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The paper undertakes a very detailed, very visual, and quite elementary study
of the Heron triangles of fixed area and perimeter. It circumvents the traditional
approach to Heron triangles based on elliptic curves. Its key focus is on the geom-
etry, calculus, and algebra of the associated area curve. The main result presents
a simple sufficient condition for the existence of infinitely many Heron triangles
with constant area and perimeter. An application to Diophantine equations is
also given.
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The last three decades have seen some significant research regarding the
number-theoretical properties of the Heron triangles — the Euclidean triangles
with integer or rational sides and area [3, 4, 7, 11, 15, 16]. All of them point out
to the deep connections between such elementary and simple to state geometric
problems and cutting edge research in the analytic number theory and the
algebraic geometry of elliptic curves and abelian varieties. As a bi-product,
they also produce interesting information about the solutions of some very
difficult Diophantine equations.

Of note is the problem of fully characterizing the congruent numbers,
that is of the integers which can be realized as the areas of right triangles
with rational sides [1, 15]. This problem is directly related to the Birch and
Swinnerton-Dyer conjecture (one of the six Clay Institute million-dollar-prized
Millennium Problems [2]), about a potential zero of a Riemann-Zeta-like func-
tion associated to rational elliptic curves.

To reach their respective conclusions the contributions cited above rely
almost exclusively on results about the rational elliptic curves, such as the
Mordell-Weil or Mazur theorems [14]. In the present work we, instead, insist
more on the geometry, calculus, and algebra of the real area curve EA

• (R) (see
below for the definitions) hosting the Heron triangles, to draw our conclusions,
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cf. Theorems 2, 3, and Corollary. Besides being in line with the Manin pro-
gram [9], this also adds to the interesting approach to Heron triangle problems
started by [12], an inspiration for our work.

Lastly, we want to mention that our approach is first and foremost geo-
metric and visual, in the sense that each statement is motivated by a supporting
picture. Of course, we also provide analytic proofs or hints for such proofs for
our results, sometimes even more than one. Therefore, by and large, our work
is accessible to many.

Fix now A, a positive real number, and consider Euclidean triangles with
real sides (a, b, c), 0 < a ≤ b ≤ c, a+ b > c, of area A. By Heron’s formula for
the area, we have

(1) s(s− a)(s− b)(s− c) = A2, where s :=
a+ b+ c

2
is the semi-perimeter.

Since this study involves only (rational) triangles with constant perimeter,
from the very beginning we will scale the sides of the triangles such that the

semi-perimeter is equal to 1, i.e.,
a+ b+ c

2
= 1, or c = 2− a− b.

Consequently, (1) becomes

(1− a)(1− b)(a+ b− 1) = A2, for reals (a, b), 0 < a ≤ b,
a+ 2b ≤ 2, a+ b > 1.

(2)

The inequalities in (2) describe the moduli space M of all triangles of semi-

perimeter 1 [8, 13], a plane triangular region with vertices P (0, 1), Q

(
1

2
,
1

2

)
,

and R

(
2

3
,
2

3

)
, cf. Figure 1. Let us stress that to each real triangle with

sides (a, b, c) ordered increasingly and having semi-perimeter 1 corresponds an

unique point (a, b) in the moduli space M. Also, 0 < a ≤ 2

3
and

1

2
< b < 1.

To fully explore the configuration of points (a, b) given by (2) for a fixed
A, we define, cf. Figure 2 (see also Theorem 1), the companion real affine and
projective curves EA

aff(R) and EA
proj(R) by

(3) EA
aff(R) := {(x, y) ∈ R2|(x− 1)(y − 1)(x+ y − 1) = A2},

respectively

(4) EA
proj(R) := {(x : y : z) ∈ RP2|(x− z)(y − z)(x+ y − z) = A2z3}.

In (4), by RP2 we denote the real projective plane of all the lines through
the origin in R3, i.e.,

(
R3 \ {(0, 0, 0)}

) /
∼, where (x, y, z)∼(tx, ty, tz), (x, y, z) ∈

R3 \{(0, 0, 0)}, t ∈ R\{0}. As it is customary, the equivalence class of (x, y, z)
in RP2 is denoted by (x : y : z).
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Figure 1: The triangular region PQR (shaded) as the moduli space M of all
real triangles with semi-perimeter 1, and a typical fixed area curve σ = σA.

The equation (3) and Figure 2 show that EA
aff(R) exhibits symmetry with

respect to the first bisector y = x, vertical symmetry through the line x+2y =
2, and a fortiori horizontal symmetry through the line 2x+ y = 2.

Theorem 1. a) Via the identification R2 3 (x, y) ≡ (x : y : 1) ∈ RP2,
EA

proj(R) = EA
aff(R) ∪ {O,∞,−∞}, where in RP2, O := (−1 : 1 : 0), ∞ :=

(0 : 1 : 0), and −∞ := (1 : 0 : 0).

b) EA
aff(R) ∩M is non-empty if and only if 0 < A ≤ 1

3
√

3
.

c) For 0 < A <
1

3
√

3
, EA

proj(R) is a compact Lie curve, that is a

smooth one-dimensional compact real submanifold of RP2, which is also an
abelian group for a smooth operation +, given geometrically by Euler’s chord-
and-tangent process (cf. Figure 4 ). The neutral element in this Lie group is
the point O defined at a), and opposite (additive inverse ) points are symmetric
with respect to the projective/affine line y = x. In particular, the opposite of
∞ is −∞. Moreover, EA

proj(R) is isomorphic as a Lie group to R/Z×Z/2Z.

Proof. a) Clearly, EA
proj(R) is well defined. Any point in RP2 is uniquely

representable as (x : y : 1), or (u : 1 : 0), or (1 : 0 : 0), x, y, u ∈ R. Those
of type (x : y : 1) are in EA

proj(R) if and only if (x, y) belongs to EA
aff(R). For

(u : 1 : 0) to be in EA
proj(R) we must have u(u+ 1) = 0, which yields ∞ and O.

Finally, (1 : 0 : 0) = −∞ is also in EA
proj(R).

b) Let (x, y) be a point in EA
aff(R) such that 0 < x < 1. The defining

equation (3) gives then

(5) y2 − (2− x)y + (1− x) +
A2

1− x
= 0.
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Figure 2: The real affine and projective companion curves EA
aff(R) and EA

proj(R),
associated to triangles with area A and semi-perimeter 1.

For y to exist as a real root of the quadratic equation (5) it is necessary that

(6) x3 − x2 + 4A2 ≤ 0.

The cubic function f(t) = t3− t2 +4A2, 0 ≤ t ≤ 1, admits the global minimum

value of 4

(
A2 − 1

27

)
, which is attained for t = 2/3. Since f(0) = f(1) =

4A2 > 0, for (6) to happen we must have A ≤ 1

3
√

3
.

Conversely, if 0 < A ≤ 1

3
√

3
, denoting by τA the smallest positive root of

the cubic equation t3 − t2 + 4A2 = 0 we see that
(
τA, 1−

τA
2

)
∈ EA

aff(R) ∩M.

c) We must show that EA
proj(R) is a smooth curve in a neighborhood of

each one of its points.

Points in EA
aff(R) belong to the graphs of the curves

(7) y±(x) = 1− x

2
± 1

2

√
x3 − x2 + 4A2

x− 1
,
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which are well defined on the intervals(
−∞,

1− τA−
√

(1− τA)(1+ 3τA)

2

]
∪[

τA,
1− τA+

√
(1− τA)(1+ 3τA)

2

]
∪ (1,∞),

(8)

where τA is, as in b), the smallest positive root (0 < τA ≤ 2/3) of the cubic
equation t3 − t2 + 4A2 = 0. (A little detective work shows that

1− τA ±
√

(1− τA)(1 + 3τA)

2

are the other two real roots of t3 − t2 + 4A2 = 0).
By (7) and (8), the smoothness of EA

proj(R) is guaranteed at all points

(x, y) ∈ EA
aff(R) with x 6= τA,

1− τA ±
√

(1− τA)(1 + 3τA)

2
. However, the

symmetry of EA
aff(R) with respect to the line y = x takes care of these points

too.
An even better argument is to look at EA

aff(R) as a level curve (given
by (3)), and to check the rank of the gradient of its defining function. The
gradient is

〈(y − 1)(2x+ y − 2), (x− 1)(x+ 2y − 2)〉
which clearly does not vanish at points (x, y) ∈ EA

aff(R).
For the points ∞ and O of EA

proj(R) smoothness can be checked in a

similar fashion, after transferring them in a different coordinate patch of RP2,
namely that of type (x : 1 : z), (x, z) ∈ R2. There, EA

proj(R) is given by

{(z, x) ∈ R2|(x− z)(1− z)(x+ 1− z) = A2z3},
and looks geometrically as in Figure 3. (Notice that ∞ corresponds to (0, 0)
and O to (0,−1) ).

At last, the smoothness of EA
proj(R) about the point −∞ is resolved by

its symmetry with respect to the projective line y = x, or by mirroring it in
the coordinate patch (1 : y : z) of RP2.

Since EA
proj(R) is closed in RP2 and RP2 is compact, EA

proj(R) is a compact
one-dimensional submanifold, therefore a disjoint union of topological circles.
Figures 2 ad 3 make it apparent that there are two such circles.

One of them, completely contained in EA
aff(R), is in fact an oval in R2,

that is a smooth, strictly convex closed curve. The strict convexity can be
proved rigorously by studying the concavity of the functions y± given by (7),
on the interval [

τA,
1− τA +

√
(1− τA)(1 + 3τA)

2

]
,
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Figure 3: The view of the real projective curve EA
proj(R) from the coordinate

patch (x : 1 : z) of RP2.

whose graphs make up this oval. Alternatively, one can show that the region
{(x, y) ∈ (0, 1)× (0, 1)|(x− 1)(y− 1)(x+ y− 1) ≥ A2} is strictly convex in R2.
Notice that this oval contains as a sub-arc the area curve σA, which was our
primary focus in this study.

Figures 2 and 3 show how the other three connected components of

EA
aff(R) defined by y± on the intervals

(
−∞,

1− τA −
√

(1− τA)(1 + 3τA)

2

]
and (1,∞) link up at O, ∞, and −∞ to create the second circle.

It remains to elaborate on the abelian group structure of EA
proj(R), which

visually is a result of Euler’s chord-and-tangent process: Given two points P
and Q in EA

proj(R) we want to define P +Q. The chord through P and Q, i.e.,

the projective line determined by these two points in RP2 intersects EA
proj(R)

in a unique third point, which by definition will be taken to be the opposite,
−(P + Q), of P + Q. Since the order of points is irrelevant, this operation
is commutative. In the model of EA

proj(R) given by part a) of the theorem

we have P + O = P for any P ∈ EA
proj(R) (making O the neutral element),

−P = (y : x : 1), if P = (x : y : 1) ∈ EA
proj(R), and −(∞) = −(0 : 1 : 0) =

(1 : 0 : 0) = −∞. When P = Q the chord in a limiting process becomes a
tangent, so we obtain 2P = P +P . Figure 4 shows few instances of this chord-
and-tangent process. The first exemplifies the associativity of the operation
+, the second the doubling of a point, and the third a remarkable property of
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doubling: If P (a, b), Q(a, 2−a− b) and R(2−a− b, b) are the points in EA
aff(R)

associated to the ‘sides’ (a, b, 2− a− b) of a triangle, then 2P +Q+R = O.

Figure 4: The chord-and-tangent process in EA
aff(R): (P+Q)+R = P+(Q+R),

S + S = 2S, and 2S + U + V = O.

The operation + is smooth because the operation which associates to
any two points P and Q from EA

proj(R), the third point in EA
proj(R) on the

chord/tangent through them, is manifestly so. The formal details, especially
the associativity of the operation +, are a little elaborate. They involve a
lengthly multi-case analysis. We will define carefully here only the operation
+ in EA

aff(R) proper, and the doubling of a point in EA
proj(R).

For the former, take any two points (x1, y1) and (x2, y2) in EA
aff(R), having

the property that the affine line through them is neither horizontal, nor vertical,
nor perpendicular to the first bisector y = x. If this line has equation y =
mx+ n, i.e.,

(9) m =
y2 − y1

x2 − x1
, and n =

x2y1 − x1y2

x2 − x1
,

then

(10) (x1, y1) + (x2, y2) := (x3, y3) ∈ EA
aff(R),

where

(11) y3 = 1 +
1− n
m

+
1− n
m+ 1

− x1 − x2, and x3 = my3 + n.

For the latter, define

(12) 2O = O, 2(±∞) = ∓∞,
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and for any element c in the set

{
τA,

1− τA ±
√

(1− τA)(1 + 3τA)

2

}
, τA as

before, the smallest positive root of the equation t3− t2 + 4A2 = 0, also define

(13) 2
(
c, 1− c

2

)
= −∞, and 2

(
1− c

2
, c
)

=∞.

At points (x1, y1) in EA
aff(R) other than those in (13), the tangent line to EA

aff(R)
is y = mx+ n, where

(14) m = − (1− y1)(2− 2x1 − y1)

(1− x1)(2− x1 − 2y1)
, and n = y1 −mx1,

and so we define

(15) 2(x1, y1) := (x3, y3) ∈ EA
aff(R),

similarly to (10) and (11) above, namely

(16) y3 = 1 +
1− n
m

+
1− n
m+ 1

− 2x1, and x3 = my3 + n.

The formulas (9) through (16) allow for an algebraic verification of the
doubling property 2P + Q + R = 0, alluded to before, if P , Q, and R are
associated to the sides of a triangle.

Notice that on the trace of EA
proj(R) in the coordinate patch (x : 1 :

z) of RP2, if P has coordinates (z1, x1) and Q has coordinates (z2, x2) then

S := P + Q will have coordinates

(
z3

x3
,

1

x3

)
=

1

x3
(z1, 1), where (z3, x3) are

the coordinates of R, the third point in EA
proj(R), on the chord through P and

Q. A visualization of this fact is given by Figure 5. There, S is constructed
geometrically from R in the following way: Let U be the intersection point of
the vertical line through R and the line x = 1. Let V be the intersection point
of the line through R and ∞, ∞ ≡ (0, 0), with the line x = 1. Then S is the
intersection point of the line through U and ∞, and the vertical line through
V .

The connected component of EA
proj(R) containing O, a topological circle,

is a subgroup. This is supported visually by Figure 2: No line through two
points outside the oval intersects the oval. The claim can be made rigorous via
the graph description of EA

aff(R) given by equations (7) and (8). By elementary
Lie group theory, this component is isomorphic as a Lie group to R/Z. Also,
the line through any two points of the oval intersects EA

proj(R) outside the oval.

Therefore, EA
proj(R) is Lie isomorphic to R/Z × Z/2Z. The proof of Theorem

1 is complete.

The following proposition gives a very useful (geometric and analytic)
characterization of the points of order 2, 3, 4, and 6, in EA

proj(R) and in EA
aff(R)∩
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> > 

Figure 5: The operation of addition, P + Q = R, for the trace of EA
proj(R) in

the coordinate patch (x : 1 : z) of RP2.

M. It is supported by Figure 6, where the numbers next to the points indicate
order. Knowing that EA

proj(R) ∼ R/Z× Z/2Z simplifies the task.

Proposition 1. Fix a real number 0 < A <
1

3
√

3
.

a) There are three points of order 2 in EA
proj(R). They occur where EA

aff(R)
intersects the first bisector line y = x, and so have affine coordinates (τ, τ),
with τ one of the three real roots of the cubic equation (t − 1)2(2t − 1) = A2.
Only one point belongs to EA

aff(R)∩M, namely the bottom point of EA
aff(R)∩M.

b) ±∞ are the only two points of order 3 in EA
aff(R). Therefore, none

belongs EA
aff(R) ∩M.

c) There are four points of order 4 in EA
proj(R), all in EA

aff(R) and none

in EA
aff(R) ∩M. They occur precisely where lines through the point of order 2

not on the oval are tangent to EA
aff(R). If the point of order 2 has coordinates

(σ, σ), (σ−1)2(2σ−1) = A2, σ > 1, then the four points have coordinates (the
± signs correspond )(

1

2

(
2−σ ± ω−

√
(3σ − 2) (1∓ 2ω)

)
,
1

2

(
2−σ ± ω+

√
(3σ − 2) (1∓ 2ω)

))
,(

1

2

(
2−σ ± ω+

√
(3σ − 2) (1∓ 2ω)

))
,
1

2

(
2−σ ± ω−

√
(3σ − 2) (1∓ 2ω)

)
,

where ω :=
√

(3σ − 2)(σ − 1).
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d ) There are six points of order 6 in EA
proj(R), located where the affine

lines x + 2y = 2 and 2x + y = 2 intersect EA
aff(R). The lone point of order

6 in EA
aff(R) ∩M is the top point of EA

aff(R) ∩M. The six points have affine

coordinates
{(
τ, 1− τ

2

)
,
(

1− τ

2
, τ
)}

, where τ is a root of the cubic equation

t3 − t2 + 4A2 = 0.

> > 

Figure 6: The points of order 2, 3, 4, and 6, in EA
proj(R).

Proof. It is not hard to see that for a fixed positive integer n, the number
of elements of order n in R/Z× Z/2Z ∼ EA

proj(R) equals
φ(n), if n odd,

2φ(n), if n even, n ≡ 0(mod 4),

2φ(n) + φ
(n

2

)
, if n even, n ≡ 2(mod 4),

where φ(n) is Euler’s totient function, which counts the number of positive
integers up to n and relatively prime to n.

In particular, for n = 2, 3, 4, and 6, we have, respectively, 3, 2, 4, 6 ele-
ments of those orders. Then the content of the lemma will follow from the
chord and tangent addition process in EA

proj(R), cf. Figure 6.

Specifically, in case a) the tangent line to EA
aff(R) through the indicated

points is parallel to the bisector y = −x, and so those points have order 2.
Case b) is clear, via equation (12). The elaborate formulas in case c) can be
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obtained by setting in the equations (9), (10), and (11), (x2, y2) = (σ, σ) and
requiring that (x3, y3) be equal to (y1, x1). Finally, case d) is equivalent to the
content of equation (13), via case b).

Now we turn our attention to the study of the Heron triangles. By defi-
nition, these are all the triangles with rational sides and rational area, which,
without loss of generality, can be assumed to have semi-perimeter 1. The task

is equivalent to understanding, for A ∈ Q, 0 < A <
1

3
√

3
, the set

(17) EA
aff(Q) := {(p, q) ∈ Q2|(p− 1)(q − 1)(p+ q − 1) = A2}.

For obvious reasons we want to consider O,±∞ as rational points at infinity.
Then,

(18) EA
proj(Q) := EA

aff(Q) ∪ {O,∞,−∞}

is a subgroup of EA
proj(R), since the chord-and-tangent process, equations (9)

through (16), is clearly Q-invariant. Our main goal is to find practical ways
for deciding which rational numbers A afford infinitely many Heron triangles
with area A and semi-perimeter 1. Equivalently, when is EA

aff(Q)∩M infinite?

The first crucial observation is that EA
aff(Q) ∩M is infinite if and only if

EA
aff(Q) is so. This is a consequence of the fact mentioned before that EA

aff(R)
exhibits symmetry with respect to the first bisector y = x, vertical symmetry
with respect to the line x + 2y = 2, and horizontal symmetry with respect to
the line 2x+ y = 2.

Lemma. Assume that A is a rational number, 0 < A <
1

3
√

3
. The three

cubic equations, t3 − t2 + 4A2 = 0, (t− 1)2(2t− 1) = A2, and t3 − t+ 2A = 0
admit the same number of rational roots. In other words, any one of them
possesses a rational root if and only if any other one does so.

Proof. Notice first that τ is a root of t3− t2 +4A2 = 0 if and only if 1− τ

2
is a root of (t − 1)2(2t − 1) = A2. If τ is a rational root of t3 − t2 + 4A2 = 0

then 1 − τ =

(
2A

τ

)2

, and so
√

1− τ =
2A

|τ |
is a rational number. Set now

α :=
√

1− τ ∈ Q. Then, τ = 1 − α2. If τ > 0, then α =
2A

1− α2
shows that

α is a rational root of t3 − t + 2A = 0. If τ < 0, then α =
2A

α2 − 1
, and so

(−α) is a rational root of t3− t+ 2A = 0. Conversely, if α is a rational root of
t3 − t+ 2A = 0 then τ := 1− α2 is a rational root of t3 − t2 + 4A2 = 0.
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Theorem 2. Assume that 0 < A <
1

3
√

3
is a rational number such that

none of the three real roots of the cubic equation t3 − t+ 2A = 0 is a rational
number. Then EA

aff(Q) ∩M is either empty or infinite. Equivalently, there are
infinitely many Heron triangles with area A and semi-perimeter 1 if and only
if there is at least one of them.

Notice that the theorem gives a practical way of testing whether a given

A works. For instance, A =
1

6
works because

(
1

2
,
2

3

)
∈ E

1/6
aff (Q), and the

equation t3 − t+
1

3
= 0 does not have any rational roots, by the rational root

test. So does A =
1

7
, E

1/7
aff (Q) ∩M is infinite, and we let the reader find the

necessary point. So does A =
1

8
, however E

1/8
aff (Q) is empty (see Proposition 3

below). The theorem is inapplicable to A =
3

16
as τ =

1

2
is a rational root.

Proof of Theorem 2. We will give two proofs to this theorem. The first
one has the advantage that it is quick, and the second one that it is very
elementary.

If there is a point in EA
aff(Q) ∩M, we claim that this point cannot have

finite order in EA
proj(Q). Indeed, any finite order element of the oval has even

order, so the existence of one guarantees the existence of an element of order 2
in EA

proj(Q). By Proposition 1, a), the above Lemma, and the hypothesis, the

three elements of order 2 in EA
proj(R) cannot belong to EA

proj(Q), and we are
done.

For the second proof we need only the symmetries of EA
proj(R) and the

chord-and tangent process there. Assume by contradiction that EA
aff(Q) ∩M

is non-empty and has only finitely many points, and let P be the point there
with the least x-coordinate. Looking at Figure 7, P cannot be T or B, the
top and the bottom points of σA = EA

aff(R) ∩M, since they have irrational
coordinates, by Proposition 1 and the Lemma. Also, the points B′, T ′, and R
in Figure 7 cannot belong to EA

aff(Q) for the same reason. There is a bijective
correspondence between the real (rational) points X of the oval, belonging

to the arc
>
P ′B′T ′P ′′, X 6= P ′, X 6= P ′′, and the real (rational) points Y of

the connected component of EA
aff(R) situated in the quadrant {x > 1, y > 1}.

The best way to describe this correspondence is by looking at the gray area in
Figure 7: To any X it corresponds the point Y on the chord through P and X.
Using the symmetries of EA

aff(R) we realize that there are an odd number of
rational points X and an even number of rational points Y , contradiction.
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> > 

Figure 7: The P -chord bijection X 7→ Y , between the real points of the arc
>
P ′B′T ′P ′′ on the oval and the upper right component of EA

aff(R), which pre-
serves rational points.

How about a concrete scheme for generating infinitely many Heron tri-
angles with a given area and semi-perimeter 1, if one of them exists? The
following, although not the most efficient, will do:

Start with a Heron triangle with sides (a1, b1, c1), (a1, b1) ≡ P ∈ EA
aff(Q)∩

M. Then (2n − 1)P , n ∈ N, belongs to the oval, and has coordinates, say,
(2n− 1)P = (pn, qn) ∈ Q2. Define

an := min{pn, qn, 2− pn − qn}, cn := max{pn, qn, 2− pn − qn},
and bn := 2− an − cn.

(19)

Then the sequence (an, bn, cn)∞n=1 gives distinct Heron triangles with the same
area and semi-perimeter 1, represented by (an, bn) in the moduli space M.

Remark. Making use of a very powerful theorem of Mazur [10] about
the possible finite orders of rational points of an elliptic curve, the previ-
ous theorem can be considerably extended. According to Mazur’s theorem,
EA

proj(R), which is an elliptic curve [7], can have rational points of finite or-
der only for orders 1 through 10, and 12. A diligent analysis of the finite
order points in EA

proj(R) ∼ R/Z × Z/2Z, similar to that in Proposition 1,

shows that in EA
aff(R) ∩ M there is only one point of each order in the list

{2, 6, 8, 10, 12}, and no others. The points of order 8 and 10 cannot be ratio-
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Figure 8: The relative position of the only three (in fact two) possible rational
points of finite order in EA

aff(R) ∩M.

nal or else EA
proj(Q) would have elements of order 24, respectively 30, which

would contradict Mazur’s theorem. It remains to test for rationality the points
of order 2, 6, and 12. Their geometric realization and relative location on
EA

aff(R) ∩M is shown in Figure 8, where the numbers next to the points indi-
cate, again, order. The points of order 2 and 6 are the bottom, respectively
the top, points of EA

aff(R) ∩M, corresponding to B and T in Figure 7. They
are rational points if and only if τ2, the smallest positive root of the equation
t3−t+2A = 0, respectively τ3, the largest (positive) root of the same equation,
are rational numbers. The point of order 12 has the following realization: draw
the tangent line to the (top of) oval through the point R (of order 2) in Figure 7,
and then project the point of tangency vertically onto EA

aff(R)∩M. Therefore,
the point of order 12 is rational if and only if the point of tangency, which has
order 4, is so. A necessary, however not sufficient, condition for that to happen
is that the largest (positive) root σ of the equation (t − 1)2(2t − 1) = A2 be
rational, or equivalently

√
2σ − 1 be a rational number. In fact, by Proposition

1, c) the point of order 12 in EA
aff(R) ∩M has real coordinates(

1

2

(
2− σ +

√
(3σ − 2)(σ − 1)−

√
(3σ − 2)

(
1− 2

√
(3σ − 2)(σ − 1)

))
,

σ −
√

(3σ − 2)(σ − 1)
)
.

However, there is no rational number σ > 1 such that
√

2σ − 1,
√

(3σ − 2)(σ − 1), and
√

(3σ − 2)(1− 2
√

(3σ − 2)(σ − 1))
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are all rational numbers, so the point of order 12 cannot belong to EA
aff(Q)∩M.

In conclusion, no more than two points in EA
aff(Q) ∩M can have finite

order.

A refinement of Theorem 2 is then the following:

Theorem 3. For any given rational number 0 < A <
1

3
√

3
, depending on

the nature of the rational roots of the equation t3 − t+ 2A = 0 the following is
true about the Heron triangles with area A and semi-perimeter 1:

a) If the cubic equation t3− t+ 2A = 0 has no positive rational roots then
there are infinitely many Heron triangles with area A and semi-perimeter 1 if
and only if there is one of them.

b) If only the smallest positive real root of the equation t3 − t + 2A = 0
is a rational number then there are infinitely many Heron triangles with area
A and semi-perimeter 1 if and only if there are two such. One of them, an
isosceles triangle, always corresponds to B, the bottom point of EA

aff(R) ∩M.

c) If only the largest (positive ) real root of the equation t3 − t + 2A = 0
is a rational number then there are infinitely many Heron triangles with area
A and semi-perimeter 1 if and only if there are two such. One of them, an
isosceles triangle, always corresponds to T , the top point of EA

aff(R) ∩M.

d) If both positive roots of the equation t3 − t+ 2A = 0 are rational then
there are infinitely many Heron triangles with area A and semi-perimeter 1 if
and only if there are three of them. Two of them are the only possible isosceles
triangles of fixed area and perimeter, and correspond to T and B, the top and
bottom points of EA

aff(R) ∩M.

Our next result gives an indirect answer to a very natural question: Which

rational numbers 0 < A <
1

3
√

3
can be the areas of Heron triangles with semi-

perimeter 1? This answer will be useful for stating an application of Theorems
2 and 3 to Diophantine equations.

Proposition 2. For a given rational number 0 < A <
1

3
√

3
there is a

Heron triangle with area A and semi-perimeter 1 if and only if there are positive
rational numbers a and s such that

(20) a <
2

3
, 2a− 1 ≤ s2 ≤ 1− a, and A =

sa(1− a)

s2 + 1− a
.

Then such a triangle has sides a ≤ b ≤ c, where

(21) b =
s2 + (1− a)2

s2 + 1− a
, and c =

(s2 + 1)(1− a)

s2 + 1− a
.
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Equivalently (Brahmagupta ), A is the area of a Heron triangle with semi-
perimeter 1 if and only if there exist relatively prime positive integers k,m, n
(i.e., their greatest common divisor, gcd (k,m, n) is 1) such that

(22) m ≥ n, mn > k2 ≥ m2n

2m+ n
, and A =

k(mn− k2)

mn(m+ n)
,

which yield the Heron triangle with sides

(23) a =
mn− k2

mn
, b =

n2 + k2

n(m+ n)
, and c =

m2 + k2

m(m+ n)
.

Proof. For the only if part of the proof, let the Heron triangle with area
A and semi-perimeter 1 have sides, 0 < a ≤ b ≤ c. Since a + b + c = 2, we

have 3a ≤ 2, or a ≤ 2

3
. If a =

2

3
, then a = b = c =

2

3
and so the triangle is

equilateral with irrational area
1

3
√

3
. Therefore, a is a rational number such

that a <
2

3
.

Let us now look at a physical realization of the Heron triangle in an xy-
coordinate plane, cf. Figure 8.We will take the vertices of the triangle to be

Y
(a

2
, 0
)

, Z
(
−a

2
, 0
)

, and X(p, q), with p, q > 0 to be decided by the conditions

XY = b and XZ = c. Since b+ c = XY +XZ = 2− a, X can be viewed as a

point on the ellipse with foci at Y and Z, and semi-axes 1− a

2
>
√

1− a.

There is then a real number θ, 0 < θ <
π

2
such that

(24) p =
(

1− a

2

)
cos θ, and q =

√
1− a sin θ.

An easy calculation shows that

(25) b = XY = 1− a

2
− 2

2
cos θ, and c = XZ = 1− a

2
+
a

2
cos θ.

Therefore, cos θ is a rational number, and so are

p =
(

1− a

2

)
cos θ and q =

√
1− a sin θ =

2A

a
.

Further, there is 0 < t < 1 such that sin θ =
2t

1 + t2
and cos θ =

1− t2

1 + t2
, namely

t =
sin θ

1 + cos θ
. Since t2 =

1− cos θ

1 + cos θ
, t2 is a rational number, and then

(26) s := t
√

1− a =

√
1− a sin θ(1 + t2)

2
=
A(1 + t2)

a



17 Heron triangles with constant area and perimeter 419

> > 

Figure 9: Heron triangle, 4XY Z, with one vertex, X, on an ellipse whose foci
are the other two vertices, Y and Z.

is a positive rational number. Substituting now t =
s√

1− a
into the equations

(24), gives the equations (21). The formula (20) for the area A is already in-
corporated in (25). Finally, the inequalities (20) involving s2 are a consequence
of a ≤ b ≤ c, via (21).

The if part of the proof is a routine verification, based on formulas (20)
and (21), that a ≤ b ≤ c, a+b > c, a+b+c = 2, and (a−1)(b−1)(a+b−1) = A2.

To the end of proving the Brahmagupta formulas (22) and (23), for a and

s provided by (20), write s and
1− a
s

in lowest terms,

s =
α

β
,

1− a
s

=
γ

δ
, α, β, γ, δ ∈ N, gcd (α, β) = 1, gcd (γ, δ) = 1.

Setting then

(27) k :=
αγ

gcd (α, γ)
, m :=

βγ

gcd (α, γ)
, and n :=

αδ

gcd (α, γ)
,

everything else follows.

Not every rational number 0 < A <
1

3
√

3
can be the area of a Heron

triangle with semi-perimeter 1.

Proposition 3. There are no Heron triangles with area
1

8
and semi-

perimeter 1.

Proof. By Proposition 2 it suffices to show that the Diophantine equation

(28) 8k(mn− k2) = mn(m+ n)



420 N. Anghel 18

has no solutions in positive integers (k,m, n) with gcd(k,m, n) = 1. Suppose
a solution exists. Then m and n cannot both be even. If they were, k would
be odd, and setting m = 2m′, n = 2n′. m′, n′ positive integers, would turn
equation (28) into

(29) k(4m′n′ − k2) = m′n′(m′ + n′).

However, (29) cannot hold true, as its left-hand-side is an odd number while
its right-hand-side is even.

Now, equation (28) can be re-arranged as

(30) mn(8k −m− n) = 8k3,

or equivalently, via the substitution l := 8k −m− n, as

(31) lmn =

(
l +m+ n

4

)3

Since m and n cannot be simultaneously even, in equation (31) the positive
integers l, m, and n, are pairwise relatively prime. Therefore l, m, and n must
all be perfect cubes, i.e., l = x3, m = y3, and n = z3, with x, y, and z pairwise
relatively prime positive integers. Then equation (31) becomes

(32) x3 + y3 + z3 = 4xyz

Equation (32) belongs to a 1-parameter family of Diophantine equations

(33) x3 + y3 + z3 = λxyz, λ ∈ Z,

with a long history [6]: Its solutions were studied by Sylvester (λ = −6),
Hurwitz and Mordell (λ = −1, 5), Sierpinski (λ = 4), and Cassels (λ = 1).
In 1997 Garaev [6] showed that (33) does not admit any solutions (x, y, z)
in positive integers for an infinite family of positive values of λ, including
λ = 4.

Corollary. Let s, a be rational numbers, 0 < s < 1 and

0 < a < max

{
s2 + 1

2
, 1− s2

}
. Write A :=

sa(1− a)

s2 + 1− a
in lowest terms, A =

p

q
,

p, q ∈ N. Then the Diophantine equation

(34) qk(mn− k2) = pmn(m+ n)

admits infinitely many solutions (k,m, n) in positive integers, with gcd(k,m, n) =
1.

In particular, for Heron right triangles,
√

2 − 1 < s < 1 and a = 1 − s,

which make A =
s(1− s)

1 + s
.
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Proof. The corollary is a reformulation of key parts of Theorem 3 and
Proposition 2, in such a way that a non-isosceles Heron triangle with area A
exists. The Heron right triangle description follows by imposing the condition
a2 + b2 = c2 on the expressions of b and c given by equation (21), and noticing
that there are no Heron isosceles right triangles.

Final Remarks. There are many interesting, difficult, questions about the
Heron triangles of fixed area and perimeter left unanswered. They all reduce
to finding practical ways of deciding which given positive rational numbers A
can be the areas of Heron triangles (of semi-perimeter 1). For the interested
reader, here are some:

a) For which positive integers q ≥ 6 are there no Heron triangles with

area
1

q
and semi-perimeter 1? In this paper we realized that 8 is the least q

with this property.

b) For which rational numbers 0 < A <
1

3
√

3
are there exactly two Heron

triangles with area A and semi-perimeter 1? With the help of Theorem 3 and
Proposition 2 it is not hard to see that such A’s must necessarily be of form

(35) A =
σ
(
1− σ2

) (
1− 3σ2

)
(1 + 3σ2)3 , 0 < σ <

2(
√

3−
√

2)

3
rational number.

Could (35) be also sufficient?
c) Is there any concrete area A which affords infinitely many Heron tri-

angles with semi-perimeter 1, all describable in parametric form? We are not
aware of any, however the best chance for an affirmative answer would seem to

have A =
1

6
.
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