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A recent result of M. Kourganoff states that if D is a closed, reducible, non-flat
Weyl connection on a compact conformal manifold M, then the universal cover
of M, endowed with the metric whose Levi-Civita covariant derivative is the pull-
back of D, is isometric to R? x N for some irreducible, incomplete Riemannian
manifold N. Moreover, he characterized the case where the dimension of N is 2
by showing that M is then a mapping torus of some Anosov diffeomorphism of
the torus T¢"'. We show that in this case one necessarily has ¢ = 1 or ¢ = 2.
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1. WEYL-REDUCIBLE MANIFOLDS

Let (M, c) be a compact conformal manifold. A Weyl structure on M is
a torsion-free linear connection D preserving the conformal structure ¢, in the
sense that for every Riemannian metric g € ¢, Dxg = 6,(X)g for some 1-form
0, on M called the Lee form of D with respect to g. If ¢’ := el g is another
metric in the conformal class, then

0, =0, +df.

The Weyl structure D is called closed if 6, is closed for one (and thus all)
metrics g € ¢ and exact if 0, is exact for all g € c¢. From the above formula we
see that if D is exact, so that 6y = df for some g € ¢, then 0.y, = 0, thus D
is the Levi-Civita connection of the metric e~ fg € c.

The manifold (M, ¢, D) is called Weyl-reducible if the Weyl structure D
is reducible and non-flat.

Based on some evidence given by the Gallot theorem on Riemannian
cones [4], it was conjectured in [2] that every closed, non-exact Weyl structure
on a compact conformal manifold is either irreducible or flat. Matveev and
Nikolayevsky [7] constructed a counterexample to the general conjecture, but
later on Kourganoff proved that a weaker form of this conjecture holds:
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THEOREM 1 (cf. [6, Thm. 1.5]). A closed non-exact Weyl structure D on
a compact conformal manifold M, is either flat or irreducible, or the universal
cover M of M together with the Riemannian metric gp whose Levi-Civita
connection is D, is the Riemannian product of a complete flat space R? and an
incomplete Riemannian manifold (N, gn) with irreducible holonomy:

(M, gp) =RI x (N, gn).

In [6, Example 1.6], see also [7], examples of closed reducible Weyl struc-
tures on compact manifolds are constructed using a linear map A € SLy41(Z),
such that:

1. there exists an A-invariant decomposition R¢™! = ES@E* with dim(EY) =
1 and A|gu = Adgu for some real number A\ > 1;

2. there exists a positive definite symmetric bilinear form b on E*, such that
AA|gs is orthogonal with respect to b.

Then A induces a diffeomorphism (also denoted by A) of the torus T¢*!, whose
mapping torus My = T7™ x (0,00)/(z,t) ~ (Az, 5t), carries a reducible non-
flat closed Weyl structure D, obtained by projecting to My the Levi-Civita
connection of the metric on T4+ x (0, 00) given by:
gp i=dal + -+ dal + p(t)dal, ) + dt?,

where x1, ..., 2441 are the local coordinates with respect to an orthonormal ba-
sis (e1,...,eq+1) With eq,...,eq € E®, g1 € E*, and ¢: (0,4+00) = (0,400)
is any smooth function satisfying p(At) = A\29+2(t) for every t € (0, +o0).

Moreover, Kourganoff proved that these are, up to diffeomorphism, the
only examples of Weyl-reducible manifolds when the incomplete factor N is
2-dimensional:

THEOREM 2 ([6, Theorem 1.7]). Assume that D is a closed non-exact
Weyl structure D on a compact conformal manifold M which is neither flat nor
wrreducible. If the irreducible manifold N given by Theorem 1 is 2-dimensional,
then (M, D) is isomorphic to one of the Riemannian manifolds (Ma, D).

It turns out, however, that matrices A € SLy41(Z) satisfying the condi-
tions (1) and (2) above, only exist for ¢ = 1 or ¢ = 2. This is the object of the
next section.

2. A NUMBER-THEORETICAL RESULT

PROPOSITION 3. Let ¢ € N* and A € SLy41(Z), such that there is a
direct sum decomposition R1T! = ES @ E" invariant by A, with dim(E") = 1.
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If there exists a positive definite symmetric bilinear form b on E° and a real
number X\ > 1, such that NA|gs is orthogonal with respect to b, then q € {1,2}.

Proof. Let C be a symmetric positive definite matrix, such that b =
(C?.,.), where (,-) is the standard Euclidean scalar product. Then the follow-
ing equivalence holds:

M|ps € O(E®,b) <= C - (M|gs) - C~1 € O(q).
In particular, each eigenvalue in Spec(AA|gs) has absolute value 1 and the
characteristic polynomial of A denoted by 4 is given by:
q
2
— _\d _
pa) = (x =2 [T (x - 7).
7j=1
where z; are complex numbers with |z;|] = 1 for all j € {1,...,¢}, and
[[j=; zj = 1. Note that py is irreducible in Z[X], since if it were a product
of two non-constant polynomials with integer coefficients, one of them would
have all roots of absolute value less than 1, which is impossible. We distinguish
the following two cases:
Case 1. If ¢ = 2p is even, denoting p4(X) = Z?igl a; X7 with aj € Z
and agpy1 =1, ap = —1, we get

1 1
2 2
)\p_i_)\;lzj__az’ A p+/\§:f_a1-

=17
This shows that the sum s := ?1;1 zj is real, and since |zj| = 1 for all j €
{1,...,2p}, s is also equal to Z?’; 1 % Eliminating s from the two equations

above, yields
MPF2 o N2PT2 1 g AP — 1 = 0.
Consequently, A\? is a root of the polynomial

Q(X) := X2 4 ap, XPT! 4 a1 XP — 1.

Denote by r1,...,7ry, the other complex roots of (). Newton’s relations show
that there exists a monic polynomial Q) € Z[X] whose roots are A?P, 71, ... Ty

The monic polynomials pa and CNQ € Z[X] have both degree 2p + 1 and A%
is a common root. Since p4 is irreducible, they must coincide, so up to a
permutation, one can assume that rﬁ-’ = Zyj for all j € {1,...,2p}. This shows

1
that Arr; are complex numbers of absolute value one for all j € {1,...,2p}.
If p > 2, the coefficients of X?” and X in the polynomial @ vanish, so
1 &

2p 1
A2+;rj—0—)\2+zrj.

Jj=1
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Thus Z?il r; = —A? and as |>\%rj| =1 for all j,

2p 1 2p
_);2_ZFZ>\; r]:_)\w?
j=1"7 j=1

This contradicts the fact that A > 1, showing that p = 1 and therefore ¢ = 2
(see also [1, Lemma 3.5]).

Case 2. If ¢ is odd, then p4 has at least one further real root, so either
% or —% is a root of 4. Up to reordering the subscripts one thus has z; = +1.

Assume that z; = 1 (the argument for z; = —1 is the same). The monic
polynomial P € Z[X] defined by P(X) := X% p4(5) satisfies P(0) = 1, and
its roots are {\ 79 )\,Z’\2 ..,% .

By Newton’s identities again, there exists a monic polynomial Pe 7| X]
with P(0) = 1, whose roots are {\~ a* (5) ,...,(%)q}.

Since the monic polynomials g4 and Pe Z[X] (of same degree) have \4
as common root, and 4 is irreducible, they must coincide. In particular A7
is a root of p4. On the other hand the absolute value of every root of u4 is
equal to either \? or % Since A > 1, we obtain ¢ =1. O

Remark 4. As pointed out by V. Vuletescu, for odd ¢, Proposition 3 also
follows from a more general result of Ferguson [3], whose proof, however, is
rather involved.

3. APPLICATIONS

Our main application concerns locally conformally K&hler manifolds. Re-
call that a Hermitian manifold (M, g, J) of complex dimension n > 2 is called
locally conformally Kdhler (in short, 1cK) if around every point in M the metric
g can be conformally rescaled to a Kéhler metric. This condition is equivalent
to the existence of a closed 1-form 6, such that

AN =0AQ,

where € := g(J-,-) denotes the fundamental 2-form. Let now M be the uni-
versal cover of an IcK manifold (M, J, g,0), endowed with the pull-back lcK
structure (j , 0, 9) Since M is simply connected 0 is exact, i.e. 8 = dyp, and
by the above considerations, the metric g% = e¥§ is Kahler.

The group w1 (M) acts on (M, J, g*) by holomorphic homotheties. Fur-
thermore, we assume that the IcK structure is strict, in the sense that (M)
is not a subgroup of the isometry group of (M ,9%). In particular, the Levi-
Civita connection of the Kihler metric ¢’ projects to a closed, non-exact Weyl
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structure on M, called the standard Weyl structure. Its Lee form with respect
to g is exactly 6.

Due to the fact that the real dimension of an 1cK manifold is even, apply-
ing Proposition 3 to the special case of a compact strict IcK manifold whose
standard Weyl structure is reducible, we obtain the following;:

PROPOSITION 5. Let M be a compact Weyl-reducible strict lcK manifold.
If the irreducible factor N in the splitting of the universal cover (M, g") as a
Riemannian product R? x N given by Theorem 1 is 2-dimensional, then q = 2
and thus M is an Inoue surface S°, cf. [5].

Let us remark that if in Proposition 5 we drop the assumption on the di-
mension of the irreducible factor, then there are many more examples of Weyl-
reducible 1cK structures. They are obtained on lcK manifolds constructed by
Oeljeklaus and Toma [9], for every integer s > 1, on certain compact quotients
My of C x H*, where H denotes the upper complex half-plane, I" are certain
groups whose action on C x H* is cocompact and properly discontinuous (for
the precise definition of I' and its action see [9]). We will briefly review them
here.

In order to define the IcK structure on the quotient Mr, Oeljeklaus and
Toma consider the function

F:CxH* — R, F(z,zl,...,zs)::\z\z—i—#,
Y1---Ys
with zp = z + iy, and claim that it is a global Kahler potential on C x H?*
(note a small sign error in [9]). To check this, we introduce

1 ()
yio--ys [LGoi(z— %)

w: H* — R, u(zi,y ..., 25) 1=

and compute

(1) 5u:uz ‘de_J Gu:—uz ‘dzj_},

=17 T =17 T
- *L dz L dzj AdZ
00u = OuA J_ J J
b ¢ ZZJ_EJ' uZ(ZJ_ZJ)Q
7=1 J=1
i 1+ 5]k
= —u — —dz; Adzy,
%;1 (25— Z)(zx — Z)
whence
_ L1465
(2) 0o =" 3 %k pdz,
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This shows that i90u is the fundamental 2-form of a Kéahler metric h on

. 140,
S o= YTk
H* whose coeflicients are h;; = TR

PrOPOSITION 6. The Kdahler metric on H* with Kdahler potential u is
irreducible.

Proof. The matrix (h;j;) can be written as the product of 3 matrices

1 1
m 0o ... 0 2 1 ... 1 m 0o ... 0
wlO L .oo0) 12 ... 1]]0 L ... 0
(hz) = — 2 Y2
T : : Do ’
1 1
0 0 0 11 2 0 0 -
so its determinant equals
u\ 1 (s + 1)ust?
det(hyp) = () (s+1 = .
( ]k) 4 ( )(y1 o yS)Q 48

The usual formula for the Ricci form p of h (cf. e.g. [8, Eq. (12.6)]) together
with (1) and (2) gives

p = —idd In(det(h,;z)) = —i(s + 2)00 In(u) = —i(s + 2)8(%5@

= —i(s+2) (i@@u — %&L A 8u>

i(s+2) Z 2+ i,

dz; A dzy.
YiYk

jk=1
This shows that the Ricci tensor of h is negative definite on H?, so h is irre-
ducible. [

As a consequence of Proposition 6, the Kéahler metric on C x H® with
fundamental 2-form Q = i00F = idzAdZ+i00u is the product of the flat metric
on C with an irreducible Kéahler metric on H*. Therefore, the induced IcK
structure on the compact quotient Mr is Weyl-reducible, and the irreducible
factor of the universal cover given by Theorem 1 is exactly N = H?, so it has
dimension 2s.
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