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HODGE IDEALS AND MINIMAL EXPONENTS OF IDEALS

MIRCEA MUSTAŢĂ and MIHNEA POPA

We define and study Hodge ideals associated to a coherent ideal sheaf a on a
smooth complex variety, via algebraic constructions based on the already exist-
ing concept of Hodge ideals associated to Q-divisors. We also define the generic
minimal exponent of a, extending the standard invariant for hypersurfaces. We
relate it to Hodge ideals, and show that it is a root of the Bernstein-Sato poly-
nomial of a.
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1. INTRODUCTION

Let X be a smooth complex algebraic variety. If D is a reduced hyper-
surface in X and OX(∗D) is the sheaf of rational functions on X with poles
along D, then Saito’s theory of mixed Hodge modules [14] endows OX(∗D)
with a Hodge filtration. This filtration can be described via a sequence of
Hodge ideals Ip(D), for p ≥ 0, that were systematically studied in [10]. More
generally, it was shown in [11] that one can attach Hodge ideals to arbitrary
effective Q-divisors on X. These invariants provide “higher versions” of multi-
plier ideals, which have been playing an important role in birational geometry
(see [7, Chapter 9]), and which essentially correspond to the case p = 0 in the
sequence above.

Our goal in this note is to attach similar invariants to (rational powers)
of an arbitrary coherent ideal a on X. To this end, there are two natural
approaches. The first is based on studying the Hodge filtration on the local
cohomology sheaves HqZ(OX), where Z is the closed subscheme associated to a.
In this approach one stays close to Hodge theory, but the filtrations cannot be
described anymore via ideals in OX ; we plan to tackle this study in future work.
Here we take an algebraic approach, motivated by the theory of multiplier
ideals, defining Hodge ideals for rational powers of coherent ideals by making
use of the existing notion for effective Q-divisors.

MM was partially supported by NSF grant DMS-1701622 and a Simons Fellowship; MP
was partially supported by NSF grant DMS-1700819.

REV. ROUMAINE MATH. PURES APPL. 65 (2020), 3, 327–354
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After replacing X by the subsets in an affine open cover, we may assume
that X is affine and that the ideal a is generated by f1, . . . , fr ∈ OX(X). A
basic fact about multiplier ideals is that if D is defined by f =

∑r
i=1 αifi, with

αi ∈ C general, then for every λ < 1 we have

I(aλ) = I(λD).

However, for p ≥ 1, it turns out that even in simple examples the ideal Ip(λD),
with D as above, might depend on D.

Instead, given a positive rational number λ ≤ 1, we define Ip(a
λ) to be the

ideal generated by all Ip(λD), where D is the divisor defined by any f ∈ a that
satisfies a mild condition (for example, if a is reduced in codimension 1, we may
take all f ∈ a that define reduced divisors). We show that it is enough in fact
to let D vary over the divisors defined by general linear combinations of the
generators of a. Yet another equivalent description of Ip(a

λ) is the following:
if y1, . . . , yr denote the coordinate functions on Ar and we consider the regular
function g =

∑r
i=1 yifi on X × Ar, defining the divisor G, then Ip(a

λ) is
generated by the coefficients of all elements of Ip(λG) ⊆ OX(X)[y1, . . . , yr].
These equivalent descriptions of Ip(a

λ) are discussed in Section 2. It is not
hard to extend them to a definition in the global case.

In Section 3, we use the properties of Hodge ideals for Q-divisors proved in
[11] to show corresponding results in our more general context. For example, we
derive analogues of the Restriction Theorem and the Subadditivity Theorem in
this setting. Some examples of Hodge ideals associated to ideals are computed
in Section 4.

We note that this theory of Hodge ideals associated to ideal sheaves is
not yet completely satisfactory, since some of the main tools from the study
of Hodge ideals of divisors are still missing. The main reason is the lack of a
direct connection with Hodge theory. For example, we don’t know whether on
projective varieties there is a vanishing theorem for Hodge ideals associated to
an ideal a (see Question 3.21).

Finally, in Section 5 we define and study an extension of the notion of
minimal exponent to the case of ideals. Recall first that for a divisor D and
x ∈ Supp(D), the minimal exponent α̃x(D) is the negative of the largest root
of the reduced Bernstein-Sato polynomial of D at x. This is a refined version
of the log canonical threshold lctx(D), which is equal to min{α̃x(D), 1}. It is
intimately linked to Hodge ideals as follows: by [13, Corollary C], if D is a
reduced divisor and λ is a rational number with 0 < λ ≤ 1, then for every p
we have Ip(λD)x = OX,x if and only if p+ λ ≤ α̃x(D).

For an arbitrary ideal sheaf a, and a point x in the zero-locus of a, we
define an invariant, the generic minimal exponent αx(a), which is the minimal
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exponent at x of a general hypersurface containing the subscheme defined by
a. More precisely, if D is the divisor defined by a general linear combination of
generators of a in an affine open neighborhood of x, then αx(a) = α̃x(D). As
in the divisorial case, if λ is a rational number with 0 < λ ≤ 1, and a is radical
in codimension 1 around x, then

Ip(a
λ)x = OX,x ⇐⇒ p+ λ ≤ αx(a).

(If a is not radical in codimension 1 around x, then αa,x is equal to the log
canonical threshold lctx(a) of a at x.) We extend the basic properties of min-
imal exponents of divisors to the case of arbitrary ideals. The main result we
prove, Theorem 5.17, states that αx(a) is a root of the Bernstein-Sato polyno-
mial ba(s) defined in [1].

2. EQUIVALENT DEFINITIONS

Our goal in this section is to give the definition of Hodge ideals associated
to arbitrary nonzero ideals and provide some equivalent descriptions. Let X
be a smooth n-dimensional complex algebraic variety and a a nonzero coherent
ideal sheaf (often simply called ideal) on X.

Since X is smooth, it is easy to see, by taking a suitable affine open cover,
that we can uniquely write

a = OX

(
− div(a)

)
· b,

for an effective divisor div(a) and an ideal b defining a closed subscheme of
codimension ≥ 2. For our purpose, we may and will restrict to the open
subsets in an affine cover of X and thus assume that X is an affine variety
and OX

(
− div(a)

)
is a principal ideal. Let h1, . . . , hr ∈ OX(X) be a system of

generators for b. Note that if α1, . . . , αr ∈ C are general, then
∑

i αihi defines
a reduced effective divisor on X, without any common components with div(a).

Definition 2.1. If X is a smooth affine variety and a = OX

(
− div(a)

)
· b

as above, with OX

(
−div(a)

)
principal, then for every p ≥ 0 and λ ∈ (0, 1]∩Q,

the pth Hodge ideal of aλ is

Ip(a
λ) :=

∑
E

Ip
(
λ(div(a) + E)

)
,

where the sum is over all reduced effective divisors E, defined by elements
h ∈ b, and which have no common components with div(a). Equivalently, we
have

Ip(a
λ) :=

∑
D

Ip(λD),
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where D varies over the divisors defined by elements of a, such that D−div(a)
is reduced, without common components with div(a).

This definition makes sense for λ > 1 as well. However, we believe that
from the point of view we want to adopt it does not give the “correct” objects;
see for instance Remark 3.4 below. We prefer thus to restrict to λ ∈ (0, 1].

Remark 2.2 (Reduced subschemes). Note that if a defines a subscheme
that is reduced in codimension 1, then

Ip(a
λ) :=

∑
D

Ip(λD),

where the sum is over all reduced effective divisors D defined by elements of a.

Remark 2.3 (Principal ideals). If the ideal a is principal, defining a divisor
D, then Ip(a

λ) = Ip(λD) (in case D = div(g), we also denote this by Ip(g
λ)).

This follows from the fact that if E is an effective divisor, with Supp(D) and
Supp(E) having no common components, then Ip

(
λ(D + E)

)
⊆ Ip(λD). This

is a consequence of the Subadditivity Theorem for Hodge ideals (see [11, The-
orem 15.1]).

Before giving other equivalent descriptions of Ip(a
λ), we introduce some

notation. Suppose that X = Spec(R) is affine and J ⊆ R[y1, . . . , yr], for some
r ≥ 1, is an ideal. We define the ideal Coeff(J) of R as follows. Choose
generators Q1, . . . , Qs for J and write each of them as

Qi =
∑
u∈Nr

Pu,iy
u,

with Pu,i ∈ R and yu = yu11 · · · yurr for every u = (u1, . . . , ur) ∈ Nr (here N is
the set of nonnegative integers). We then put

Coeff(J) := (Pu,i | u ∈ Nr, 1 ≤ i ≤ s) ⊆ R.

Note that if Q =
∑s

i=1 hiQi is in J , and if

hi =
∑
u∈Nr

cu,iy
u,

then

Q =
∑
u∈Nr

(
s∑
i=1

∑
v+w=u

cv,iPw,i

)
yu

and
s∑
i=1

∑
v+w=u

cv,iPw,i ∈ (Pu,j | u ∈ Nr, 1 ≤ j ≤ s).

Therefore the definition of Coeff(J) is independent of the choice of generators
for J .
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Lemma 2.4. If J = (Q1, . . . , Qs) is an ideal in R[y1, . . . , yr], then the
ideal Coeff(J) is generated by {Q1(α), . . . , Qs(α) | α ∈ Cr}. Moreover, given
any non-empty open subset U ⊆ Cr, it is enough to only consider those α ∈ U .

Proof. Note that if P ∈ R[y1, . . . , yr] has degree d and for j ∈ Γ, with
|Γ| ≥ d+ 1, we consider

α(j) = (α
(j)
1 , . . . , α(j)

r ) ∈ Cr

such that α
(j)
i 6= α

(j′)
i for all i and all j 6= j′ in Γ, then the coefficients of P

lie in the ideal generated by {P (α(j)) | j ∈ Γ}. (This follows by induction
on r from the formula for the determinant of the Vandermonde matrix.) The
assertions in the lemma are an immediate consequence.

We can now give two other descriptions of Ip(a
λ). As before, we assume

that X = Spec(R) is smooth and affine and we write a = OX

(
− div(a)

)
· b,

with b defining a subscheme of codimension ≥ 2. We further assume that
OX

(
− div(a)

)
is principal.

Theorem 2.5. With the above notation, if f1, . . . , fr are generators of a,
then for every p ≥ 0 and λ ∈ (0, 1] ∩Q the following hold:

i) Ip(a
λ) is generated by the ideals Ip(λD), where D is the divisor of a

general linear combination
∑

i αifi, with αi ∈ C.

ii) We have

Ip(a
λ) = Coeff

(
Ip(λG)

)
,

with G being the divisor on X×Ar defined by
∑r

i=1 yifi, where y1, . . . , yn
are the coordinates on Ar.

Remark 2.6. By assumption, we can write fi = ghi, where g defines
div(a) and h1, . . . , hr are generators for the ideal b. Note that the divisor G in
ii) can be written as pr∗1

(
div(a)

)
+G′, where pr1 : X×Ar → X is the projection

and G′ is a reduced divisor having no common components with pr∗1
(
div(a)

)
.

Indeed, G is defined by g ·
∑r

i=1 yihi and we let G′ be the divisor defined by∑r
i=1 yihi. If T is an irreducible component of G′, which either appears with

multiplicity ≥ 2 in G′, or is also a component of pr∗1
(
div(a)

)
, then T is the pull-

back of a prime divisor on X. (In the first case, this follows from the fact that
for general α1, . . . , αr ∈ C, the element

∑
i λihi ∈ R defines a reduced divisor

on X.) After replacing X by a suitable affine open subset, we may assume
that T is defined by h ∈ R such that h divides hi for all i. This contradicts
the fact that b defines a subscheme of codimension ≥ 2.
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Proof of Theorem 2.5. Let us denote by I ′p(a
λ) the ideal generated by

the Ip(λD), where D is the divisor defined by a general linear combination∑
i αifi. Let Q1, . . . , Qs ∈ R[y1, . . . , yr] be generators for Ip(λG). We write

G = pr∗1
(
div(a)

)
+G′ as in Remark 2.6. For every α = (α1, . . . , αr) ∈ Cr, the

restriction Gα of G to

X ' X × {α} ↪→ X ×Ar

is equal to the sum of div(a) and the divisor G′α defined on X by
∑r

i=1 αihi.
Note that we have Gred = pr∗1

(
div(a)

)
red

+ G′. If G′α is reduced, having no
common components with div(a), then the restriction of Gred to X ' X ×{α}
is equal to div(a)red +G′α = (Gα)red. In this case we can apply the Restriction
Theorem for Hodge ideals (see [11, Theorem 13.1]) to deduce that for such α,
we have

Ip
(
λ · div(a) + λ ·G′α

)
⊆ Ip(λG) · OX =

(
Q1(α), . . . , Qr(α)

)
.

Moreover, this is an equality for general α.

The fact that Coeff
(
Ip(λG)

)
= I ′p(a

λ) now follows from Lemma 2.4.

Moreover, it is clear by definition that I ′p(a
λ) ⊆ Ip(a

λ). The above conse-

quence of the Restriction Theorem gives the inclusion Ip(a
λ) ⊆ Coeff

(
Ip(λG)

)
,

completing the proof of the result.

Remark 2.7. If X and a are as in Theorem 2.5 and U is an affine open
subset of X, then it follows from either of the two descriptions of Ip(a

λ) in the
theorem that the restriction of Ip(a

λ) to U is Ip
(
(a|U )λ

)
. We may thus define

Ip(a
λ) by gluing the objects defined locally in a suitable affine open cover.

Definition 2.8 (Global definition). If X is a smooth variety, a is a nonzero
ideal on X, and λ ∈ (0, 1] ∩Q, we choose an affine open cover of X such that
on each open subset U belonging to the cover, the ideal OX

(
− div(a)

)
|U is

principal. For every such U we may thus define Ip
(
(a|U )λ

)
, and it follows from

Remark 2.7 that these ideals glue to give an ideal Ip(a
λ) on X. This is clearly

independent of the choice of cover.

Remark 2.9. We note that once the ideals Ip(a
λ) are defined in general,

the assertions in Theorem 2.5 extend to arbitrary affine open subsets (it is
straightforward to reduce to the case when the ideal OX

(
−div(a)

)
is principal).

Remark 2.10 (Hodge ideals associated to several ideals). Suppose that
we have nonzero ideals a1, . . . , ar on X. We may assume that X is affine,
and for each i, the ideal OX

(
− div(ai)

)
is principal. For rational numbers

λ1, . . . , λr ∈ (0, 1], we consider divisors D =
∑r

i=1 λi
(
div(ai) +Ei

)
, where each

Ei is defined by an element of bi, such that
∑

iEi is a reduced divisor that has
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no common components with
∑

i div(ai). This allows us, as in Definition 2.1,
to define an ideal

Ip(a
λ1
1 · · · a

λr
r ) ⊆ OX .

There is an analogue of Theorem 2.5 in this more general setting and the
interested reader will have no trouble stating and proving it.

3. BASIC PROPERTIES

In this section we extend some basic properties of Hodge ideals from the
case of divisors to that of ideals.

Proposition 3.1. If a ⊆ b are nonzero ideals on the smooth variety X,
such that the divisors div(a)−div(b) and div(b) have no common components,
then for every p ≥ 0 and λ ∈ (0, 1] ∩Q we have

Ip(a
λ) ⊆ Ip(bλ).

Proof. We may assume thatX is affine and that a is generated by f1, . . . , fr
and b is generated by f1, . . . , fr, fr+1, . . . , fr+s. Furthermore, we may assume
that for i ≤ r we can write fi = ghi such that h1, . . . , hr define a subscheme
of codimension ≥ 2 and similarly, for i ≤ r + s we can write fi = g′h′i such
that h′1, . . . , h

′
r+s define a subscheme of codimension ≥ 2. We can then write

g = g′u, for some u ∈ OX(X).

Consider f = gh, where h ∈ (h1, . . . , hr) defines a reduced divisor with-
out common components with the divisor div(a) defined by g. Since we can
write f = g′(uh), and div(uh) = div(u) + div(h) has no common components
with div(g′) (note that by hypothesis, div(u) and div(g′) have no common
components), it follows from the definition that

Ip
(
λ · div(f)

)
⊆ Ip(bλ).

Since this holds for all f as above, we obtain the assertion in the proposition.

Remark 3.2. The condition on div(a) and div(b) in Proposition 3.1 cannot
be dropped: if D and E are effective Q-divisors such that D − E is effective,
it is not the case that we always have Ip(D) ⊆ Ip(E). In fact, this can fail
even when D and E are rational multiples of the same integral divisor, see [11,
Example 10.5].

We next show that I0 coincides with a multiplier ideal.
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Proposition 3.3. If X is a smooth variety and a is a nonzero ideal on
X, then for every λ ∈ (0, 1] ∩Q we have

I0(a
λ) = I

(
aλ−ε

)
for 0 < ε� 1.

Proof. It is enough to check this when X is affine. If h is a general
linear combination of a system of generators of a, then it follows from [7,
Proposition 9.2.28] that

I
(
hλ−ε

)
= I

(
aλ−ε

)
.

If D is the divisor defined by h, then

I
(
hλ−ε

)
= I0(λD)

by [11, Proposition 9.1]. The assertion now follows from Theorem 2.5i).

Remark 3.4. Note that if we also allowed λ > 1 in Definition 2.1 and
Theorem 2.5, using the fact that I0

(
(α + 1)D

)
= OX(−D) · I0(αD) for every

α ∈ Q, we would get I0(a
α+1) = a · I0(aα), and not I

(
aα+1−ε).

Proposition 3.5. If a is a nonzero ideal on the smooth variety X and
ϕ : Y → X is a smooth morphism, then for every λ ∈ (0, 1] ∩ Q and every
p ≥ 0, we have

Ip(a
λ) · OY = Ip

(
(a · OY )λ

)
.

Proof. We may clearly assume that both X and Y are affine, and let
f1, . . . , fr be generators of a. This implies that f1 ◦ ϕ, . . . , fr ◦ ϕ generate
a · OY . If α = (α1, . . . , αr) ∈ Cr is general and Dα is defined by

∑
i αifi, then

ϕ∗Dα is defined by
∑

i αi(fi ◦ ϕ). Since Ip(a
λ) is generated by such Ip(λDα)

and Ip
(
(a · OY )λ

)
is generated by such Ik(λϕ

∗Dα), we obtain the assertion in
the proposition thanks to the lemma below.

The following is the extension of [10, Proposition 15.1] to the case of
Q-divisors; it is stated only implicitly in [11].

Lemma 3.6. If ϕ : Y → X is a smooth morphism of smooth varieties,
and D is an effective Q-divisor on X, then for every p ≥ 0 we have

Ip(ϕ
∗D) = Ip(D) · OY .

Proof. By possibly shrinking X, we may assume that D = αH, where α
is a positive rational number and H is the effective Cartier divisor defined by
a function h ∈ OX(X). We denote by Z the support of D. We then have that
ϕ∗D = αϕ∗H, and ϕ∗H is defined by h′ = h ◦ϕ. Moreover, since ϕ is smooth,
the divisor Z ′ = ϕ∗Z is reduced, and is therefore equal to the support of ϕ∗D.
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Note now that, in the notation of [11, §2 and §4], the Hodge ideal Ip(D) is
defined by the Hodge filtration on the DX -module M(h−α), in the sense that

FpM(h−α) = Ip(D)⊗ OX(pZ) · h−α.

(Cf. more precisely [11, Remark 4.3].) Analogously, we have

FpM(h′
−α

) = Ip(ϕ
∗D)⊗ OX(pZ ′) · h′−α.

It suffices then to have

FpM(h′
−α

) = ϕ∗FpM(h−α),

which is deduced in [11, Remark 2.15] as a consequence of the behavior of
mixed Hodge modules under smooth morphisms and base-change.

Proposition 3.7. Let X be a smooth complex variety and a, b nonzero
ideals on X.

i) For every p ≥ 0 and every λ ∈ (0, 1] ∩Q, we have

ap · I0(aλ) ⊆ Ip(aλ).

ii) For every p ≥ 0 and every λ ∈ (0, 1] ∩Q, we have

ap+1 · Ip(bλ) ⊆ Ip(abλ).

Proof. In order to prove the inclusion in i), we may assume that X is
affine. Let h1, . . . , hr be generators of a. If h =

∑r
j=1 αjhj , with α1, . . . , αr ∈ C

general, then as in the proof of Proposition 3.3 we have I0(h
λ) = I0(a

λ). Using
[11, Remark 4.2], we have

hp · I0(aλ) = hp · I0(hλ) ⊆ Ip(hλ) ⊆ Ip(aλ).

Since this holds for every λ1, . . . , λr ∈ C general, and we are in characteristic
0, we conclude that

ap · I0(aλ) ⊆ Ip(aλ).

We next prove ii). Consider first the case when a = (f) and b = (g) are
principal ideals. In this case we have an inclusion of filtered DX -modules

(3.8) OX [1/g]g−λ ⊆ OX [1/fg]g−λ.

For the definition of these DX -modules, which play an important role in defin-
ing Hodge ideals of Q-divisors, we refer to [11, §2]. Recall from [11, §4] that
by the definition of Hodge ideals, we have

FpOX [1/g]g−λ = Ip(g
λ) · OX

(
p · div(g)red

)
g−λ
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and
FpOX [1/fg]g−λ = Ip(fg

λ) · OX

(
p · div(fg)red

)
f−1g−λ.

By passing to filtered pieces, the inclusion (3.8) thus gives

OX

(
p · div(g)red

)
· Ip(gλ)g−λ ⊆ OX

(
p · div(fg)red

)
· Ip(fgλ)f−1g−λ,

hence
fp+1Ip(g

λ) ⊆ Ip(fgλ).

We now turn to the case of arbitrary ideals. We may and will assume that
X is affine, with R = OX(X), and that we have factorizations a = ϕ · a′ and
b = ψ · b′, with a′ and b′ defining subschemes of codimension ≥ 2. Consider a
general linear combination g of generators of b, that defines a divisor E. By
the generality condition, we may assume that E − div(b) is reduced, without
any common components with div(a) + div(b). In this case the divisors

div(ag)− div(ab) = E − div(b)

and div(ab) have no components in common, hence the obvious analogue of
Proposition 3.1 for Hodge ideals associated to several ideals (see Remark 2.10)
gives

Ip(ag
λ) ⊆ Ip(abλ).

Using the characterization of Ip(b
λ) in Theorem 2.5i), it then suffices to show

that for every g as above we have

(3.9) ap+1 · Ip(gλ) ⊆ Ip(agλ).

Let f1, . . . , fr be generators of a and consider h =
∑r

i=1 fiyi ∈ R[y1, . . . , yr]. It
follows from the case of principal ideals that

hp+1Ip(g
λ) ⊆ Ip(hgλ).

(Note that Ip(g
λ) ·R[y1, . . . , yr] is the pth Hodge ideal with exponent λ for the

image of g in R[y1, . . . , yr], by Proposition 3.5.) This implies

Coeff(hp+1) · Ip(gλ) = Coeff
(
hp+1Ip(g

λ)
)
⊆ Coeff

(
Ip(hg

λ)
)

= Ip(ag
λ),

where the last equality follows from the analogue of Theorem 2.5ii) for Hodge
ideals associated to several ideals. On the other hand, it follows from the
definition that

Coeff(hp+1) = ap+1,

and we obtain the inclusion in (3.9).
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For exponent λ = 1, Hodge ideals become deeper as p increases:

Proposition 3.10. If X is a smooth variety and a is a nonzero ideal,
then

Ip+1(a) ⊆ Ip(a)

for every nonnegative integer p.

Proof. We may assume that X is affine and a is generated by h1, . . . , hr.
If D is a divisor defined by a linear combination

∑r
i=1 αihi and if we write

D = Dred + B, where Dred is the effective reduced divisor with the same
support as D, then it follows from [11, Lemma 4.4] that

Ip+1(D) = Ip+1(Dred) · OX(−B) and Ip(D) = Ip(Dred) · OX(−B).

On the other hand, since Dred is reduced, we have

Ip+1(Dred) ⊆ Ip(Dred)

by [10, Proposition 13.1]. We thus conclude that Ip+1(D) ⊆ Ip(D) and the
assertion in the proposition now follows from the definition of Ip(a) and Ip+1(a).

For arbitrary λ we only have the following:

Proposition 3.11. Let X be a smooth variety and consider a nonzero
ideal a on X which is radical in codimension 1. If p and p′ are nonnegative
integers and λ, λ′ ∈ Q ∩ (0, 1] are such that p+ λ ≤ p′ + λ′, then

Ip′(a
λ′) ⊆ Ip(aλ) mod a,

i.e. the inclusion holds in the quotient OX/a.

Proof. We may assume that X is affine, and let D be the divisor corre-
sponding to a general linear combination f of generators of a. By [13, Theo-
rem A’ and Remark 4.8], we have

Ip′(λ
′D) ⊆ Ip(λD) mod f,

and hence also mod a. Indeed, mod f these statements say that Ip(λD) co-

incides with Ṽ p+λOX , Saito’s microlocal V -filtration on OX along f ; this is a
decreasing filtration. We can then use Theorem 2.5i) to conclude.

We now turn to the analogue of the Restriction Theorem for multiplier
ideals (cf. [7, Theorem 9.5.1 and Example 9.5.4]) and for Hodge ideals of
divisors (cf. [9, Theorem A] and [11, Theorem 13.1]). Let X be a smooth
complex variety and H ⊆ X a smooth, irreducible hypersurface. Consider an
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ideal a on X such that aH := a · OH is nonzero. We define on H the divisor
F =

∑
T aTT , where T varies over the components of div(aH) and

aT := ordT
(
div(a)red|H

)
+ ordT (aH)− ordT

(
div(a)|H

)
− 1.

It is easy to see that aT ≥ 0, but this will also be clear from the proof of the
next theorem.

Theorem 3.12. With the above notation, for every p ≥ 0 and every
λ ∈ (0, 1] ∩Q, we have

(3.13) OH

(
− pF ) · Ip(aλH) ⊆ Ip(aλ) · OH .

Moreover, if H is sufficiently general (for example, a general member of a
basepoint-free linear system), then F = 0 and the inclusion in (3.13) is an
equality.

Proof. We may assume that X is affine, OX

(
− div(a)

)
is principal, and

a is generated by h1, . . . , hr. If α1, . . . , αr ∈ C are general and D is defined by∑
i αihi, then D|H is defined by a general linear combination of a system of

generators of aH . We can write D = div(a) + B, with B reduced and having
no common components with div(a). Therefore we have

Z := Dred = div(a)red +B.

If ZH = Z|H and Z ′H = (ZH)red, it follows from [11, Theorem 13.1] that we
have

(3.14) OH

(
− p(ZH − Z ′H)

)
· Ip(λD|H) ⊆ Ip(λD) · OH .

Moreover, if H is sufficiently general (depending on D), then ZH = Z ′H and
we have equality in (3.14).

Note now that if T is a prime divisor on H such that ordT (ZH) ≥ 2,
then ordT (D|H) ≥ 2, hence T is a component of div(aH). In particular, there
are only finitely many such T , independently of our choice of D. Since D is
general, for every component T of div(aH), we have ordT (D|H) = ordT (aH),
hence

ordT (ZH − Z ′H) = ordT
(
div(a)red|H

)
+ ordT (B|H)− 1

= ordT
(
div(a)red|H

)
+ ordT (D|H)− ordT

(
div(a)|H

)
− 1

= ordT
(
div(a)red|H

)
+ ordT (aH)− ordT

(
div(a)|H

)
− 1.

This shows that ZH − Z ′H = F . By letting D vary and using Theorem 2.5i),
we deduce from (3.14) the first assertion of the proposition.
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Let us now choose divisors D1, . . . , Ds as above such that

Ip(a
λ) =

s∑
i=1

Ip(λDi) and Ip(a
λ
H) =

s∑
i=1

Ip(λDi|H).

If we take H general with respect to all Di, then we see that

Ip(λDi|H) = Ip(λDi) · OH for 1 ≤ i ≤ s.

We thus obtain the second assertion of the proposition.

Suppose now that a is a nonzero ideal on X and let us put

(3.15) a′ := OX

(
− div(a)red

)
· b,

where a = OX(−div(a)
)
· b and div(a)red is the reduced effective divisor with

the same support as div(a). Note that a is reduced in codimension 1 if and
only if a = a′.

Remark 3.16. With the notation in Theorem 3.12, if a′ ·OH is radical in
codimension 1, then F = 0, and we get

Ip(a
λ
H) ⊆ Ip(aλ) · OH for every p ≥ 0.

Indeed, ifX is affine and Z is as in the proof of the theorem, then the hypothesis
implies that Z|H is reduced. Therefore ZH = Z ′H , hence F = 0. Note also that
in this case we have by assumption a′ · OH = (a · OH)′.

Corollary 3.17. Let ϕ : W → X be any morphism of smooth complex
varieties. If a is an ideal on X such that aW := a ·OW is nonzero and a′ ·OW

is radical in codimension 1, where a′ is defined in (3.15), then for every p ≥ 0
and every λ ∈ Q ∩ (0, 1] we have

Ip(a
λ
W ) ⊆ Ip(aλ) · OW .

Proof. We can factor ϕ as

W
j
↪→W ×X p−→ X,

where p is the projection and j is a closed embedding. Since p is smooth, we
have

Ip
(
(a · OW×X)λ

)
= Ip(a

λ) · OW×X

by Proposition 3.5, hence in order to prove the corollary it is enough to treat
the case when ϕ is a closed embedding. In this case the statement follows
by an easy induction on the codimension of W , using Theorem 3.12 (see also
Remark 3.16).
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We deduce the following analogue of the Subadditivity Theorem for mul-
tiplier ideals (cf. [7, Theorem 9.5.20]) and for Hodge ideals of divisors (cf. [9,
Theorem B] and [11, Theorem 15.1]).

Proposition 3.18. If X is a smooth, complex algebraic variety, and a
and b are nonzero ideals on X such that div(a) and div(b) have no common
components, then for every nonnegative integer p and every λ ∈ Q ∩ (0, 1], we
have

Ip
(
(a · b)λ

)
⊆ Ip(aλ) · Ip(bλ).

Proof. Consider the diagonal embedding ∆: X ↪→ X×X. If the assertion
in the proposition holds for the ideals ã and b̃ on X ×X given by pulling back
a and b respectively, via the first and second projections, then it follows from
Corollary 3.17 and Proposition 3.5 that if c = ã · b̃, then

Ip
(
(a · b)λ

)
= Ip

(
(c · OX)λ

)
⊆ Ip(cλ) · OX

⊆
(
Ip(ã

λ) · OX

)
·
(
Ip(b̃

λ) · OX

)
= Ip(a

λ) · Ip(bλ).

Therefore we may assume that X = X1 × X2 and that a = a1 · OX and b =
a2 ·OX , where ai are ideals on Xi. In this case, by combining Propositions 3.1
and 3.5, we see that

Ip
(
(a · b)λ

)
⊆ Ip(aλ) ∩ Ip(bλ) =

(
Ip(a

λ
1) · OX

)
∩
(
Ip(a

λ
2) · OX

)
= Ip(a

λ
1)⊗C Ip(a

λ
2) = Ip(a

λ) · Ip(bλ).

Remark 3.19. A similar argument shows that under the assumptions of
Proposition 3.18, for every λ, µ ∈ Q ∩ (0, 1] and every p ≥ 0, we have

Ip(a
λbµ) ⊆ Ip(aλ) · Ip(bµ).

We end this section with a triviality criterion for all Hodge ideals Ip(a
λ),

where a is any nonzero ideal on X. Given a point x ∈ X, defined by the ideal
mx, we denote by ordx(a) the largest nonnegative integer q such that a ⊆ mq

x.

Proposition 3.20. If X is a smooth n-dimensional variety, x ∈ X is
a point in the support of the subscheme defined by the ideal a ⊆ OX , and
λ ∈ (0, 1], then the following are equivalent:

i) For all p ≥ 0, we have Ip(a
λ)x = OX,x.

ii) There is p ≥ n such that Ip(a
λ)x = OX,x.
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iii) We are in one of the following two situations: either ordx(a) = 1, or in
a suitable neighborhood of x, we have a = OX(−mZ) for some smooth
divisor Z, and 2 ≤ m ≤ 1

λ .

Proof. We may assume that X is affine, and we let D be the divisor
defined by a general linear combination of some generators of a. Given p ≥ 0,
it follows from Theorem 2.5 that Ip(a

λ)x = OX,x if and only if there is such
a D with Ip(λD)x = OX,x. In fact, in this case the same equality holds for
all general D; this is a consequence of the Semicontinuity Theorem for Hodge
ideals (see [11, Theorem 14.1]).

On the other hand, if Ip(λD)x = OX,x for some p ≥ n, then Dred is
smooth at x (see [11, Corollary 10.7]). If this is the case, after replacing X by
a suitable neighborhood of x, we may assume that Z = Dred is smooth and
D = mZ. If m = 1, then we clearly have ordx(a) = 1. On the other hand, if
m ≥ 2, then D being general implies that D = div(a), hence a = OX(−mZ).
The inequality λm ≤ 1 follows from the fact that, since Z is smooth, we have

Ip(λmZ) = OX

(
(1− dλme)Z)

(see [11, §3,4]). This proves the implication ii)⇒iii).

The implication iii)⇒i) follows immediately from the fact that, as we
have already seen, for a smooth divisor Z we have Ip(λZ) = OX for all p ≥ 0
and λ ∈ (0, 1]. Since the implication i)⇒ii) is trivial, this completes the proof
of the proposition.

As mentioned in the Introduction, further tools from the study of Hodge
ideals of divisors are still missing, mainly due to the lack of a direct connection
with Hodge theory. For example, at least at the moment, there is no DX -
module (of Hodge theoretic origin) associated naturally to the ideals Ip(a). A
natural question is the following:

Question 3.21. Is there a vanishing theorem for Hodge ideals associated
to ideals? More precisely, assuming that X is a smooth projective variety, a is
a nonzero ideal on X and A is a line bundle on X, what are the conditions a,
A and p must satisfy in order to have

H i
(
X,ωX ⊗A⊗ Ip(a)

)
= 0, for all i > 0.

Here one is looking for a statement in analogy with the vanishing theorem
for Hodge ideals of divisors, see [10, Theorem F] and [13, Theorem 12.1], and
with that for multiplier ideals associated to ideals, see [7, Corollary 9.4.15].
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4. EXAMPLES

In this section we provide a few concrete calculations of Hodge ideals
associated to ideals; note that even in the case of powers of the maximal ideal
this is quite involved. We also give some examples of pathological behavior of
higher Hodge ideals, compared to the case of multiplier ideals.

First, in light of the Proposition 3.3, we see that if X is affine and h is a
general linear combination of a system of generators of a, then

I0(h
λ) = I0(a

λ) for all λ ∈ (0, 1] ∩Q.

We give two examples showing that the corresponding assertion can fail for
p > 0, even when λ = 1.

Example 4.1. Let a = (xy, xz) ⊆ C[x, y, z]. Note that for every (a, b) ∈
C2 r {(0, 0)}, the divisor Da,b in A3 defined by axy + bxz is reduced, with
simple normal crossings, and so by [10, Proposition 8.2] we have

I1(Da,b) = (x, ay + bz).

We thus see that I1(a) = (x, y, z), but I1(Da,b) 6= (x, y, z) for any (a, b) 6= (0, 0).

Example 4.2. Let a = (x2, y3) ⊆ C[x, y]. If Da,b is the divisor in A2

defined by h = ax2 + by3, with a, b 6= 0, an easy computation based on [10,
Corollary 17.8] gives

I2(Da,b) = (x3, x2y2, xy3, 3ax2y − by4).

We deduce from Theorem 2.5i) that

I2(a) = (x3, x2y, xy3, y4) 6= I2(Da,b) for all a, b 6= 0.

We now give an example in which we can compute the Hodge ideal of an
ideal, while we do not have a closed formula for the corresponding Hodge ideal
of a general member of the ideal.

Example 4.3. We compute the Hodge ideals associate to powers of maxi-
mal ideals. Let mx be the ideal defining the point x on a smooth variety X of
dimension n ≥ 2. We will show that if N ≥ 1 and

µ(N, p, n) = (p+ 1)(N − 1)− n+ dn/Ne,

then

(4.4) Ip(m
N
x ) =

{
OX , if p+ 1 ≤ n

N ;

m
µ(N,p,n)
x , if p+ 1 > n

N .

Note that if p+ 1 ≥ n
N , then µ(N, p, n) ≥ 0.
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For N = 1, the above formula says that Ip(mx) = OX for all p, which is
clear (see Proposition 3.20). From now on we assume N ≥ 2. By taking an
étale map U → An that maps x to 0, where U is an open neighborhood of x,
using Proposition 3.5 we may assume that X = An and mx = (x1, . . . , xn). In
this case, since mN

x is preserved by all linear changes of variables, every Ip(m
N
x )

has the same property, hence it is a power of mx. It follows that given a system
of homogeneous generators of Ip(m

N
x ), we only need to determine the minimal

degree of these generators.
Let D be the divisor in An defined by a general linear combination f of

the monomials of degree N . In particular f is a homogeneous polynomial, with
an isolated singularity at 0. Note that Ip(D) is a homogeneous ideal, but might
not be monomial. We need to show that if ν(N, p, n) is the minimal degree of
a homogeneous element of Ip(D), then ν(N, p, n) = µ(N, p, n) if p+1 > n

N and
ν(N, p, n) = 0, otherwise.

The key ingredient is an inductive formula for computing the Hodge ideals
of such a polynomial f ; according to [20, Corollary B], inspired in turn by a
result in [17], for every p ≥ 1 we have

(4.5) Ip(D) =
∑

deg(vj)≥(p+1)N−n

OX · vj +
∑

1≤i≤n, g∈Ip−1(D)

OX · (f∂ig − pg∂if),

where the first sum is taken over those vj in a basis of monomials for the Milnor
algebra

S = C[X1, . . . , Xn]/(∂1f, . . . , ∂nf),

whose degree is at least (p+ 1)N − n.
We prove the formula for ν(N, p, n) by induction on p, the case p = 0

being clear, by Proposition 3.3 and the well-known formula for I(mλ
x) (see [7,

Example 9.2.14]):

I0(D) = I
(
(1− ε)D

)
= I(mN(1−ε)

x ) = mN−n
x , where 0 < ε� 1,

with the convention that the last term is OX when N < n.
If p+1 ≤ n

N , then Ip(D) = OX by (4.5) since 1 is part of a monomial basis
of the Milnor algebra (recall that we assume N ≥ 2) of degree 0 ≥ (p+1)N−n.
Suppose now that p is positive, with p+1 > n

N . Note that if g is a homogeneous
polynomial of degree q in Ip−1(D), then by (4.5) all f∂ig−pg∂if lie in Ip(D); if
nonzero, these are homogeneous of degree N +q−1. If q = ν(N, p−1, n), then
not all these can be 0: otherwise we have ∂i(g/f

p) = 0 for all i, hence g/fp

is a constant, and thus q = pN ; however, using the formula for ν(N, p − 1, n)
given by the induction hypothesis, we see that ν(N, p− 1, n) < pN .

We also note that we get a contribution to Ip(D) from the first sum in (4.5)
if and only if (p+1)N−n ≤ n(N−2), and in this case the contribution consists
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of monomials of degree ≥ (p + 1)N − n, with equality for some monomials.
Indeed, since ∂1f, . . . , ∂nf form a regular sequence of homogeneous forms of
degree N − 1, the Hilbert series of S is given by

(1− tN−1)n

(1− t)n
= (1 + t+ · · ·+ tN−2)n,

hence for a nonnegative integer d we have Sd 6= 0 if and only if d ≤ n(N − 2).
By combining these observations, we conclude from (4.5) that

(4.6)

ν(N, p, n) =

{
min{ν(N, p− 1, n) +N − 1, (p+ 1)N − n}, if (p+ 1)N ≤ n(N − 1);

ν(N, p− 1, n) +N − 1 if (p+ 1)N > n(N − 1).

We distinguish two cases. If p > n
N , then we see using the induction

hypothesis and an easy computation that

ν(N, p− 1, n) +N − 1 = µ(N, p− 1, n) +N − 1 ≤ (p+ 1)N − n,

hence we deduce using (4.6) that ν(N, p, n) = µ(N, p−1, n)+N−1 = µ(N, p, n).

Suppose now that p ≤ n
N , hence by the induction hypothesis we have

ν(N, p−1, n) = 0. We further distinguish two possibilities. If pN ∈ {n−1, n},
then we again have N − 1 ≤ (p+ 1)N − n, hence ν(N, p, n) = N − 1 by (4.6).
Moreover, in this case it is easy to see that µ(p,N, n) = N − 1, hence we are
done.

On the other hand, if pN ≤ n− 2, then (p+ 1)N ≤ n(N − 1) (we use the
fact that N ≥ 2) and (p+ 1)N − n ≤ N − 1, so that it follows from (4.6) that
ν(N, p, n) = (p+ 1)N − n. Note also that in this case we have dn/Ne = p+ 1,
hence µ(N, p, n) = (p+ 1)N − n. This completes the proof of (4.4).

Example 4.7. Let a = (xN1 , . . . , x
N
n ) ⊆ C[x1, . . . , xn], with n,N ≥ 2. We

show that if m = (x1, . . . , xn), then

(4.8) I1(a) =


C[x1, . . . , xn], if N ≤ n

2 ;

(xN−11 , . . . , xN−1n ) + m2N−n, if n
2 ≤ N ≤ n;

(xN−11 , . . . , XN−1
n ) ·mN−n + m2N−n, if N ≥ n.

Suppose that N > n. Let D be the divisor defined by a general linear combi-
nation

f =
n∑
i=1

αix
N
i .

Again, f is homogeneous of degree N , having an isolated singularity at 0, hence
we can use the formula (4.5).
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In this case the Milnor algebra is given by

S = C[x1, . . . , xn]/(xN−11 , . . . , xN−1n ),

hence the contribution of the first sum in (4.5) to I1(D) consists of

(xa11 · · ·x
an
n | ai ≤ N − 2 for all i, a1 + · · ·+ an ≥ 2N − n).

Note that since a is a monomial ideal, it is preserved by the standard
action of (C∗)n on An, hence the same holds for I1(a). Therefore I1(a) is a
monomial ideal as well. It follows that I1(a) is generated by the monomials
that appear with nonzero coefficient in the polynomials in I1(D), for D as
above.

Since mN is the integral closure of a and since multiplier ideals do not
change after replacing an ideal by its integral closure (see [7, Corollary 9.6.17]),
we see as in Example 4.3 that I0(D) = mN−n. Thus the contribution of
the second sum in (4.5) to I1(D) consists of the ideal generated by f∂ig −
NxN−1i g, where g varies over the monomials in mN−n and 1 ≤ i ≤ n. Since
the coefficients of f are general, it is clear that the monomials that appear in
f∂ig − NxN−1i g are xN−1i g and xNj ∂ig, with 1 ≤ j ≤ n. The ideal generated

by these monomials is (xN−11 , . . . , xN−1n ) ·mN−n.
By combining the two contributions, we conclude that

I1(a) = (xN−11 , . . . , xN−1n ) ·mN−n + m2N−n,

which proves our formula for N > n. The proofs in the other two cases are
similar, but easier.

Example 4.9 (Non-invariance under integral closure). Recall that if a and
b are two nonzero ideals on X, with the same integral closure, then

I(aλ) = I(bλ) for all λ > 0

(see [7, Corollary 9.6.17]). This property fails for Hodge ideals: consider, for
example, a = (xN , yN , zN ) and b = (x, y, z)N in C[x, y, z], for N ≥ 3. Note
that b is the integral closure of a, while it follows from Examples 4.3 and 4.7
that I1(a) is strictly contained in I1(b).

Example 4.10 (Failure of the asymptotic property). For multiplier ideals,
it follows immediately from their definition that

I
(
(a`)

λ
`
)

= I
(
(ak`)

λ
k`
)

for all integers k, ` > 0. The inclusion “⊆” is crucial for the construction of
asymptotic multiplier ideals; see [7, §11.1]. This inclusion might not hold for
higher Hodge ideals. Consider for instance the maximal ideal a = (x1, . . . , xn) ⊂
C[x1, . . . , xn], with n ≥ 3, and fix an integer m > 0. Let D be the zero locus of
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a general linear combination of monomials of degree m in the xi, so that D has
an isolated ordinary singularity of multiplicitym at the origin. An easy applica-
tion of [20, Corollary B] (see also [11, Example 11.7]) gives I1

(
1
mD

)
= mm+1−n

x

for m ≥ n− 1; in this case Theorem 2.5i) implies I1
(
(am)

1
m

)
= mm+1−n

x . This
means that for ` > n− 1 and k > 1 we have in fact the strict inclusion

I1
(
(ak`)

1
k`
)
( I1

(
(a`)

1
`
)
.

It is an interesting question if, or when, some type of asymptotic construction
can be performed in this context.

Example 4.11. For effective divisors D and E on a smooth variety X,
with D + E reduced, it is shown in [9, Theorem B] that we have

Ip(D + E) ⊆
∑
i+j=p

Ii(D) · Ij(E) · OX(−jD − iE) for all p ≥ 0.

We used this for instance to deduce the inclusion in Proposition 3.18 in the
case of locally principal ideals and λ = 1. One could ask whether for arbi-
trary nonzero ideals a and b such that div(a) and div(a) have no common
components, we have

(4.12) Ip(a · b) ⊆
∑
i+j=p

Ii(a) · Ij(b) · aj · bi for all p ≥ 0.

It is easy to deduce that this still holds if either a or b is locally principal.
However, it does not hold in general. Suppose, for example, that X = A2n with
coordinates x1, . . . , xn, y1, . . . , yn, while a = (x1, . . . , xn) and b = (y1, . . . , yn).
Note that Ii(a) = Ii(b) = OX (see Proposition 3.20), hence (4.12) says in this
case that

Ip(a · b) ⊆
∑
i+j=p

(x1, . . . , xn)j · (y1, . . . , yn)i = (x1, . . . , xn, y1, . . . , yn)p.

However, it follows from [9, Corollary D] that if f =
∑n

i=1 xiyi, then Ik(f) =
OX for p ≤ n− 1. Therefore (4.12) fails for n ≥ 2.

5. GENERIC MINIMAL EXPONENT

In this section we define and study an extension of the concept of minimal
exponent of a hypersurface [16], [18] (see also [13], [12] for a recent study and
applications) to the case of arbitrary subschemes. As always, we work on a
smooth variety X of dimension n.

Recall first that an important invariant of the singularities of a nonzero
f ∈ OX(X) is the Bernstein-Sato polynomial bf (s) ∈ C[s] of f . The roots of
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bf are negative rational numbers by a theorem of Kashiwara [5]. From now on
we assume that f is not invertible, in which case bf (−1) = 0. The negative
of the greatest root of bf (s)/(s + 1) is the minimal exponent α̃(f) of f (with
the convention that if bf (s) = s + 1, which is the case if and only if f defines
a smooth hypersurface, then α̃(f) = ∞). By a result of Lichtin and Kollár
(see [6, Theorem 10.6]), the negative of the greatest root of bf (s) is the log
canonical threshold lct(f), hence lct(f) = min{1, α̃(f)}. For an introduction
to the log canonical threshold and its relation to multiplier ideals, we refer to
[7, Chapter 9].

We will be mostly using a local version of the minimal exponent: given x
in the zero-locus of f , if U is an open neighborhood of x, then α̃(f |U ) ≥ α̃(f).
Moreover, if U is small enough, then α̃(f |U ) is independent of U ; the common
value is the minimal exponent α̃x(f) of f at x.

Remark 5.1. The global and local minimal exponents of f were denoted
in [13] by α̃f and α̃f,x, respectively, in line with the notation from [16], [18].
However, for what follows below we found the present notation more conve-
nient.

The minimal exponent is related to Hodge ideals as follows: if f defines
a divisor D which is reduced in a neighborhood of x, then

(5.2) Ip(λD)x = OX,x ⇐⇒ p+ λ ≤ α̃x(f)

(see [13, Corollary C]). Note that from the point of view of the minimal
exponent, the interesting case is that when D is reduced in some neighborhood
of x; otherwise lctx(f) < 1 and α̃x(f) = lctx(f).

We will make use of the following semicontinuity property of minimal
exponents for hypersurfaces. Suppose that we have a smooth morphism of
complex algebraic varieties π : W → T , with a section s : T → W . Given
f ∈ OW (W ) such that the restriction ft to the fiber π−1(t) is nonzero for every
t ∈ T , the function

T 3 t→ α̃s(t)(ft) ∈ R>0 ∪ {∞}

is lower semicontinuous (see [13, Theorem E(2)]). In fact, the proof in loc. cit.
shows something stronger: for every α > 0, the set {t ∈ T | α̃s(t)(ft) ≥ α} is
open in T . Since a countable intersection of nonempty open subsets of T is
nonempty, it follows that the set {α̃s(t)(ft) | t ∈ T} has a maximum, which is
achieved on an open subset of T . Arguing by Noetherian induction, we deduce
that this set is in fact finite.

We now turn to the case of ideals. Consider a nonzero ideal a ⊆ OX and
a point x in the zero-locus of a; since we are interested in a local study around
x, we assume that X is affine, and a is generated by f1, . . . , fr in OX(X).
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Definition 5.3. The generic minimal exponent of a at x is defined as

αx(a) := α̃x(f),

where f =
∑r

i=1 λifi is a general linear combination of the generators of a.

Remark 5.4. The fact that for a general combination f as above the value
of α̃x(f) is constant follows from the above discussion about the semicontinuity
of the minimal exponent. Furthermore, it is straightforward to see that this
value is independent of the choice of generators of a.

Remark 5.5. A priori it would make sense to simply call αx(a) the min-
imal exponent of a and denote it by α̃x(a), extending the terminology and
notation from the case of hypersurfaces. However, we prefer to keep these for
a different invariant, defined in terms of the Bernstein-Sato polynomial ba,x(s)
in the sense of [1]. If a defines a closed subscheme Z of codimension r at x,
reduced in some neighborhood of x, then one can deduce from [1, Theorem 2]
that ba,x(−r) = 0; we define the minimal exponent α̃x(a) as the negative of the
largest root of ba,x(s)/(s+r). This is in general different from αx(a), and seems
to be related more naturally to the Hodge filtration on local cohomology. We
hope to study this relationship in future work.

Proposition 5.6. If a is not radical in codimension 1 around x, then
αx(a) is equal to the log canonical threshold lctx(a) of a at x. On the other
hand, if a is radical in codimension 1 around x, then

(5.7) Ip(a
λ)x = OX,x ⇐⇒ p+ λ ≤ αx(a).

Proof. If a is not radical in codimension 1 around x and f is a general
linear combination of generators of a, then f defines a divisor having a non-
reduced component containing x. We therefore have lctx(f) < 1, and thus

lctx(a) = lctx(f) = α̃x(f),

where the first equality follows from [7, Proposition 9.2.28] and the description
of the log canonical threshold via multiplier ideals.

Suppose now that a is reduced in codimension 1 around x. If λ > 0 is
a rational number and f is a general linear combination of generators of a,
defining a divisor D which is reduced in some neighborhood of x, then αx(a) =
α̃x(f). Moreover, we have Ip(a

λ)x = OX,x if and only if Ip(λD)x = OX,x (for
the “only if” part, we use that OX,x is a local ring). The equivalence in (5.7)
then follows from (5.2).

Remark 5.8. If p = 0, then the equivalence in (5.7) also holds when a is
not radical in codimension 1 around x. Indeed, this follows from the description
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of I0(a
λ) as a multiplier ideal in Proposition 3.3 and the characterization of

lctx(a) via multiplier ideals.

Example 5.9. We collect a first few examples here. The case of general
monomial ideals is discussed in Example 5.13 below.

(1) We have αx(a) =∞ if and only if ordx(a) = 1, meaning a 6⊆ m2
x.

(2) If N ≥ 2, then αx(mN
x ) = n

N , since the same is true for a hypersurface
having multiplicity N at x and whose projectivized tangent cone at x is smooth;
see [17, (4.1.5)] (cf. also [13, Theorem E(3)]).

(3) In general, if ordx(a) = N ≥ 2, then αx(a) ≤ n
N . This follows using

[13, Theorem E(3)].

As in the case of hypersurfaces, we have:

Proposition 5.10. For every ideal a, we have

αx(a) ≥ lctx(a).

Moreover, this is an equality if lctx(a) < 1.

Proof. It is shown in [2, Proposition 2.1] that if f is a general linear
combination of generators of a, then α̃x(f) ≥ lctx(a). The argument uses [13,
Corollary D], which gives a lower bound for α̃x(f) in terms of discrepancies on
a log resolution. This implies the first assertion. Another proof follows from
Proposition 5.15 below; see Remark 5.16. The second assertion follows as in
the proof of Proposition 5.6.

Proposition 5.11. If a ⊆ b are nonzero ideals on X and x lies in the
zero-locus of b, then

αx(a) ≤ αx(b).

Proof. Let f be a general linear combination of generators of a and g a
general linear combination of generators of b, so that

αx(a) = α̃x(f) and αx(b) = α̃x(g).

Since f ∈ b, it follows from the semicontinuity property of the minimal expo-
nents for hypersurfaces that α̃x(f) ≤ α̃x(g), which gives the assertion in the
proposition.

The following series of properties of the minimal exponent of an ideal
follows without much effort from the analogous properties proved in the case
of divisors in [13, Theorem E and §6].
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Proposition 5.12. (1) For every smooth subvariety Y ⊆ X, every ideal
a on X such that a · OY 6= 0, and every x in the zero-locus of a · OY , we have

αx(a · OY ) ≤ αx(a).

(2) For every ideal a and every α > 0, the set

{x ∈ V (a) | αx(a) ≥ α}

is open in X.
(3) More generally, let f : X → T be a smooth morphism and s : T → X a
section of f . If a is a nonzero ideal on X that vanishes on s(T ) and such that
a · OXt is not zero for any fiber Xt of f over t ∈ T , then for every α > 0, the
set

{t ∈ T | αs(t)(a · OXt) ≥ α}
is open in T .
(4) If a and b are nonzero ideals vanishing at x ∈ X, then

αx(a + b) ≤ α̃x(a) + α̃x(b).

Example 5.13. We show that if a is a monomial ideal in C[x1, . . . , xn],
with ord0(a) > 1, then α0(a) = lct0(a). Recall that in this case, by a result of
Howald [4] we have lct0(a) = 1/c, where if Pa is the Newton polyhedron of a
(that is, Pa is the convex hull of u+ Rn

≥0, for the monomials xu ∈ a), we have
c = min{t > 0 | (t, . . . , t) ∈ Pa}.

Note now that if m = (x1, . . . , xn), then

0 ≤ α0(a + mN )− α0(a) ≤ n

N
.

Indeed, the first inequality follows from Proposition 5.11, while the second
follows from Proposition 5.12(4) and Example 5.9(2). We similarly have

0 ≤ lct0(a + mN )− lct0(a) ≤ n

N

(see [7, Corollary 9.5.28]). By letting N go to infinity, we see that it is enough
to show that α0(a) = lct0(a) when a is a monomial ideal defining a scheme
supported at 0 and such that ord0(a) > 1. If f is a general linear combination
of monomial generators of a, then the hypersurface defined by f has an isolated
singular point at 0. Moreover, it is nondegenerate with respect to its Newton
polyhedron, in which case it is well-known that α̃0(f) = 1/c (see [19], [3], or
[15]).

We can define a global version of the generic minimal exponent, as follows.
For any proper nonzero ideal a on X, we put

(5.14) α(a) := min
x∈V (a)

αx(a).
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Note that since we work over C, a countable intersection of Zariski open subsets
of an irreducible algebraic variety has nonempty intersection. Using this, it
follows easily from Proposition 5.12(2) that the set {αx(a) | x ∈ V (a)} is a
finite set. In particular, the minimum in (5.14) makes sense and the set of
those x ∈ V (a) for which the minimum is achieved is a closed subset of V (a).
We also see that for every x ∈ V (a), we have

αx(a) = max
U3x

α(a · OU ),

where the maximum is over the open neighborhoods of x.

Another useful description of αx(a) in terms of minimal exponents of
hypersurfaces is facilitated by Theorem 2.5. Suppose that a is generated by
f1, . . . , fr ∈ OX(X) and consider in X × Ar the hypersurface given by the
function g =

∑r
i=1 yifi, where y1, . . . , yr are the coordinates on Ar.

Proposition 5.15. Given x ∈ V (a), for λ = (λ1, . . . , λr) ∈ Ar general,
we have

αx(a) = α̃(x,λ)(g).

Proof. If λ is such that fλ =
∑r

i=1 λifi is nonzero, then

α̃(x,λ)(g) ≥ α̃x(fλ).

This follows from the behavior of minimal exponents under restriction (in this
case to a fiber of the projection X×Ar → Ar) described in [13, Theorem E(1)].
We thus deduce from the definition of αx(a) that for λ general, we have

α̃(x,λ)(g) ≥ αx(a).

We next show that the opposite inequality holds for every λ ∈ Ar. If
ord(x,λ)(g) = 1, then ordx(a) = 1, and the inequality holds since both sides are
infinite. Suppose now that ord(x,λ)(g) ≥ 2 and consider first the case when a
is radical in codimension 1 in a neighborhood of x (in which case the divisor
defined by g is reduced in a neighborhood of {x} ×Ar). Let’s write

α̃(x,λ)(g) = p+ α,

with p an integer and α ∈ (0, 1]. We deduce from the description of the minimal
exponent of g in terms of Hodge ideals that

Ip(g
α)(x,λ) = OX×Ar,(x,λ).

By Proposition 5.6, it is enough to show that Ip(a
α) is trivial at x as well.

However, by Theorem 2.5(ii) we know that

Ip(a
α) = Coeff

(
Ip(g

α)
)
,
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so the result follows from the general (and easy to check) fact that if I ⊂
OX [y1, . . . , yr] is an ideal which is not contained in the maximal ideal m(x,λ),
then Coeff(I) is not contained in mx.

If a is not radical in codimension 1 around x, then the divisor defined by
g is not reduced around (x, λ) and we have

αx(a) = lctx(a) and α̃(x,λ)(g) = lct(x,λ)(g)

by Proposition 5.6. We then argue as above, with p = 0, using Remark 5.8.

Remark 5.16. The above result leads to another proof of Proposition 5.10.
Indeed, after possibly restricting to a neighborhood of x, we may assume that
lctx(a) = lct(a). Now by [8, Corollary 1.2] we know that α̃(g) = lct(a). On the
other hand, Proposition 5.15 says that for λ ∈ Ar general, we have

αx(a) = α̃(x,λ)(g) ≥ α̃(g).

See also Theorem 5.17 below and its proof for more general statements.

Recall that for any nonzero ideal a in X, a Bernstein-Sato polynomial
ba(s) was defined in [1], extending the classical invariant associated to a hy-
persurface. For every x ∈ V (a), we have a local version ba,x(s). By Theorem
2 in loc. cit. the greatest root of ba,x(s) is again −lctx(a), as in the case of
hypersurfaces. We conclude by showing that the generic minimal exponent
continues to be a root as well.

Theorem 5.17. For every x ∈ V (a), the negative of αx(a) is a root of
the Bernstein-Sato polynomial ba,x(s).

Proof. This is now a simple consequence of results obtained above and in
[8]. Using the notation and statement of Proposition 5.15, we have

αx(a) = α̃(x,λ)(g),

where λ = (λ1, . . . , λr) ∈ Ar is general. By the definition of the minimal
exponent of g, it follows that −αx(a) is the greatest root of bg,(x,λ)(s)/(s+ 1).
By replacing X with an open neighborhood of x we may assume that ba,x(s) =
ba(s). On the other hand, it is shown in [8, Theorem 1.1] that

ba(s) = bg(s)/(s+ 1).

Since bg,(x,λ)(s) divides bg(s) (see e.g. the discussion at the beginning of [13,
§6]), we obtain the desired result.

We recall that in the case of hypersurfaces, there exists also a close re-
lationship between minimal exponents and the V -filtration (see e.g. [18], and
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also [13]). On the other hand, for subschemes of higher codimension, as in Re-
mark 5.5 a connection with (the several functions version of) the V -filtration
seems to be more suitable in the alternative context of the Hodge filtration on
local cohomology.

Acknowledgments. We thank the anonymous referee for several comments and sug-
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354 M. Mustaţă and M. Popa 28

[17] M. Saito, On the Hodge filtration of Hodge modules. Mosc. Math. J. 9 (2009), 1,
161–191.

[18] M. Saito, Hodge ideals and microlocal V -filtration. preprint arXiv:1612.08667 (2016).
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