Ă NefpXq and Nef1pXq Ă StabHpXq. In the previous example we see
that Nef1pXq could be a face of NefpXq and of StabHpXq. In general, Nef1pXq
is contained in the supporting hyperplane t0u ‘N1pXq ‘ . . .‘NnpXq, hence
ample line bundles L do not have the property that lcL is in the relative
interior of NefpXq. By contrast, the classes in the interior of Nef1pXq are all
ample.

Remark 4.8 (Invariance under pullback). If f : X Ñ Y is a morphism of
projective varieties, then

f˚NefpY q Ď NefpXq.

Indeed if V is nef on Y , then f˚V is nef on X, and lc f˚V “ f˚ lcV by the
naturality of Chern classes.

Example 4.9 (Surfaces). Let X be a smooth projective surface. With
notation as in Example 3.10, we have

NefpXq “
@

1,Nef1pXq,˘p
D

.
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In characteristic zero, we also have

StabHpXq “
@

1,Nef1pXq,´p
D

.

In particular, StabHpXq is strictly contained in NefpXq, and pointed.

Proof. Nef bundles have positive rank and nef determinant. We have
lcpO‘2

X q “ log 2 and lcL “ c1pLq for any line bundle. If H is ample on X,

then lcpOX ‘ OXpmHqq “ log 2 ` m
2 H ` m2

8 pH
2qp. After scaling by m2 and

taking limits, we deduce p P NefpXq. Assume H is very ample, and let Vm
be a generic rank 2 quotient of pOX ‘ OXpHqq

bm as in Example 3.7. Then
lcVm “ log 2 `m2m´2H `

``

m`1
2

˘

2m´3 ´m222m´5
˘

pH2qp. After scaling and
taking limits, we find ´pH2qp P NefpXq hence also ´p P NefpXq.

For the case of stability, nef semistable vector bundles V have positive
rank, nef determinant, and negative lc2 V by the Bogomolov inequality. These
justify one inclusion. For the reverse, 1 is a multiple of lcpO‘2

X q “ log 2, and
Nef1pXq Ă StabHpXq since line bundles are stable. It remains to prove that
´p P StabHpXq.

Let H be a very ample divisor on X and let C be a general curve in
|H|. For large m and for a general subspace Vm Ă H0pX,OXpmHqq of di-
mension h0pC,OCpmHqq, let Nm denote the dual of the kernel of the (sur-
jective) evaluation map Vm b OX Ñ OXpmHq. By [15, Proposition 2.1], the
sheaf Nm is a stable vector bundle. It is clearly also globally generated. Put

rm :“ h0pC,OCpmHqq ´ 1. Then lcNm “ log rm `
m
rm
H ´

m2prm´1q
r2m

pH2qp.

By Riemann-Roch, we have limmÑ8
rm
m “ degH|C “ pH

2q. We deduce that
limmÑ8

1
m lcNm “ ´p.

[2] prove the stability of the dual kernel bundles NmH on surfaces for large
m and ample H. Their ranks are too large for our asymptotic considerations.
There is also a more involved proof for showing ´p P StabHpXq on surfaces.
One observes that StabHpXq is preserved by finite pullback. Noether normal-
ization reduces the question to X “ P2. Results of [17] about the existence
of stable vector bundles on surfaces and the geometry of moduli spaces, and
of [7] about the Brill-Noether theory of stable bundles on P2, guarantee the
existence of stable Castelnuovo-Mumford regular (hence globally generated)
vector bundles with convenient log-Chern character. See also [1] for a more
detailed list of such log-Chern characters on P2 and on Hirzebruch surfaces.

Proposition 4.10. Let X be a projective variety. Then NefpXq is full-
dimensional in N˚pXq.
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Proof. Let f P N˚pXq_ such that fplcVq “ 0 for all nef vector bundles
V. Denote by r the rank of V. Then

(1) rn log r ¨ fp1q `
n
ÿ

k“1

p´1qk´1 r
n´k

k
fpchk

` Vq “ 0,

for all nef V. If V is nef, then so is V ‘O‘sX for all s ě 0. Note that ch` V “
ch`pV ‘O‘sX q, while rk pV ‘O‘sX q “ r ` s. As s grows to infinity, by looking
at the fastest growing terms in (1), and by induction, we find fp1q “ 0 and
fpchk

` Vq “ 0 for all k ě 1. In particular, fpchVq “ r ¨ fp1q ` fpch` Vq “ 0 for
all nef V. Therefore f vanishes on the linear span of chV for all nef V. This is
N˚pXq by the proof of Proposition 3.12.

We do not know if the same holds true for StabHpXq when dimX ě 3.

Proposition 4.11. Let X be a projective variety. Each of the following
is a set of generators (up to closure) of NefpXq.

(i) tlcV
ˇ

ˇ V is nefu;

(ii) tlcV
ˇ

ˇ V is ampleu;

(iii) (in characteristic zero) tlcV
ˇ

ˇ V is globally generatedu;

(iv) tlcVxLy
ˇ

ˇ VxLy is nefu;

(v) tlcVxLy
ˇ

ˇ VxLy is ampleu.

Proof. Analogous to Proposition 3.13.

Remark 4.12. The presence of the positive real exponents ai in the mono-
mials

ś

ipchViqai in the definition of C pXq makes it so that the formal expo-
nential exp : N˚pXq Ñ N˚pXq maps NefpXq into C pXq.

Note that the formal logarithm map does not necessarily return the favor,
because it is unclear what the logarithm of a sum of monomials is.

5. BOGOMOLOV INEQUALITY FOR COMPLEX PROJECTIVE
THREEFOLDS

The Bogomolov inequality states that ∆pVq ě 0 (equivalently lc2 V ď 0)
whenever V is a µ-semistable bundle on a complex projective surface. A more
pleasant equivalent formulation is c2pVq ě 0 whenever V is µ-semistable with
detV “ 0. Higher-dimensional generalizations were found by restriction to
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complete intersection surfaces, but the focus was still on the codimension 2
class ∆pVq.

If V is a vector bundle of rank r on the projective variety X of dimension
n, we denote

phipVq :“ lim sup
mÑ8

hipX,Symm Vq
mn`r´1{pn` r ´ 1q!

and

qhipVq :“ lim inf
mÑ8

hipX,Symm Vq
mn`r´1{pn` r ´ 1q!

.

In fact phipVq “ phipOPpVqp1qq and qhipVq “ qhipOPpVqp1qq. These quantities are
finite by [10].

Proposition 5.1. Let pX,Hq be a polarized complex projective manifold
of dimension n. Let V be a µH-slope semistable vector bundle of rank r on X.
Assume furthermore µHpVq “ 0 (e.g., when detV “ 0). Then

´

tn{2u
ÿ

k“1

ph2i´1pVq ď snpV_q ď
tpn´1q{2u

ÿ

k“1

ph2ipVq,

where snpV_q is the n-th Segre class of V_ ([5, Chapter 3.1]), which agrees with
the self-intersection number of OPpVqp1q. When only one summand phi appears

either on the right or on the left, it can be replaced by qhi.

Proof. Let Y :“ PpVq, and let L :“ OPpVqp1q. Asymptotic Riemann-Roch
on Y gives

pLn`r´1q “ lim
mÑ8

χpY,Lbmq
mn`r´1{pn` r ´ 1q!

.

We have pLn`r´1q “ snpV_q by the definition of the Segre classes. Clearly

´h1pY,Lbmq´h3pY,Lbmq´ . . . ď χpY,Lbmq ď h0pY,Lbmq`h2pY,Lbmq` . . .

Note that hipY,Lbmq “ hipX,Symm Vq for all i and all m ě 0 by the Leray
spectral sequence. To conclude, given the summation bounds, it remains to
show that

ph0pVq “ phnpVq “ 0.

The bundles Symm V and Symm V_ are semistable of slope 0. If H is suffi-
ciently ample on X so that H ´KX is ample, then Symm Vp´Hq and ωX b

Symm V_p´Hq are semistable of negative slope, hence they cannot have sec-
tions. If Z Ă X is some smooth divisor of class H, it follows from the restriction
sequences that

h0pX,Symm Vq ď h0
`

Z, Symm V|Z
˘

“

“ h0
`

PpV|Zq,OPpV|Zqpmq
˘

“ OpmdimPpV|Zqq “ Opmn`r´2q
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and

hnpX,Symm Vq “ h0
`

X,ωX b Symm V_
˘

ď h0
`

Z, ωX |Z b Symm V_|Z
˘

“

“ h0
`

PpV_|Zq,OPpV_|Zqpmq b π
˚ωX|Z

˘

“ OpmdimPpV_|Zqq “ Opmn`r´2q,

where π : PpV_|Zq Ñ Z denotes the bundle map.

It is conjectured that if L is a line bundle on the projective variety X of

dimension n, then limmÑ8
hipX,Lbmq

mn{n! exists. This is known for i “ 0 and i “ n.

In general it is only know that lim supmÑ8
hipX,Lbmq

mn{n! exists. The conjecture

would imply that the asymptotic cohomological functions phipLq of [10] and
qhipLq coincide.

Remark 5.2. When n “ 3, the conclusion of the proposition reads´qh1pVq ď
s3pV_q ď qh2pVq. When c1pVq “ 0, we have s3pV_q “ c3pVq. When detV is
arbitrary, we can give a version of the result by reducing to the case detV “ 0.

Let pX,Hq be a polarized smooth complex projective threefold. Let V be
a µH -semistable vector bundle of rank r on X.

There exists a finite covering f : X 1 Ñ X such that X 1 is smooth and
supports a line bundle L with f˚ detV “ Lbr. See [13, Theorem 4.1.10]. The
bundle V 1 :“ pf˚Vq b L_ is µf˚H -semistable and detV 1 “ 0. Then

c3pV 1q “ 2r¨ lc3pV 1q “ 2r¨ lc3

`

pf˚Vq b L_
˘

“ 2r¨ lc3pf
˚Vq “ 2r¨ pdeg fq¨ lc3pVq,

since lck is invariant under tensoring by line bundles when k ą 1. We conclude

´
qh1pf˚V b L_q

deg f
ď 2r¨ lc3 V ď

qh2pf˚V b L_q
deg f

.
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