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1. INTRODUCTION

This note surveys recent developments in the study of the algebraic com-
plexity of concrete optimization problems in applied algebraic geometry and
algebraic statistics. We will focus on the Euclidean distance degree of [7], which
is an algebraic measure of the complexity of nearest point problems. For com-
plete details, the interested reader may consult [20, 21, 19]. Similar methods
apply to the computation of other important invariants in algebraic statistics
(e.g., the maximum likelihood degree).

Without being particularly heavy on technical details, it is our hope that
the results and techniques described in this note are of equal interest for pure
mathematicians and applied scientists: besides acquainting applied scientists
with a variety of tools from topology, algebraic geometry and singularity the-
ory, the interdisciplinary nature of the work presented here should lead pure
mathematicians to become more acquainted with a myriad of tools used in
more applied research fields, such as computer vision.

1.1. Nearest point problems. Euclidean distance degree

Many models in data science or engineering are algebraic models (i.e.,
they can be realized as real algebraic varieties X ⊂ RN ) for which one needs to
solve a nearest point problem. Specifically, for such an algebraic model X ⊂ RN
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and a generic data point u = (u1, . . . , uN ) ∈ RN , one needs to find a nearest
point u∗ ∈ Xreg to u, i.e., a point u∗ which minimizes the (squared) Euclidean
distance from the given data point u ∈ RN . (Here, Xreg denotes the smooth
locus of X.)

The standard approach for solving the nearest point problem for an alge-
braic model X ⊂ RN and a generic data point u ∈ RN is to list and examine
the critical points of the squared distance function

du(x) =
N∑
i=1

(xi − ui)2

on the smooth locus Xreg. In practice, algorithms (e.g., Gröbner bases, numer-
ical algebraic geometry) detect all complex critical points of du (i.e., consider
X ⊂ CN ), and then sort out the real ones.

If X is an irreducible closed subvariety of CN then, for a generic choice
of data point u, the function du|Xreg has finitely many critical points on the
smooth locusXreg ofX. Moreover, this number of critical points is independent
of the generic choice of u, so it defines an invariant of the embedding of X in CN

called the Euclidean distance (ED) degree of X. It is denoted by EDdeg(X).
Therefore, the ED degree of the complexified model variety gives an algebraic
measure of the complexity of solving such an optimization problem, and it is
a good indicator of the running time needed to solve the problem exactly.

The Euclidean distance degree was introduced in [7], and has since been
extensively studied in areas like computer vision [3, 11, 20], biology [10], chem-
ical reaction networks [1], engineering [6, 29], numerical algebraic geometry
[12, 18], data science [14], etc. It is an additive analogue of another important
invariant in algebraic statistics, namely the maximum likelihood (ML) degree,
e.g., see [5, 8, 16, 15].

1.2. Classical examples of nearest point problems

Let us briefly indicate two main examples of nearest point problems. The
interested reader may consult, e.g., [7, Section 3] and the references therein for
more such examples.

Example 1.1 (Low-rank approximation). Fix positive integers r ≤ s ≤ t
and set N = st. Consider the following model of bordered-rank (≤ r) matrices:

Xr :=
{
X = [xij ] ∈ Rs×t | rank(X) ≤ r

}
⊂ RN .

As generic data point, we choose a general s× t matrix U = [uij ] ∈ Rs×t = RN .
The nearest point problem can be solved in this case by using the singular value
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decomposition. Indeed, the general matrix U admits a product decomposition

U = T1 · diag(σ1, . . . , σs) · T2,

where σ1 > · · · > σs are the singular values of the matrix U (all of which can
be assumed non-zero since U is general), and T1, T2 are orthogonal matrices.
Then the Eckart-Young Theorem (e.g., see [7, Example 2.3]) states that the
matrix of rank ≤ r closest to U is:

U∗ = T1 · diag(σ1, . . . , σr, 0, . . . , 0) · T2 ∈ Xr.

The other critical points of the squared distance function dU are given by

T1 · diag(0, . . . , 0, σi1 , 0, . . . , 0, σir , 0, . . . , 0) · T2,

where {i1 < . . . < ir} runs over all r-element subsets of {1, . . . , s}. In par-
ticular, there are

(
s
r

)
critical points of the squared distance function dU , all of

which are real matrices of rank exactly r. (Note that the regular part of Xr

consists exactly of rank-r matrices.)

Example 1.2 (Triangulation problem in computer vision). In computer
vision, triangulation (or 3D-reconstruction) refers to the process of reconstruct-
ing a point in the three-dimensional (3D) space from its two-dimensional (2D)
projections in n ≥ 2 cameras in general position. The triangulation problem
has many practical applications, e.g., in tourism, for reconstructing the 3D
structure of a tourist attraction based on a large number of online pictures [2];
in robotics, for creating a virtual 3D space from multiple cameras mounted on
an autonomous vehicle; in filmmaking, for adding animation and graphics to a
movie scene after everything is already shot, etc. If the 2D projections are given
with infinite precision, then two cameras suffice to determine the 3D point. In
practice, however, various sources of “noise” (pixelation, lens distortion, etc.)
lead to inaccuracies in the measured image coordinates. The problem, then, is
to find a 3D point which optimally fits the measured image points.

The algebraic model fitting the triangulation problem is the space of all
possible n-tuples of such 2D projections with infinite precision, called the affine
multiview variety Xn; see [7, Example 3.3] and [20, Section 4] for more details.
The above optimization problem translates into finding a point u∗ ∈ Xn of
minimum distance to a (generic) point u ∈ R2n obtained by collecting the 2D
coordinates of n “noisy” images of the given 3D point. Once u∗ is obtained,
a 3D point is recovered by triangulating any two of its n projections. As
already indicated in the previous section, in order to find such a minimizer u∗

algebraically, one regards Xn as a complex algebraic variety and examines all
complex critical points of the squared Euclidean distance function du on Xn.
Under the assumption that n ≥ 3, the complex algebraic variety Xn is smooth
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and 3-dimensional, and one is then interested in computing the Euclidean
distance degree EDdeg(Xn) of the affine multiview variety Xn.

An explicit conjectural formula for the Euclidean distance degree EDdeg(Xn)
was proposed in [7, Conjecture 3.4], based on numerical computations from [27]
for configurations involving n ≤ 7 cameras:

Conjecture 1.3 (Multiview conjecture). The Euclidean distance degree
of the affine multiview variety Xn is given by:

(1) EDdeg(Xn) =
9

2
n3 − 21

2
n2 + 8n− 4.

This conjecture was the main motivation for the introduction of the Eu-
clidean distance degree in [7].

A proof of Conjecture 1.3 was obtained in [20] for n ≥ 3 cameras in gen-
eral position, by first giving a purely topological interpretation of the Euclidean
distance degree of any complex affine variety as an “Euler-Mather character-
istic” involving MacPherson’s local Euler obstruction function. This approach
will be explained in Section 2 below. In Section 3, we discuss topological for-
mulae for the (projective) ED degree of complex projective varieties (cf. [21]),
answering positively a conjecture of Aluffi-Harris. Section 4 deals with a com-
putation of the ED degree of a smooth projective variety Y in terms of generic
ED degrees associated to the singularities of a certain hypersurface on Y (cf.
[19]).

2. ED DEGREES OF COMPLEX AFFINE VARIETIES AND
THE MULTIVIEW CONJECTURE

In this section we explain how to compute the Euclidean distance degree of
a complex affine variety as an Euler characteristic. We apply this computation
to the resolution of the multiview conjecture (Conjecture 1.3).

2.1. Euclidean distance degree

Let us first recall the following definition from [7]:

Definition 2.1. The Euclidean distance (ED) degree EDdeg(X) of an ir-
reducible closed variety X ⊂ CN is the number of complex critical points of

du(x) =

N∑
i=1

(xi − ui)2

on the smooth locus Xreg of X (for general u = (u1, . . . , uN ) ∈ CN ).
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Example 2.2. Every linear space X has ED degree 1.

Example 2.3. As already discussed in Example 1.1, if Xr denotes the
variety of s× t real matrices (with s ≤ t) of rank at most r, then EDdeg(Xr) =(
s
r

)
.

Remark 2.4. Let us explain the reason for the use of the term “degree”
in Definition 2.1, see [7, Theorem 4.1] for complete details. For an irreducible
closed variety X ⊂ CN of codimension c, consider the ED correspondence EX
defined as the topological closure in CN × CN of the set of pairs (x, u) such
that x ∈ Xreg is a critical point of du. Note that EX can be identified with
the conormal space T ∗XCN of X in CN . In particular, the first projection
π1 : EX → X is an affine vector bundle of rank c over Xreg, whereas for general
data points u ∈ CN the second projection π2 : EX → CN has finite fibers
π−12 (u) of cardinality equal to EDdeg(X).

2.2. Topological interpretation of ED degrees

Our approach to studying ED degrees in [20] makes use of Whitney strat-
ifications and constructible functions. Let us recall here the main ingredients.

Let X be a complex algebraic variety. Then it is known that X ad-
mits a Whitney stratification, i.e., a partition S into locally closed nonsingular
subvarieties (called strata), along which X is topologically equisingular. For
example, the variety Xr of bordered-rank matrices is Whitney stratified (over
C) by the rank condition.

Definition 2.5. Given a complex algebraic variety X with a Whitney
stratification S, a function ϕ : X → Z is S-constructible if ϕ is constant
along each stratum S ∈ S.

Example 2.6. A constant function ϕ = c ∈ Z (e.g., ϕ = 1X) is con-
structible with respect to any Whitney stratification of X.

Example 2.7 (MacPherson’s local Euler obstruction). The local Euler ob-
struction function

EuX : X → Z
is an essential ingredient in MacPherson’s definition of Chern classes for sin-
gular varieties, cf. [17]. It satisfies the following properties:

(a) EuX is S-constructible for any fixed Whitney stratification S of X.

(b) If x ∈ X is a smooth point, then EuX(x) = 1. In particular, if X is
smooth then EuX = 1X .
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(c) If X is a curve, then EuX(x) is the multiplicity of X at x.

(d) If (X,x) is an isolated singularity germ, then EuX(x) = χ(CL(X,x)),
where CL(X,x) denotes the complex link of x in X.

(e) The local Euler obstruction function is an analytic invariant. In partic-
ular, if U is a Zariski open set in X, then EuX |U = EuU .

(f) The local Euler obstruction function is preserved under generic hyper-
plane sections.

Definition 2.8. Let X be a complex algebraic variety with a fixed Whit-
ney stratification S. The (weighted) Euler characteristic of an S-constructible
function ϕ is defined as:

χ(ϕ) :=
∑
S∈S

χ(S) · ϕ(S),

with ϕ(S) denoting the (constant) value of ϕ on the stratum S ∈ S.

Example 2.9. Using the additivity of the Euler-Poincaré characteristic in
complex algebraic geometry, one has:

χ(1X) =
∑
S∈S

χ(S) = χ(X).

Definition 2.10. The Euler characteristic χ(EuX) of the local Euler ob-
struction function is usually referred to as the Euler-Mather characteristic of
X.

We can now state our main result from [20]:

Theorem 2.11. Let X ⊂ CN be an irreducible closed subvariety. Then,
for general u = (u0, . . . , uN ) ∈ CN+1, we have:

(2) EDdeg(X) = (−1)dimC Xχ(EuX\Qu),

where Qu = {
∑N

i=1(xi − ui)2 = u0} ⊂ CN .
In particular, if X is smooth (e.g., the affine multiview variety), then

(3) EDdeg(X) = (−1)dimC Xχ(X \Qu)

for general u = (u0, . . . , uN ) ∈ CN+1.

Example 2.12. If X = C is a complex line, then (2) yields:

EDdeg(X) = −χ(X \Qu) = −
(
χ(X)− χ(X ∩Qu)

)
= −(1− 2) = 1.

In order to explain the proof of Theorem 2.11, we first linearize the opti-
mization problem as follows. Consider the closed embedding
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i : CN ↪→ CN+1 , (x1, . . . , xN ) 7→ (x21 + · · ·+ x2N , x1, . . . , xN ),

and let w0, . . . , wN be the coordinates of CN+1. Then the function
∑

1≤i≤N (xi−
ui)

2 − u0 on CN is the pullback of the function

w0 +
∑

1≤i≤N
−2uiwi +

∑
1≤i≤N

u2i − u0

on CN+1. The computation of the ED degree EDdeg(X) amounts now to
counting the number of complex critical points of a generic linear function on
the regular part of the affine variety i(X) ⊂ CN+1. Theorem 2.11 is then a
consequence of the following more general result from stratified Morse theory
(see [26, Equation (2)]):

Theorem 2.13. Let X ⊂ CN be an irreducible closed subvariety. Let
` : CN → C be a general linear function, and let Hc be the hyperplane in CN

defined by the equation ` = c for a general c ∈ C. Then the number of critical
points of `|Xreg equals

(−1)dimC Xχ(EuX\Hc).

When X is smooth (e.g., the affine multiview variety), one can give a
simpler proof of (3) by the following Lefschetz-type result (see [20, Theorem
3.1]) applied to the smooth affine variety i(X):

Theorem 2.14. Let X ⊂ CN be a smooth closed subvariety of complex
dimension d. Let ` : CN → C be a general linear function, and let Hc be the
hyperplane in CN defined by the equation ` = c for a general c ∈ C. Then:

(a) X is homotopy equivalent to X ∩Hc with finitely many d-cells attached.

(b) the numbers of d-cells attached equals the number of critical points of `|X .

(c) the number of critical points of `|X is equal to (−1)d · χ(X \Hc).

Theorem 2.14 is proved in [20] by using Morse theory. Specifically, we
consider real Morse functions of the form log |f |, where f is a nonvanishing
holomorphic Morse function on a complex manifold. Such a Morse function
has the following key properties:

(i) The critical points of log |f | coincide with the critical points of f .

(ii) The index of every critical point of log |f | is equal to the complex dimen-
sion of the manifold on which f is defined.

However, as a real-valued Morse function, log |f | is almost never proper. So
one needs to employ the non-proper Morse theory techniques developed by
Palais-Smale [24].
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2.3. The multiview conjecture

Our result from (3) can be used to confirm the multiview conjecture of
[7] (Conjecture 1.3). Indeed, one has:

Theorem 2.15. The ED degree of the affine multiview variety Xn ⊂ C2n

corresponding to n ≥ 3 cameras in general position satisfies:

EDdeg(Xn) = −χ(Xn \Qu) =
9

2
n3 − 21

2
n2 + 8n− 4.

The computation of χ(Xn \ Qu) is quite involved and it relies on topo-
logical and algebraic techniques from Singularity theory, see [20, Section 4] for
complete details. Let us only indicate here the key technical points. Even
though both Xn and Qu are smooth in C2n and they intersect transversally,
their intersection “at infinity” is very singular. We regard the affine multiview
variety Xn as a Zariski open subset in its closure Yn in (CP2)n, with divisor
at infinity Yn \ Xn = D∞. ∗ It can be easily seen that Yn is isomorphic to
the blowup of CP3 at n points. By using the additivity of the Euler-Poincaré
characteristic, for the computation of χ(Xn \Qu) it suffices to calculate χ(Yn),
χ(D∞), χ(Du), χ(D∞ ∩Du), where Du := Yn ∩Qu. The main difficulty arises
in the calculation of χ(Du), since Du is an irreducible (hyper)surface in Yn
with a 1-dimensional singular locus. For the computation of Euler-Poincaré
characteristics of complex projective hypersurfaces, we refer the reader to [25]
or [22, Section 10.4]. Theorem 2.15 is then a direct consequence of the following
formulae obtained in [20, Theorem 4.1]:

(i) χ(Yn) = 2n+ 4.

(ii) χ(D∞) = n3

6 −
3n2

2 + 16n
3 .

(iii) χ(Du) = 4n3 − 9n2 + 9n.

(iv) χ(D∞ ∩Du) = −n3

3 + 13n
3 .

3. PROJECTIVE EUCLIDEAN DISTANCE DEGREE

Many models in data science, engineering and other applied fields are
realized as affine cones (defined by homogeneous polynomials), so it is natu-
ral to consider such models as projective varieties. Examples of such models

∗A different compactification of Xn, in CP2n, was considered in [11], where the ED degree
of the affine multiview variety Xn was studied via characteristic classes. This leads to an upper
bound for the Euclidean distance degree of Xn given by: EDdeg(Xn) ≤ 6n3−15n2 +11n−4.
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occur in (structured) low rank matrix approximation [23], low rank tensor ap-
proximation, formation shape control [4], and all across algebraic statistics [8,
28].

Example 3.1. The variety Xr of s × t matrices of rank ≤ r is an affine
cone.

We make the following natural definition (cf. [7]):

Definition 3.2. If Y ⊂ CPN is an irreducible complex projective variety,
define the projective Euclidean distance degree of Y by

pEDdeg(Y ) := EDdeg(C(Y )),

where C(Y ) is the affine cone of Y in CN+1.

The affine cone C(Y ) on a projective variety Y acquires a very com-
plicated singularity at the cone point, so the computation of pEDdeg(Y ) via
formula (2) is in general very difficult. Instead, one aims in this case to describe
EDdeg(C(Y )) in terms of the topology of the projective variety Y itself. This
problem has been addressed by Aluffi and Harris in [3] (building on preliminary
results from [7]) in the special case when Y is a smooth projective variety. The
main result of Aluffi-Harris can be formulated as follows (see [3, Theorem 8.1]):

Theorem 3.3. Let Y ⊂ CPN be a smooth complex projective variety, and
assume that Y * Q, where Q = {x20 + · · ·+ x2N = 0} is the isotropic quadric in
CPN . Then

(4) pEDdeg(Y ) = (−1)dimC Y χ(Y \ (Q ∪H))

where H ⊂ CPN is a general hyperplane.

Theorem 3.3 was proved in [3] by using the theory of characteristic classes
for singular varieties, and it provides a generalization of [7, Theorem 5.8], where
it was assumed that the smooth projective variety Y intersects the isotropic
quadric Q transversally, i.e., that Y ∩Q is a smooth hypersurface in Y . Aluffi
and Harris also conjectured that formula (4) should admit a natural general-
ization to arbitrary (possibly singular) projective varieties by using the “Euler-
Mather characteristic” defined in terms of the local Euler obstruction function.
We addressed their conjecture in [21, Theorem 1.3], where we proved the fol-
lowing result:

Theorem 3.4. Let Y ⊂ CPN be an irreducible complex projective variety.
Then

(5) pEDdeg(Y ) = (−1)dimC Y χ(EuY \(Q∪H)),

where Q is the isotropic quadric and H is a general hyperplane in CPN .
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The proof of Theorem 3.4 is Morse-theoretic, and it employs ideas similar
to those used to prove Theorem 2.11.

Note that in the case when Y ⊂ CPN is smooth, Theorem 3.4 reduces
to the statement of Theorem 3.3. Theorem 3.4 also generalizes [3, Proposition
3.1], where the ED degree of a possibly singular projective variety Y ⊂ CPN

is computed under the assumption that Y intersects the isotropic quadric Q
transversally. In this case, one actually computes what is called the generic
ED degree of Y . For more results concerning generic ED degrees, see also [3,
7, 13, 23], and Section 4 below.

Our topological interpretation of ED degrees reduces their calculation to
the problem of computing MacPherson’s local Euler obstruction function and
the Euler-Poincaré characteristics of certain smooth algebraic varieties (strata).
We present such computations in the following examples.

Example 3.5 (Nodal curve). Let Y = {x20x2−x21(x1 +x2) = 0} ⊂ CP2. It
has only one singular point p = [0 : 0 : 1]. Therefore, the local Euler obstruction
function EuY equals 1 on the smooth locus Yreg of Y , and EuY (p) = 2. Note
that Y intersects the isotropic quadric Q transversally at 6 points, and it
intersects a generic hyperplane H at 3 points. Moreover, Yreg is isomorphic to
C∗. So by inclusion-exclusion, we get that χ(Yreg \ (Q ∪ H)) = −9. It then
follows from (5) that pEDdeg(Y ) = (−1) · [(−9) + 2] = 7.

Example 3.6 (Whitney umbrella). Consider the Whitney umbrella, i.e.,
the projective surface Y = {x20x1 − x2x23 = 0} ⊂ CP3. The singular locus of
Y is defined by x0 = x3 = 0. Y has a Whitney stratification with strata:
S3 := {[0 : 1 : 0 : 0], [0 : 0 : 1 : 0]}, S2 = {x0 = x3 = 0}\S3, and S1 = Y \{x0 =
x3 = 0}. It is well known that EuY takes the values 1, 2 and 1 along S1, S2
and S3, respectively. Therefore, if we let U := CP3 \ (Q ∪ H) for a generic
hyperplane H ⊂ CP3 and Q the isotropic quadric, then

χ(EuY |U ) = χ(Y ∩ U) + χ(S2 ∩ U).

The terms on the right-hand side of the above equality can be computed di-
rectly by using the inclusion-exclusion property of the Euler characteristic. One
gets: χ(Y ∩ U) = 13 and χ(S2 ∩ U) = −3 (see [21, Example 4.4] for complete
details). Altogether, this yields that pEDdeg(Y ) = χ(EuY |U ) = 10.

Remark 3.7. In view of recent computations of the local Euler obstruction
function for determinantal varieties [9], it is an interesting exercise to check that
(2) or (5) recovers the Euclidean distance degree of the variety of s× t matrices
of rank ≤ r, as discussed in Example 2.3.
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4. DEFECT OF ED DEGREE

We begin this section by noting that the projective ED degree pEDdeg(Y )
is difficult to compute even if Y ⊂ CPN is smooth, since Y and Q may inter-
sect non-transversally in CPN . The idea is then to perturb the objective (i.e.,
squared distance) function to create a transversal intersection. For this pur-
pose, we make the following:

Definition 4.1. The λ-Euclidean distance (ED) degree EDdegλ(X) of a
closed irreducible variety X ⊂ CN is the number of complex critical points of

dλu(x) =
N∑
i=1

λi(xi − ui)2 , λ = (λ1, . . . , λN )

on the smooth locus Xreg of X (for general u ∈ CN ).

Similarly, If Y ⊂ CPN is an irreducible complex projective variety, we
define the projective λ-Euclidean distance degree of Y by

pEDdegλ(Y ) := EDdegλ(C(Y )),

where C(Y ) is the affine cone of Y in CN+1.

If λ = 1, we get the (unit) ED degree, EDdeg := EDdeg1, resp., pEDdeg =
pEDdeg1. If λ is generic, we get the corresponding generic ED degrees.

Theorem 3.4 can be easily adapted to the weighted context to obtain the
following result:

Theorem 4.2. Let Y ⊂ CPN be an irreducible complex projective variety.
Then

(6) pEDdegλ(Y ) = (−1)dimC Y χ(EuY \(Qλ∪H)),

where Qλ := {λ0x20 + · · · + λNx
2
N = 0} and H is a general hyperplane in PN .

In particular, if Y is smooth, then

(7) pEDdegλ(Y ) = (−1)dimC Y χ(Y \ (Qλ ∪H)).

For generic λ, the quadric Qλ intersects Y transversally in CPN , and the
computation of the generic projective ED degree pEDdeg(Y ) is more manage-
able (e.g., see [7, 13, 3], etc). This motivates the following:

Definition 4.3 (Defect of ED degree). If Y ⊂ CPN is an irreducible pro-
jective variety and λ is generic, the defect of Euclidean distance degree of Y is
defined as:

EDdefect(Y ) := pEDdegλ(Y )− pEDdeg(Y ).
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It is known that EDdefect(Y ) is non-negative, but for many varieties
appearing in optimization, engineering, statistics, and data science, this defect
is quite substantial. In [19], we give a new topological interpretation of this
defect in terms of invariants of singularities of Y ∩Q (i.e., the non-transversal
intersection locus) when Y is a smooth irreducible complex projective variety
in CPN . Specifically, we prove the following result (see [19, Theorem 1.5]):

Theorem 4.4. Let Y ⊂ CPN be a smooth irreducible variety, with Y *
Q, and let Z = Sing(Y ∩ Q). Let V be the collection of strata of a Whitney
stratification of Y ∩Q which are contained in Z, and choose λ generic. Then:

(8) EDdefect(Y ) =
∑
V ∈V

αV · pEDdegλ(V̄ ),

where, for any stratum V ∈ V,

αV = (−1)codimY ∩Q V ·

µV − ∑
{S|V <S}

χc(LV,S) · µS

 ,

with µV = χ(H̃∗(FV ; Q)) the Euler characteristic of the reduced cohomology of
the Milnor fiber FV of the hypersurface Y ∩ Q ⊂ Y at some point in V , and
LV,S the complex link of a pair of distinct strata (V, S) with V ⊂ S̄.

The proof of Theorem 4.4 relies on the theory of vanishing cycles, adapted
to the pencil of quadrics Qλ on Y , see [19, Section 2] for complete details.

Note that computing the ED degree defect of Y ⊂ CPN yields a formula
for the projective ED degree pEDdeg(Y ) only in terms of generic ED degrees
(which, as already mentioned, are easier to compute). Also, computing the ED
degree defect directly is generally much easier than the individual computations
of pEDdeg(Y ) and pEDdegλ(Y ) for generic λ.

As an immediate consequence of Theorem 4.4, we get the following result
from [3, Corollary 6.3]:

Corollary 4.5. Under the notations of Theorem 4.4, assume that Z =
Sing(Y ∩Q) has only isolated singularities. Then

(9) EDdefect(Y ) =
∑
x∈Z

µx,

where µx is the Milnor number of the isolated hypersurface singularity germ
(Y ∩Q, x) in Y .

Furthermore, if Y ∩Q is equisingular along the non-transversal intersec-
tion locus Z, then Theorem 4.4 yields the following:
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Corollary 4.6. Under the notations of Theorem 4.4, assume that Z =
Sing(Y ∩Q) is connected and Y ∩Q is equisingular along Z. Then:

(10) EDdefect(Y ) = µ · pEDdegλ(Z),

where µ is the Milnor number of the isolated transversal singularity at some
point x ∈ Z (i.e., the Milnor number of the isolated hypersurface singularity in
a normal slice to Z at x).

Theorem 4.4 was motivated by the “duality conjecture” of [23, (3.5)] in
structured low-rank approximation, which predicts a formula for the Euclidean
distance degree defect of the restriction of (the dual variety of) Y to a linear
space L. At this point let us note that, since intersecting Y with a general
linear space L does not change the multiplicities αV on the right-hand side of
formula (8), Theorem 4.4 has the following immediate consequence:

Corollary 4.7. With the notations of Theorem 4.4, and for L a general
linear subspace of CPN , we have:

(11) EDdefect(Y ∩ L) =
∑
V ∈V

αV · pEDdegλ(V̄ ∩ L).

Let us conclude this section with the following example:

Example 4.8 (2×2 matrices of rank 1). Let Y = {x0x3−x1x2 = 0} ⊂ CP3,
with isotropic quadric Q = {

∑3
i=0 x

2
i = 0}. Then Y ∩ Q consists of 4 lines,

with 4 isolated double point singularities (hence, each having Milnor number
1). Corollary 4.5 yields that EDdefect(Y ) = 4. In fact, as shown in [7], one
has in this case that pEDdeg(Y ) = 2 and pEDdegλ(Y ) = 6 for generic λ. For
a higher-dimensional generalization of this example, see [19, Example 3.3].
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[26] J. Seade, M. Tibăr, and A. Verjovsky, Global Euler obstruction and polar invariants.
Math. Ann. 333 (2005), 393–403.

[27] H. Stewenius, F. Schaffalitzky, and D. Nister, How hard is 3-view triangulation really?
In: Tenth IEEE International Conference on Computer Vision (ICCV’05), Vol. 1, pp.
686–693.

[28] S. Sullivant, Algebraic statistics. Graduate Studies in Mathematics, Vol. 194. Amer-
ican Mathematical Society, Providence, RI, 2018.

[29] Z. Sun, U. Helmke, and B. D. O. Anderson, Rigid formation shape control in general
dimensions: an invariance principle and open problems. In: 54th IEEE Conference on
Decision and Control (CDC), pp. 6095–6100, 2015.

Received December 18, 2019 University of Wisconsin-Madison,
Department of Mathematics, 480 Lincoln Drive,

Madison WI 53706-1388, U.S.A.
maxim@ math. wisc. edu

maxim@math.wisc.edu

	Introduction
	Nearest point problems. Euclidean distance degree
	Classical examples of nearest point problems

	ED degrees of complex affine varieties and the multiview conjecture
	Euclidean distance degree
	Topological interpretation of ED degrees
	The multiview conjecture

	Projective Euclidean distance degree
	Defect of ED degree

