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A STEADY EULER FLOW ON THE 3-SPHERE AND ITS
ASSOCIATED FADDEEV-SKYRME SOLUTION

R. SLOBODEANU

We present a steady Euler flow on the round 3-sphere S3 whose velocity vector
field has the remarkable property of having two independent first integrals, being
tangent to the fibres of an almost submersion onto the 2-sphere. This submersion
turns out to be a critical point for the quartic Faddeev-Skyrme model with a
standard potential.

AMS 2010 Subject Classification: 53C25, 58J50, 35Q31, 74G65.

Key words: steady Euler fluid, 3-sphere, linking number, Hopf invariant, Faddeev-
Skyrme sigma model.

1. INTRODUCTION

The now obsolete idea of vortex atoms (stable knotted thin vortex tubes
in ether) proposed by Lord Kelvin in 1867 became later the main motivation for
developping the knot theory and recently have registered a resurgence in math-
ematical physics via some related ideas. Knotted and linked stream/vortex
lines in fluid dynamics (or magnetic field lines in magnetohydrodynamics) and
stable knot solitons in field theory (and also in condensed matter, chiral ferro-
magnetic liquid crystal colloids, and other areas [32]) are the subject of many
impactful and mathematically deep recent studies. In the first case we work
with (steady) vector field solutions in R3 for Euler’s fluid equations, while in
the latter, with mapping solutions (from R3 into the 2-sphere S2) for the Euler-
Lagrange equations of Faddeev’s reduction [12] of the Skyrme quartic energy
functional. It turns out that [29] each stationary solution ϕ : M → S2 of the
Faddeev-Skyrme model gives rise to a steady (forced) Euler fluid with vector
field V belonging to Ker (dϕ), and conversely, each steady Euler vector field
solution can be integrated locally to a Faddeev-Skyrme solution (here M may
be a different smooth 3-manifold than R3). To mark the special case where
the converse holds globally we coined the name S-integrable for the respective
steady Euler field. This correspondence, that has also a relativistic version [28],
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suggests that problems related to (the knotted solitons in) the Faddeev-Skyrme
model are more constrained than their analogues for Euler flows. Indeed, while
for steady Euler equations many important results are known (as the existence
of Beltrami type solutions with periodic stream/vortex lines diffeomorphic to
any given link [8, 10], or with thin vortex tubes of any link and knot type
[9], and the existence of compactly supported solutions in R3 [15], to cite only
few recent milestones), for Faddeev-Skyrme equations the existence results are
sparse [19] and most investigations relies on numerics.

In this paper we supplement the picture in [29] with a new example of S-
integrable steady Euler flow on the round 3-sphere S3 all of whose flow-lines are
closed and linked twice, and that corresponds to a Faddeev-Skyrme solution
(for the energy comprising only the quartic term and a standard potential)
of Hopf invariant 2. In the next section we fix the set-up giving the main
definitions and the precise formulation of the questions of interest. In section
§3 we present our solution and its main properties, and in the Appendix we
give some computational details and explain some conventions.

2. S-INTEGRABLE EULER FIELDS AND FADDEEV-SKYRME
SOLUTIONS

In this section we recall some definitions and facts about Euler’s fluid
equations and about Faddeev-Skyrme σ-model that will be useful in the se-
quel and we make precise the questions of interest. For more informations on
topological fluid dynamics see the monography [3] and the introductory paper
[25].

Definition 1. A steady Euler field on a Riemannian 3-manifold (M, g)
is a tangent vector field V on M which is a solution of the stationary Euler
equations

(1) ∇V V = −grad p, div V = 0

for some pressure function p on M .

When M is (a domain of) the euclidean space R3, the couple (V, p) models
an incompressible inviscid fluid (of constant density) in equilibrium. The asso-
ciated flow will be called steady Euler (fluid) flow. An equivalent reformulation
of (1) is

(2) V × curlV = grad b, div V = 0,

with b = p + 1
2 |V |

2 the Bernoulli function and curlV = (∗dV [)] the vorticity
field, where ∗ is the Hodge star operator on (M, g). Notice that P is conserved
along the flow: V (P ) = 0, i.e. when not constant, P is a first integral of V .



3 Steady Euler flows on S3 & Faddeev-Skyrme solutions 357

From (2) we see that a divergence-free vector aligned with its own curl
is a particular type of steady Euler field (with constant b). This solutions are
usually called Beltrami fields (aka force-free fields in MHD). When the propor-
tionality factor is constant we emphasize it by calling them strong Beltrami
fields (or simply curl-eigenvectors).

A very special class of solutions is obtained when the vector field V ∈
Γ(TM) is completely integrable (i.e. it has 2 independent first integrals; see
e.g. [22, 24] for some results about this type of fields in the Euclidean space).
In [29] we introduced the related notion of S-integrability as follows: a vector
field V on a 3-manifold M is S-integrable if it exists a smooth (at least C2)
map ϕ : M → N to some surface N , such that Vx ∈ ker(dϕx) at any regular
point x of ϕ and V

∣∣
Cϕ

= 0, where Cϕ = {x ∈ M : rank(dϕx) < 2} is the

critical set of ϕ. When N is precisely the round 2-sphere we’ll emphasize it by
employing the terminology S-integrable.

The dynamical features of S-integrable steady Euler fields V follow from
the fact the their generic orbits (or stream lines) coincide to the regular fibres of
the associated map ϕ (here by regular fibre we mean the preimage of a regular
point of ϕ). If ϕ is smooth, by the regular level set theorem, any regular fibre
is a 1-dimensional regular submanifold, so in particular a generic orbit of the
vector field V cannot be quasi-periodic (dense in a torus). Using the constant-
rank level set theorem on a sufficiently small neighbourhood of a regular point,
one can also exclude the possibility of having quasi-periodic orbits of V inside
the preimage of a critical value of ϕ. Thus, in the case of S-integrable flows,
we cannot encounter this type of dynamics with dense orbits (as it is the case
for e.g. the flow in [15]). If moreover M is closed, then all generic orbits of
V are periodic (closed curves) whose linking number can be related [4, 3] to
the Hopf homotopy invariant ∗ Q(ϕ) ∈ Z of the associated map ϕ : M → S2;
in addition, by Arnold’s structure theorem [3], the orbits of V lie on invariant
2-tori (which are the regular levels sets of the Bernoulli function b : M → R,
assumed to be non-constant).

As they are extremely non-generic, S-integrable steady Euler flows are
undoubtedly hard to find. In this note we start with a given almost submersion
and then we check whether a suitable vector field tangent to the fibres is a
steady Euler field, that will be S-integrable by construction.

It is known [20, Prop.3] that, given a smooth map ϕ : (M3, g)→ (N2, h)
between Riemannian manifolds (exponents indicate the dimension), the vector
field V = λ1λ2U (locally defined around a regular point of ϕ) is divergence-free,

∗This invariant can be defined if H2(M,Z) = 0 or if we restrict to algebraically inessential
maps.
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where λ2i are the eigenvalues of ϕ∗h w.r.t. g and U is a unit vector spanning
ker(dϕ). Alternatively (see [29]) if ω is the area 2-form induced by h on N ,
then V = (∗ϕ∗ω)] is a divergence-free vector field (notice that this statement
is immediate when H2(M) = 0 since the closed 2-form ϕ∗ω is then exact, so
that V is the curl of some vector field on M †). Enjoying the divergenceless
property by construction, such a vector field V will be a steady (S-integrable)
Euler field if moreover the first equation in (2) is satisfied. When H1(M) = 0
it is then necessary and sufficient to check the following identity:

(3) [V, curlV ] = 0.

To see this, simply recall the identity: curl(A × B) = (divB)A − (divA)B −
[A,B].

According to the main result [29], if this programme succeeds, then ϕ is
a σ2-critical map with potential P (given by the Bernoulli function), that is a
solution for the Faddeev-Skyrme model. Let us recall the following

Definition 2. A smooth (at least C2) map ϕ : M → CP 1 ∼= S2(12) defined
on a Riemannian 3-manifold (M, g) with volume element υg is called a (clas-
sical) Faddeev-Skyrme solution if it is a critical point of the following energy:

(4) E(ϕ) =
1

2

∫
M
{α2|dϕ|2 + α4|ϕ∗ω|2 + 2α0P (ϕ)}υg,

with α0, α2 and α4 non-negative real parameters and P a non-negative real
function on S2. If α2 = 0 and α0 = α4 = 1, we also called [29] such a map a
σ2-critical map with potential P .

Although the original model is defined for M = R3 and with α0 = 0
[11], the interest was spread to the case of compact manifolds M [2, 5, 16,
30, 34] and to the case with potential (α0 6= 0) [2, 13, 18, 26]. In the case of
M = R3 (where we impose lim|x|→∞ ϕ(x) = (0, 0, 1)) and of M = S3, since
π3(S2) ∼= Z, the homotopy classes of maps ϕ : M → S2 are indexed by the
Hopf invariant Q(ϕ) = 1

(
∫
S2 ω)

2

∫
S3 α ∧ ϕ

∗ω, where ω is an area form on the

codomain and α is any 1-form satisfying dα = ϕ∗ω. The energy (4) admits
a lower bound in terms of some power of Q(ϕ), as for instance (12) (see [16]
for various lower bounds depending on which of the parameters αi vanishes).
Therefore the main problem is to find stable finite energy solutions in each
homotopy class, that will represent topological solitons with knotted position
curve ϕ−1(0, 0,−1). These solutions are also known as hopfions [32]. To spot

†With the terminology in [6], if N = S2, then ϕ is a spherical Clebsch map representing
V . This method of constructing divergenceless fields was noticed also in [33].
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the place of hopfions in the broader context of topological solitons in classical
field theory, see [21].

In view of the “duality” with steady Euler flows when α2 = 0 (or with
forced Euler flows when α2 6= 0), the question of finding Faddeev-Skyrme
solutions on S3 with given Hopf invariant k can be reformulated as:

Question. Does there exist for each k ∈ Z an S-integrable steady Euler
solution on S3 whose generic stream lines are (all closed and) linked k times?

This has been answered in the afirmative in [29] if one allows the associ-
ated submersion ϕ to be only of class C1 (except for k = 1, 2 where smoothness
is achieved) and if the metric on S3 can be chosen freely (depending on k). All
associated steady Euler flows belongs to a class of solutions discovered in [17]
that will be called KKPS solutions in the sequel.

In this note we’ll impose that the metric is the standard one and that ϕ
is smooth. Under this requirements, the only known solutions are those in [29,
Example 2] corresponding linking numbers that are perfect squares (k2). In
this note we answer the above question for k = 2 (actually our new solution is
even analytic).

We mention also a related stronger version of the above question (corre-
sponding to Faddeev-Skyrme solutions with given Hopf invariant, when α0 =
α2 = 0):

Question – B. Does there exist for each k ∈ Z an S-integrable (strong)
Beltrami field on the round unit 3-sphere whose generic stream lines are (all
closed and) linked k times?

For this question the only known example with smooth associated map ϕ
is the (anti-) Hopf field (k = ±1). Beside this classic example, S-integrable (in
a weak sense) non-vanishing Beltrami fields with non-constant proportionality
factor and arbitrary linking number can be deduced from the Faddeev-Skyrme
solution in [5, 27], but the associated map ϕ has two circles of singular points
(where dϕ fails to be continuous). See also [23, §6.1] for energy minimizing
Beltrami fields (corresponding to hopfions) with arbitrary k, where the metric
on S3 was suitably chosen (depending on k) and the codomain N is allowed to
be a 2-orbifold with two conical singularities (the weighted projective space).

Notice that in the context of Question – B the associated map ϕ must
be an almost submersion, i.e. a submersion on a dense set, since the zero
set of a Beltrami field is nowhere dense (as Beltrami fields enjoy the unique
continuation property) and it must coincide with Cϕ.
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3. A NEW SOLUTION

To illustrate the idea in the previous section, let as consider as test “sub-
mersion” the Hopf map
(5)
π : S3 → S2, π(x1, y1, x2, y2) = (2(x1x2+y1y2), 2(x1y2−x2y1), x21+y21−x22−y22)

composed with the quadratic map of topological degree 2 (cf. [35])

(6) ψ : S3 → S3, ψ(x1, y1, x2, y2) = (x21 − y21 − x22 − y22, 2x1y1, 2x1x2, 2x1y2).
It is well-known that ϕ = π ◦ ψ is then a map of Hopf invariant Q(ϕ) =
deg(ψ)Q(π) = 2.

We are ready now to formulate our main result:

Proposition 1. Let ϕ = π ◦ ψ : S3 → S2(12) be the mapping defined
above, and consider the spheres endowed with the usual round metrics (with ω
the associated area 2-form on the codomain). Then

(i) the vector field V = (∗ϕ∗ω)] is an S-integrable steady Euler flow
on S3 with the associated Bernoulli function: b = 8x21(x

2
2 + y22) and pressure

p = −8x41. Its explicit expression with respect to the standard orthonormal
(global) frame (15) on S3 is:

(7) V = 4x1(x1 ξ − y2X1 + x2X2);

(ii) the almost subersion ϕ is a smooth critical point of Hopf invariant
Q(ϕ) = 2 for the quartic Faddeev-Skyrme energy

(8) E(ϕ) =
1

2

∫
S3
{|ϕ∗ω|2 + 2(1− ϕ3)}υg.

with the potential P (ϕ) = 1− ϕ3, where ϕ3 is the 3rd component of ϕ seen as
a map to R3.

Proof. (i) First we have to construct the vector field V = (∗ϕ∗ω)] then to
verify by direct computation that (3) holds true. Henceforth the pressure and
Bernoulli function are found by integration (we have used Mathematica [1], but
all computations may be also done by hand. The Mathematica worksheet with
fully detailed proofs is available from the author). In the computation of V it
is useful to remark that π∗ω = 1

2dη, where η is the contact form dual to the

Reeb field ξ on S3 given explicitly in (15). Therefore V = 1
2(∗dϕ∗η)] = 1

2 curl ξ̂,

with ξ̂ := (ϕ∗η)], and for the computation of curl ξ̂ one can use [23, (2.6)]. We
can check that Vx ∈ ker(dϕx) at any regular point x, so that V is S-integrable
(see also item (v) below).

(ii) We verify by direct computation that b = 1 − ϕ3, then apply [29,
Proposition 2].
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In the rest of this section we list some properties of the steady Euler flow
V of the Faddeev-Skyrme solution ϕ.

1. As the Hopf map itself, the mapping ϕ defined above is a “happy acci-
dent”: they are the only Faddeev-Skyrme solutions (critical points of the
energy in (4) with α2 = 0 and α0 = α4 = 1, for any choice of potential)
in a series of polynomial mappings that can be constructed in each ho-
motopy class using the same recipe ϕk = π ◦ψk, where the degree k map
ψk : S3 → S3 is defined recurently as (see [35]):

ψ4k = −ψ2 + 2〈ψ2, ψ2k+1〉ψ2k+1

ψ4k+1 = −ψ1 + 2〈ψ1, ψ2k+1〉ψ2k+1

ψ4k+2 = −ψ2 + 2〈ψ2, ψ2k+2〉ψ2k+2

ψ4k+3 = −ψ1 + 2〈ψ1, ψ2k+2〉ψ2k+2

(9)

with ψ1 := IdS3 , the identity map, and ψ2 := ψ given by Equation (6).
If we see S3 as the space of unit quaternions, ψk takes the compact
form ψk(q) = qk (but the expanded form (9) is necessary in order to be
able to apply [35, Lemma 5] and to obtain deg(ψk) = k). In spherical
coordinates (see Appendix) the mappings ψk all have the same nice simple
form reminiscent of the hedgehog map (13)

(10) ψk : (cos s, sin s(cos t, sin t eiχ)) 7→ (cos ks, sin ks(cos t, sin t eiχ)).

The above statement of unicity can be simply proved by computing the
vector field Vk = (∗ϕ∗kω)] and then by direct verification that (3) is
satisfied only for k = 1, 2. Actually one can prove a stronger fact: ϕ1,2

are the only solutions (for α2 = 0 and any choice of potential) within the
ansatz π ◦ ψβ with

ψβ(cos s, sin s(cos t, sin t eiχ)) = (cosβ(s), sinβ(s)(cos t, sin t eiχ)).

The sequence ϕk is of course only one of the possible ways of browsing the
homotopy classes with polynomial maps. It would be interesting to have a
systematic approach able to pinpoint all polynomial Faddeev-Skyrme so-
lutions (for some potential), and their corresponding S-integrable steady
Euler flows.

2. The smooth Faddeev-Skyrme solution ϕ (of the variational problem as-
sociated to (8)) is a mapping which does not belong to the ansatzes
considered usually in the literature as initial configurations for the (nu-
merical) energy minimization schemes. For instance ϕ does not belong
to the standard ansatz (known to geometers as α-Hopf construction [7]),
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since in Hopf coordinates (see Appendix) it can be described as following
(α, β can be explicitly given in terms of trigonometric functions):

(11) (cos s eiφ1 , sin s eiφ2) 7→
(

cosα(s, φ1), sinα(s, φ1)e
i(β(s,φ1)+φ2)

)
.

Neither does it belong to the rational map ansatz [31] since composing
the stereographic projection (from South Pole) with ϕ yields the following
complex function:

(z1, z2) 7→
ϕ1 + iϕ2

1 + ϕ3
=

4Re(z1)z2(z
2
1 − |z2|2)

1 + |z1|4 + |z2|4 − 2|z2|2(z21 + 2Re(z1) z1)

For comparison, the complex function associated to Hopf map reads
(z1, z2) 7→ π1+iπ2

1+π3
= z2

z1
and represents the simplest member of the ra-

tional map ansatz.

3. The topological lower bound in [16] for the Faddeev-Skyrme energy (4)
with α2 = 0 and α0 = α4 = 1 (quartic energy + potential) of mappings
ϕ : R3 → S2 holds true also for mappings S3 → S2(12) and reads:

(12) E(ϕ) ≥ 4

(27π)1/4

(∫
S2( 1

2
)
Ω

)3/2

|Q(ϕ)|
3
4 ,

where Ω = (2P (ϕ))1/6ω, with ω the standard area form on S2(12). To
see this we simply have to remark that the first part of the proof in
[16, §4] does not depend on the domain of definition of ϕ, then, at the
point where one uses the L3/2(R3)-energy estimate from [14], one should
remark that this energy is conformally invariant in dimension 3 so it also
holds on S3.

In our case E(ϕ) = 46.058, much higher than the right hand term which
is approximately 13.852. At the same time, it is not clear whether (12)
can be attained by a smooth map.

Notice that (12) implies a lower bound of the quantity
∫
{|V |2 + 2b}υg

defined for a S-integrable steady Euler field (and its Bernoulli function),
in terms of helicity.

4. Transporting the Faddeev-Skyrme solution ϕ (or the steady Euler field
V ) to R3 fails if we consider the inverse stereographic projection σ−1 or
the “hedgehog map” H : R3 → S3 defined as

r(cos θ, sin θeiφ) 7→
(

cos f(r), sin f(r)(cos θ, sin θeiφ)
)
,

f(0) = π, f(∞) = 0.
(13)
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By this, we mean that the composed map ϕ◦H (or ϕ◦σ−1) is no longer a
Faddeev-Skyrme solution and the corresponding V on R3 is not a steady
Euler field (but it is, by construction, a completely integrable divergence-
free non-axisymetric vector field!). It would be a major achievement to
find a suitable map R3 → S3 that pulls a Faddeev-Skyrme solution on S3
back to a solution defined on the Euclidean space. At this point mappings
like ϕ ◦ H or ϕ ◦ σ−1 may be useful only as initial configurations for
numerical energy minimization.

5. The critical set Cϕ of ϕ is equal to the equatorial 2-sphere obtained as
the intersection of S3 with the hyperplane x1 = 0. In Hopf coordinates

we can describe it as Cϕ = {(cos s ei
(2m+1)π

2 , sin s eiφ2) : s ∈ [0, π/2], φ2 ∈
[0, 2π),m = 0, 1}. In particular ϕ is a submersion on a dense set, i.e.
ϕ : S3 \Cϕ → S2(12) is a submersion. As expected, since |ϕ∗ω| = |V |, the
critical set Cϕ coincides to the zeros of the steady Euler field V in (7).

The only critical value of ϕ is the “North Pole” (0, 0, 1) ∈ S2. Its preimage
contains also regular points on a circle that intersect the critical set in
two points (so the two semicircles represent heteroclinic orbits for V ):
ϕ−1(0, 0, 1) = Cϕ ∪ {(eiφ1 , 0) : φ1 ∈ [0, 2π)}. In particular, at any point
Cϕ the Faddeev-Skyrme energy density |ϕ∗ω|2 + 2(1− ϕ3) is zero.

The entire “Hopf link”

π−1(0, 0,±1) = {(eiφ1 , 0) : φ1 ∈ [0, 2π)} ∪ {(0, eiφ2) : φ2 ∈ [0, 2π)}

is sent to the North Pole. Notice that V vanishes along the second circle
of the Hopf link. The analogue of the Hopf link in our case (ignoring
Cϕ) is Γ1 ∪ Γ2 with Γ1 = ϕ−1(0, 0, 1) \ Cϕ = {(eiφ1 , 0) : φ1 ∈ [0, 2π)}
and Γ2 = ϕ−1(0, 0,−1) = {( 1√

2
eimπ, 1√

2
eiφ2) : φ2 ∈ [0, 2π),m = 0, 1} and

we can “see” that Γ2 intersects twice the half 2-sphere bounded by Γ1

so that their linking number is 2 (recall that in our context the Hopf
invariant of ϕ equals the linking number of any two regular fibres, which
are also generic orbits of the Euler field V ).

6. The critical set of the Bernoulli function b is given by Cb = Cϕ∪{(eiφ1 , 0) :
φ1 ∈ [0, 2π)} ∪ {( 1√

2
eimπ, 1√

2
eiφ2) : φ2 ∈ [0, 2π),m = 0, 1} and its criti-

cal values are 0 and 2. Accordingly, the regular Bernoulli level surfaces
(b−1(ς), with ς 6= 0, 2) to which the dynamic of V is confined are (dif-
feomorphic) 2-tori [3, Theorem 1.10]. On each torus the motion along
integral curves of V is periodic.

While in the case of KKPS solutions [17] the regular level sets of the
Bernoulli function form a parallel family of 2-tori of constant mean cur-
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vature in S3 (since b is isoparametric, as V = F (cos2 s)∂φ1 +G(cos2 s)∂φ2
and b = b(cos2 s)), for our solution (7) this does not hold any more.

Besides the Bernoulli function b = 1−ϕ3, another (independent) first in-
tegral for V is ϕ1 (or ϕ2) since V ∈ ker(dϕ) so V (ϕ1) = d(ı◦ϕ)(V )(w1) =
dϕ(V )(w1 ◦ ı) = 0, where ı is the inclusion map and wi the coordinates
functions on R3.

Notice also that at the zeros of V (equilibrium points) both b and p vanish.

7. There is no isometry relating our steady Euler flow to a KKPS type flow,
since V (|V |) 6= 0 almost everywhere for our Euler field, while for any
KKPS field we have V (|V |) = 0 and this is a property conserved by
isometries.

8. Recall [4, 3] that “helicity bounds energy” for any exact divergence-free
vector field:

(14)

∫
S3
|V |2υg ≥ 2H(V ), H(V ) :=

(
curl−1 V, V

)
L2 .

In our setup, the helicity of V is related to the Hopf invariant of ϕ
through the simple relation H(V ) = π2Q(ϕ). For the steady Euler field
(7) the L2 energy equals 20

3 π
2, so is much higher than its lower bound

2H(V ) = 4π2 which is invariant in the orbit of V through the action of
volume preserving diffeomorphisms.

4. APPENDIX

Cartesian coordinates. The sphere S3 is seen as the set of points
(z1, z2) ∈ C2 with |z1|2 + |z2|2 = 1. Denoting zj = xj + iyj , at each point
(x1, y1, x2, y2) ∈ S3 we have the orthonormal frame (of Killing vector fields
that are moreover eigenvectors of curl for the first positive eigenvalue µ1 = 2):

ξ = −y1∂x1 + x1∂y1 − y2∂x2 + x2∂y2 ,

X1 = −x2∂x1 + y2∂y1 + x1∂x2 − y1∂y2 ,
X2 = −y2∂x1 − x2∂y1 + y1∂x2 + x1∂y2 .

(15)

Hopf coordinates. (x1, y1, x2, y2) = (cos s eiφ1 , sin s eiφ2), s ∈ [0, π/2],
φi ∈ [0, 2π). The induced metric reads g = ds2 + cos2 s dφ21 + sin2 s dφ22 and
the standard orthonormal frame above becomes

ξ = ∂φ1 + ∂φ2 ,

X1 = cos(φ1 + φ2)∂s + sin(φ1 + φ2)(tan s ∂φ1 − cot s ∂φ2),

X2 = sin(φ1 + φ2)∂s − cos(φ1 + φ2)(tan s ∂φ1 − cot s ∂φ2),

(16)
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In these coordinates the Hopf map (5) reads

π(cos s eiφ1 , sin s eiφ2) = (sin 2s ei(−φ1+φ2), cos 2s)

and the contact form η = ξ[ = cos2 sdφ1 + sin2 sdφ2. On S2(12) the standard
area form is ω = 1

4 sinudu ∧ dv in the chart (sinueiv, cosu) around North
Pole. Then we can directly check π∗ω = 1

2dη so the Hopf invariant is Q(π) =
1

area(S2( 1
2
))2

∫
S3

1
4η ∧ dη = 1

π2
vol(S3)

2 = 1, since the orientation on S3 is given by

the (metric) volume element υg = 1
2η ∧ dη (so that ∗dη = 2η).

The solution we found reads:

(17) V = sin 2s sin 2φ1 ∂s + 4 cos 2s cos2 φ1 ∂φ1 + 8 cos2 s cos2 φ1 ∂φ2

with the associated Bernoulli function: b = 2 sin2 2s cos2 φ1 and pressure p =
−8 cos4 s cos4 φ1.

Spherical coordinates. (x1, y1, x2, y2) = (cos s, sin s(cos t, sin t eiχ)),
s, t ∈ [0, π], χ ∈ [0, 2π). The above standard orthonormal frame becomes

ξ = cos t∂s − cot s sin t∂t + ∂χ,

X1 = sin t cosχ∂s + (cot s cos t cosχ− sinχ)∂t − (cot t cosχ+ cot s csc t sinχ)∂χ,

X2 = sin t sinχ∂s + (cot s cos t sinχ+ cosχ)∂t − (cot t sinχ− cot s csc t cosχ)∂χ.

(18)
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