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The first four moments of a distribution are the most significant from the sta-
tistical point of view. This paper studies how the mean, variance, skewness and
kurtosis change while a probability distribution is deformed according to a heat-
flow equation. Closed-form formulas are provided for these four moments of the
deformed distributions and some conclusions are drawn. We apply these results
to develop a normality test and provide applications to PCA in multivariate
case.
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INTRODUCTION

In this paper q(x) will denote a probability density function on R, ie., a
non-negative function with

∫
R q(x) dx = 1. We shall investigate how the first

few moments of q(x), including the mean, variance, skewness and kurtosis are
influenced by the the following heat-flow evolution equation

∂

∂t
pt(x) =

1

2

∂2

∂x2
pt(x)(1)

p0(x) = q(x), ∀x ∈ R, t > 0.(2)

The physical significance of the problem is the following: if q(x) denotes the
heat density along an infinite rod, then pt(x) represents the density in the rod
at time t > 0, under the assumption that no exterior heat sources are involved
and the heat evolves from the initial density q(x). For more details the reader
is referred to the book [1].

The geometrical significance consists in the fact that the left side of the
equation, ∂

∂tpt(x), represents the rate of change of the density at point x ∈
R, while the right side of the equation, 1

2
∂2

∂x2
pt(x), measures the convexity,

or curvature of the density function. Along the intervals where the density
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Figure 1: The heat-flow deformation of q(x) into pt(x). The mean mt remains
invariant, while the spread of the density increases.

function is convex, namely along the set C = {x ∈ R; ∂2

∂x2
pt(x) > 0} the rate

of change is positive, and hence, pt(x) is increasing in time; while along the

set D = {x ∈ R; ∂2

∂x2
pt(x) < 0} the rate of change is negative and the density

decreases in time. This means that pt(x) becomes thicker on C and more flat
on D.

The typical example of continuous distribution density q(x) on R is fast
decreasing to infinity, having the x-axis as a horizontal asymptote to ±∞, and
hence q(x) is convex for |x| large enough. The previous heat equation will
provide an evolution towards fatter tails of the distribution and lower peak in
the middle, where the distribution is concave. See Fig.1.

One question is what moments of q(x) are preserved during this evolution?
Another is how other moments are changing over time? Does the distribution
ever become symmetric or close to a normal distribution? This paper answers
all these questions. Besides these, it also treats the case of the multivariate
case distributions and provides some relation to Principal Component Analysis
(PCA). More precisely, we show that the eigenvalues of the covariance matrix
are described by the time instances when the heat-flow deformation of the
random variable has a degenerate covariance matrix.

It is worthy to note the relation of our problem with the filtering point of
view. Since the solution pt(x) of the heat equation is obtained by a convolution
of q(x) with a Gaussian, we may regard pt(x) as being a blurred version of q(t).
In this case the question is to look at how do the moments of q(x) behave under
blurring. Looking for the optimal blur can be useful for signal processing. A
signal which is too sharp may include too much information, some of it being
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an effect of the embedded noise, and some filtering is needed to remove the
undesired detail. On the other side, a signal which is too blurred may have too
little detail left and therefore, due to too much loss of information, it might
become useless. So that, somewhere between these two limits might be the
optimal situation of the best blur, which can be achieved using the results of
this paper.

1. THE PROBABILITY DENSITY

In this section we shall show that the evolution profile pt(x) is a probabil-
ity density for any t > 0. From the physical point of view, this is a consequence
of the conservation of energy law, since there is no exterior heat injected or
extracted from the system. More precisely, if Q =

∫
R q(x) dx represents the

total heat in the rod at time t = 0, then the heat at time t > 0 is given
by Qt =

∫
R pt(x) dx. Since q(x) is a probability density, then Q = 1. If the

heat conservation holds, then Qt = Q, and hence Qt = 1, ie., pt(x) is also a
probability density. We shall provide next a mathematical proof of this fact.

Proposition 1.1. Let q(x) be a continuous probability density on R.
Then the solution pt(x) of the system (1)-(2) is a probability density for all
t > 0.

Proof. Consider the Gaussian

Gt(x, y) =
1√
2πt

e−
1
2t
(x−y)2 , t > 0.

It is known that the solution of the Cauchy problem (1)-(2) is given by the
convolution

pt(x) = (q ∗Gt)(x) =

∫
R
q(y)Gt(x, y) dy =

1√
2πt

∫
R
q(y)e−

1
2t
(x−y)2 dy

=
1√
π

∫
R
q(x+ z

√
2t)e−z

2
dz,(3)

where we employed the substitution z = (y − x)/
√

2t. It is obvious to see
now that pt(x) ≥ 0, since q(x) ≥ 0. Using Fubini’s theorem and the previous
formula for pt(x), we have

Qt(x) =

∫
R
pt(x) dx =

1√
π

∫
R

∫
R
q(x+ z

√
2t)e−z

2
dz dx

=
1√
π

∫
R

[ ∫
R
q(x+ z

√
2t) dx

]
e−z

2
dz =

1√
π

∫
R

[ ∫
R
q(u) du︸ ︷︷ ︸
=Q

]
e−z

2
dz
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=
Q√
π

∫
R
e−z

2
dz = Q.

Since Q = 1, then Qt = 1 for all t > 0, and hence pt(x) becomes a probability
density.

It is worth noting that pt(x) tends to zero in the long run. This follows
by applying the Dominated Convergence Theorem as

lim
t→∞

pt(x) = lim
t→∞

1√
π

∫
R
q(x+ z

√
2t)e−z

2
dz = 0

since q(x) tends to zero at infinity.

2. THE MEAN

The means of q(x) and pt(x) are given respectively by

m =

∫
R
xq(x) dx, mt =

∫
R
xpt(x) dx,

From the physical point of view, m and mt represent the x-coordinates of the
center of mass of the regions under the density function q(x) and pt(x), respec-
tively. The next result shows that the center of mass is preserved under the
heat-flow; this shows that the first moment is an invariant of the transforma-
tion.

Proposition 2.1. Let q(x) be a continuous probability density on R and
pt(x) be the solution of the system (1)-(2). Then q(x) and pt(x) have the same
mean, mt = m,∀t > 0.

Proof. We shall employ a direct computation method. Using formula (3)
and Fubini’s theorem, we have

mt =

∫
R
xpt(x) dx =

1√
π

∫
R
x

∫
R
q(x+ z

√
2t)e−z

2
dz dx

=
1√
π

∫
R

∫
R
xq(x+ z

√
2t) dx e−z

2
dz

=
1√
π

∫
R

∫
R

(u− z
√

2t)q(u) du e−z
2
dz

=
1√
π

∫
R

[ ∫
R
uq(u) du︸ ︷︷ ︸
=m

−z
√

2t

∫
R
q(u) du︸ ︷︷ ︸
=1

]
e−z

2
dz

=
1√
π

[
m

∫
R
e−z

2
dz︸ ︷︷ ︸

=
√
π

−
√

2t

∫
R
ze−z

2
dz︸ ︷︷ ︸

=0

]
= m.
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Another proof variant would be to notice that mt is smooth in t with
limt→0mt = m. Then if we show that d

dtmt = 0, it follows that mt = m, for all
t > 0. Assuming that pt(±∞) = 0 and x∂xpt(±∞) = 0, a double integration
by parts yields

d

dt
mt =

∫
R
x
d

dt
pt(x) dx =

1

2

∫
R
x
∂

∂x2
pt(x) dx

=
1

2
x∂xpt(x)

∣∣∣∞
−∞
− 1

2

∫
R
x′∂xpt(x) dx = 0.

3. THE VARIANCE

Consider the second moments of q(x) and pt(x) given respectively by

m2 =

∫
R
x2q(x) dx, m2(t) =

∫
R
x2pt(x) dx.

The associated variances are given by

V = var(q) =

∫
R

(x−m)2q(x) dx, Vt = var(pt) =

∫
R

(x−mt)
2pt(x) dx.

In this section we shall show that the heat-flow increases the second moment
linearly in time, m2(t) = m2 + t, and we shall show a similar relation for the
variance. This means that the blurred density pt has a dispersion that increases
linearly in time.

Proposition 3.1. Let q(x) be a continuous probability density on R and
pt(x) be the solution of the system (1)-(2). Then the variance is increasing
with respect to time

V (t) = V + t, ∀t > 0.

Proof. We shall show first that m2(t) = m2 + t,∀t > 0. A computation
involving Fubini’s theorem provides

m2(t) =

∫
R
x2pt(x) dx =

1√
π

∫
R
x2
∫
R
q(x+ z

√
2t)e−z

2
dz dx

=
1√
π

∫
R

[ ∫
R
x2q(x+ z

√
2t) dx

]
e−z

2
dz

=
1√
π

∫
R

[ ∫
R

(u− z
√

2t)2q(u) du
]
e−z

2
dz

=
1√
π

∫
R

[ ∫
R
u2q(u) du+ 2z

√
2t

∫
R
uq(u) du+ 2tz2

∫
R
q(u) du

]
e−z

2
dz
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=
1√
π

∫
R

[
m2 + 2z

√
2tm+ 2tz2

]
e−z

2
dz

= m2 + 2t
1√
π

∫
R
z2e−z

2
dz = m2 + t,

where we used
∫
R e
−z2 dz =

√
π,
∫
R ze

−z2 dz = 0 and
∫
R z

2e−z
2
dz =

√
π/2.

Then the relation between variances is given by

Vt = m2(t)−m2
t = m2 + t−m2 = V + t,

where we used that mt = m, see Proposition 2.1.

4. THE SKEWNESS

If X is a random variable of mean m and variance σ2, then the third
moment of the random variable Z = X−m

σ is called the skewness of X and
represents a measure of non-symmetry for the probability density of X. We
have the following equivalent formulas

S(X) = E
[(X −m

σ

)3]
=

E[X3]− 3mσ2 −m3

σ3
.

This shows that the skewness of X can be written in terms of the mean,
variance and the third moment of X. We shall use a similar formula to define
the skewness of a probability density function. If the third centered moments
of q(x) and pt(x) are denoted by

m3 =

∫
R
x3q(x) dx, m3(t) =

∫
R
x3pt(x) dx,

the associated skewness functions for q(x) nd pt(x) are respectively given by

S = S(q) =
m3 − 3mV −m3

V 3/2
, St = S(pt) =

m3(t)− 3mtVt −m3
t

V
3/2
t

.

This section deals with the formula that relates St to S. This result is supposed
to track the (non)symmetry property of a distribution under the heat-flow.

First we need to establish a relation between the third centered moments.

Lemma 4.1. Let q(x) be a continuous probability density on R and pt(x)
be the solution of the system (1)-(2). Then the relation between their third
moments is

m3(t) = m3 + 3mt, ∀t > 0.

Hence, the moment m3(t) changes linearly in time with slope 3m.
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Proof. First, we note that a change of variables provides∫
R
x3q(x+ z

√
2t) dx =

∫
R

(u− z
√

2t)3q(u) du

=

∫
R

(
u3 − 3u2z

√
2t+ 3uz2 · 2t− z3(2t)3/2

)
q(u) du

= m3 − 3z
√

2tm2 + 6tz2m− z3(2t)3/2.
Then the third moment can be evaluated as

m3(t) =

∫
R
x3pt(x) dx =

1√
π

∫
R
x3
∫
R
q(x+ z

√
2t)e−z

2
dz dx

=
1√
π

∫
R

[m3 − 3z
√

2tm2 + 6tz2m− z3(2t)3/2]e−z2 dz

= m3 + 6tm
1√
π

∫
R
z2e−z

2
dz = m3 + 3tm,

where we used that the integral of an odd function is zero.

It is worth noting that if q(x) has zero mean, m = 0, then the third
moment is invariant, m3(t) = m3. If the moment m > 0, then the moment
m3(t) is increasing in time, and if m < 0, the moment m3(t) is decreasing in
time.

Proposition 4.2. Let q(x) be a continuous probability density on R and
pt(x) be the solution of the system (1)-(2). Then the relation between their
skewness functions is

St = S
( V

V + t

)3/2
, ∀t > 0.

Proof. Using Lemma 5.1, Proposition 3.1 and proposition 2.1 we have

St =
m3(t)− 3mtVt −m3

t

V
3/2
t

=
m3 + 3mt− 3m(V + t)−m3

(V + t)3/2

=
m3 − 3mV −m3

(V + t)3/2
=
m3 − 3mV −m3

V 3/2

( V

V + t

)3/2
= S

( V

V + t

)3/2
.

The previous result has a few important consequences regarding the skew-
ness invariance sign under the heat-flow:
(i) If the probability density q(x) is symmetric, then pt(x) is symmetric, for all
t > 0. This follows from the fact that if S = 0 then St = 0.
(ii) If there is t0 > 0 such that pt0(x) is symmetric, then q(x) is symmetric.
The proof is similar with the one done for part (i).
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(iii) If the probability density q(x) is skewed to the left (right), then pt(x) is
also skewed to the left (right). This follows from the fact that if S > 0 then
St > 0.

(iv) The density pt(x) becomes more symmetric in the long run. This follows
from the fact that St is decreasing to zero for t large.

5. THE KURTOSIS

If X is a random variable of mean m and variance σ2, then the fourth
moment of the standardized random variable Z = X−m

σ is called the kurtosis
of X and represents a measure of the tail thickness for the probability density
of X. Also, kurtosis tells the height and sharpness of the central peak, relative
to that of a standard bell curve. We have the following kurtosis formula

K(X) = E
[(X −m

σ

)4]
=

1

σ4
E[(X −m)4].

Expanding, yields

E[(X −m)4] = E[X4 − 4X3m+ 6X2m2 − 4Xm3 +m4]

= m4 − 4mm3 + 6m2m2 − 3m4.

This shows that the kurtosis of X can be written in terms of the first four
moments of X. We shall use a similar formula to define the kurtosis for a
probability density. Thus, the kurtosis of q(x) becomes

K = K(q) =
m4 − 4mm3 + 6m2m2 − 3m4

V 2
,

while the kurtosis of pt(x) is given by a similar formula

Kt = K(pt) =
m4(t)− 4mtm3(t) + 6m2

tm2(t)− 3m4
t

V 2
t

,

where the fourth moments of q and pt are defined respectively by

m4 =

∫
R
x4q(x) dx, m4(t) =

∫
R
x4pt(x) dx.

We shall establish a relation between the fourth moments of q(x) and
pt(x).

Lemma 5.1. Let q(x) be a continuous probability density on R and pt(x)
be the solution of the system (1)-(2). Then the relation between their third
moments is

m4(t) = m4 + 6tm2 + 3t2, ∀t > 0.
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Proof. We evaluate the following integral using a change of variables∫
R
x4q(x+z

√
2t) dx =

∫
R

(u− z
√

2t)4q(u) du

=

∫
R

[u4 − 4u3z
√

2t+ 6u2z2 · 2t− 4uz3(2t)3/2 + z4(2t)2]q(u) du

=m4 − 4z
√

2tm3 + 12z2tm2 − 4z3(2t)3/2m+ 4z4t2.

Then we further compute the fourth moment of pt as

m4(t) =

∫
R
x4pt(x) dx =

1√
π

∫
R
x4
∫
R
q(x+ z

√
2t)e−z

2
dz dx

=
1√
π

∫
R

(∫
R
x4q(x+ z

√
2t) dx

)
e−z

2
dz

=
1√
π

∫
R

(
m4 − 4z

√
2tm3 + 12z2tm2 − 4z3(2t)3/2m+ 4z4t2

)
e−z

2
dz

= m4 + 12tm2
1√
π

∫
R
z2e−z

2
dz +

1√
π

∫
R
z4e−z

2
dz · 4t2

= m4 + 6tm2 + 3t2,

since
∫
R z

2e−z
2
dz =

√
π
2 and

∫
R z

4e−z
2
dz = 3

√
π

4 .

We shall make a few remarks.
(i) Completing the square, we obtain

m4(t) = 3(t+m2)
2 + (m4 − 3m2

2),

so the minimum of m4(t) is realized for the value t = −m2, which is a negative
value, since m2 > 0. Consequently, we have the inequality m4(t) ≥ m4, because
the function f(t) = m4(t) is increasing for t > 0 and f(0) = m4 > 0.
(ii) The behavior of the 4th moment is different from the second and third
moment, since its rate of change is not constant. This follows from m′2(t) = 1,
m′3(t) = 3m, and m′4(t) = 6(m2 + t). This means the 4th moment changes a
lot faster than the lower order moments do.

Proposition 5.2. Let q(x) be a continuous probability density on R and
pt(x) be the solution of the system (1)-(2). Then the relation between their
kurtosis functions is

Kt = 3 + (K − 3)
( V

V + t

)2
, ∀t > 0.

Proof. Using the kurtosis formula as well as the formulas for m2(t), m3(t)
and m4(t), we have

Kt =
m4(t)− 4mtm3(t) + 6m2

tm2(t)− 3m4
t

V 2
t
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=
m4 + 6tm2 + 3t2 − 4m(m3 + 3mt) + 6m2(m2 + t)− 3m4

(V + t)2

=
(m4 − 4mm3 + 6m2m2 − 3m4) + 3t2 + 6t(m2 −m2)

(V + t)2

=
V 2K + 3t2 + 6tV

(V + t)2
.

Completing the square

V 2K + 3t2 + 6tV = 3(V + t)2 + V 2(K − 3),

the previous relation becomes

Kt =
3(V + t)2 + V 2(K − 3)

(V + t)2
= 3 + (K − 3)

( V

V + t

)2
.

Proposition 5.2 has a few interesting consequences.

(i) If the probability density q(x) is a standard normal density, then pt(x) has
Kt = 3. This follows from the fact that a standard normal density has kurtosis
K = 3.

(ii) If the probability density q(x) has the tails thicker (thinner) than a standard
normal distribution, then pt(x) has the same property. This follows from the
following analysis:

(a) If K < 3 then K < Kt, for all t > 0; the kurtosis increases asymptoti-
cally to 3;

(b) If K = 3 then K = Kt, for all t > 0; the kurtosis is constant equal to 3;

(c) If K > 3 then K > Kt, for all t > 0; the kurtosis decreases asymptoti-
cally to 3.

In all cases, the kurtosis of pt(x) tends to 3 in the long run, limt→∞Kt = 3.

(iii) We have the following relations between variance, skewness and kurtosis

Kt − 3

K − 3
=
( V

V + t

)2
=
(St
S

)4/3
,

provided K 6= 3 and S 6= 0.

(iv) The difference between the kurtosis and 3 is called excess kurtosis, K − 3.
For normal distributions this is equal to zero. The proposition shows that the
excess kurtosis of pt is equal to the the excess kurtosis of q multiplied by the

factor
(

V
V+t

)2
. In the long run the excess kurtosis of pt, i.e. Kt − 3, tends to

zero.
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6. NORMALITY TEST

A normality test is needed in statistics to determine whether a data set
is modeled by a normal distribution. The most well-known normality tests are
Kolmogorov-Smirnov [2], [4], and Shapiro-Wilk [3].

Two numerical measures of shape, skewness and kurtosis, can be also
used to test for normality. If skewness is not close to zero, then the data set
is not normally distributed. Also, if kurtosis is not close to 3 the data is also
not normally distributed.

We shall assume, for the beginning, that the initial probability density
q(x) is normal, with q ∼ N (m,σ2). This implies V = σ2, S = 0 and K =
3. Consider the heat-flow evolution of q(x) at time t, which is pt(x). Then,
according to the results proved in the previous sections, the new distribution
will have mt = m, Vt = V + t, St = 0 and Kt = 3. Therefore, the test for
normality is satisfied. Actually, in this case (when q(x) is normal) it can be
shown that pt(x) is actually a normal density function, with pt ∼ N (m,σ2+ t).
The proof is based on the fact that the convolution of two Gaussian densities is
also a Gaussian density. More precisely, the result states that Gσ1 ∗Gσ2 = Gσ,
with σ =

√
σ21 + σ22. In our case q = Gσ = Gσ1 and pt = G√t = Gσ2 .

In general, if q(x) is not a normal density, then pt is not normal either,
but for t large it gets very close to a normal density, in the sense that the
skewness and excess kurtosis can be made arbitrary small.

Proposition 6.1. Let q(x) be a continuous probability density on R and
pt(x) be the solution of the system (1)-(2). Denote by St and Kt the skewness
and kurtosis of pt.
Then for any ε1 > 0, ε2 > 0, there is T > 0 such that

|St| < ε1, |Kt − 3| < ε2, ∀t > T.

Proof. Denote ρt =
V

V + t
. We note that 0 < ρt < 1. Using that

St = Sρ
3/2
t

Kt − 3 = (K − 3)ρ2t ,

it suffices to find a T > 0 such that

|S|ρ3/2t < ε1

|K − 3|ρ2t < ε2, ∀t > T.

This is equivalent to

ρt <
( ε1
|S|

)2/3



434 O. Calin 12

ρt <
( ε2
|K − 3|

)1/2
, ∀t > T.

Let ε = min
{(

ε1
|S|

)2/3
,
(

ε2
|K−3|

)1/2}
. It suffices to find a T > 0 such that

ρt < ε, ∀t > T.

Using the definition of ρt, the previous inequality is satisfied for any t > V (1ε −
1). Hence, we may take

T = max
{

0, V (
1

ε
− 1)

}
.

The previous result has a downside. The heat-flow deformation of q(x)
can make the density to have skewness and excess kurtosis as close to zero as
possible. However, this is done at the expense of the variance, which increases
linearly in t. For t > T we obtain the following lower bound of the variance

Vt = V + t > V + T > V + V (
1

ε
− 1) =

V

ε
.

Hence, the variance explodes as ε tends to zero. An upper bound constraint
on the variance Vt will forbid ε to get too small. Therefore, there is a trade-off
between the variance size and order of smallness for the skewness and excess
kurtosis.

7. MULTIVARIATE CASE

Some of the previous results do extend to the case of several variables.
In this case q(x) denotes a probability density function on Rn, with x =
(x1, · · · , xn). The heat-flow evolution equation becomes

∂

∂t
pt(x) = ∆xpt(x)(4)

p0(x) = q(x), ∀x ∈ Rn, t > 0,(5)

where

∆x =
1

2

( ∂2
∂x21

+ · · ·+ ∂2

∂x2n

)
is the n-dimensional Laplacian on Rn. The solution of the Cauchy problem
(4)-(5) is given by the convolution

pt(x) = (q ∗G)(x),
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where the multivariate Gaussian is given by

G(x,y) =
1

(2πt)n/2
e−

1
2t
‖x−y‖2 =

1

(2πt)n/2
e−

1
2t

∑n
i=1(xi−yi)2 ,

with x = (x1, · · · , xn) and y = (y1, · · · , yn). A computation similar with the
one done for the one-dimensional case shows

pt(x) =

∫
Rn

q(y)G(x,y) dy =

∫
Rn

q(y)
1

(2πt)n/2
e−

1
2t
‖x−y‖2 dy

=
1

πn/2

∫
Rn

q(x + z
√

2t)e−‖z‖
2
dz.

We assume that q(x) is the probability density of the random variable
X = (X1, · · · , Xn). The mean of q is the vector µ = (µ1, · · · , µn), with µj =
E[Xj ] =

∫
Rn xjq(x) dx. Similarly, the mean of the density pt is the vector

µ(t) = (µ1(t), · · · , µn(t)), with µj(t) =
∫
Rn xjpt(x) dx.

Proposition 7.1. Probability densities pt(x) and q(x) have the same
mean, µ(t) = µ.

Proof. This is an adaptation of the proof of Proposition 2.1 to several
variables:

µj(t) =

∫
Rn

xjpt(x) dx =
1

πn/2

∫
Rn

xj

∫
Rn

q(x + z
√

2t)e−‖z‖
2
dz dx

=
1

πn/2

∫
Rn

∫
Rn

xjq(x + z
√

2t) dx e−‖z‖
2
dz

=
1

πn/2

∫
Rn

∫
Rn

(uj − zj
√

2t)q(u) du e−‖z‖
2
dz

=
1

πn/2

∫
Rn

[ ∫
Rn

ujq(u) du︸ ︷︷ ︸
=µj

−zj
√

2t

∫
Rn

q(u) du︸ ︷︷ ︸
=1

]
e−‖z‖

2
dz

=
1

πn/2

[
µj

∫
Rn

e−‖z‖
2
dz︸ ︷︷ ︸

=πn/2

−
√

2t

∫
Rn

zje
−‖z‖2 dz︸ ︷︷ ︸
=0

]
= µj .

In the following we shall discuss the covariance matrix. Consider the n-
dimensional continuous stochastic process Xt = (X1(t), · · · , Xn(t)), with t ≥ 0.
Let X0 = X = (X1, · · · , Xn) be the initial state of the process. The probability
density function of X is denoted by q(x). We assume the probability density
of Xt is denoted by pt and it satisfies the heat-flow equation (4).
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The question of concern now is: what is the relation between the covariance
matrices Cov(Xi, Xj) and Cov(Xi(t), Xj(t))? For the definition and properties
of the covariance the reader can consult Wackerly et. al [5].

Proposition 7.2. The covariance matrix of Xt modifies only along the
main diagonal

Cov(Xi(t), Xj(t)) = Cov(Xi, Xj) + tδij , ∀t > 0.

Proof. We start by recalling the formula definitions of covariance

Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ]

=

∫
Rn

xixjq(x) dx−
∫
Rn

xiq(x) dx

∫
Rn

xjq(x) dx

=

∫
Rn

xixjq(x) dx− µiµj ,

Cov(Xi(t), Xj(t)) = E[Xi(t)Xj(t)]− E[Xi(t)]E[Xj(t)]

=

∫
Rn

xixjpt(x) dx−
∫
Rn

xipt(x) dx

∫
Rn

xjpt(x) dx

=

∫
Rn

xixjpt(x) dx− µi(t)µj(t)

=

∫
Rn

xixjpt(x) dx− µiµj .

In order to evaluate
∫
Rn xixjpt(x) dx, we first compute the integral

I =

∫
Rn

xixj q(x + z
√

2t) dx:

I =

∫
Rn

(ui − zi
√

2t)(uj − zj
√

2t)q(u) du

=

∫
Rn

(uiuj − ziuj
√

2t− zjui
√

2t+ 2tzizj)q(u) du

=

∫
Rn

uiujq(u) du−
√

2t(zjµi + ziµj) + 2tzizj .
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We further evaluate using Fubini∫
Rn

xixjpt(x) dx =
1

πn/2

∫
Rn

∫
Rn

xixjq(x + z
√

2t)e−‖z‖
2
dz dx

=
1

πn/2

∫
Rn

[∫
Rn

xixjq(x + z
√

2t) dx

]
e−‖z‖

2
dz

=
1

πn/2

∫
Rn

[∫
Rn

uiujq(u) du−
√

2t(zjµi + ziµj) + 2tzizj

]
e−‖z‖

2
dz

=

∫
Rn

uiujq(u) du +
2t

πn/2

∫
Rn

zizje
−‖z‖2 dz,

because
∫
Rn e

−‖z‖2 dz = πn/2,
∫
Rn zje

−‖z‖2 dz = 0.

We shall compute next the integral Jij =
∫
Rn zizje

−‖z‖2 dz. We distinguish two
cases:

(1) Case i 6= j: In this case the integral vanishes. We assume for simplicity
that i = 1 and j = 2. Applying Fubini’s theorem we obtain

J12 =

∫
R
z1e
−z21 dz1

∫
R
z2e
−z22 dz2

∫
Rn−2

e−(z
2
3+···+z2n) dz3 · · · dzn = 0,

since the first two integrals vanish.

(2) Case i = j: We assume for simplicity that i = j = 1.

J11 =

∫
R
z21e
−z21 dz1

∫
Rn−1

e−(z
2
2+···+z2n) dz3 · · · dzn =

√
π

2
(
√
π)n−1 =

1

2
πn/2.

since the first two integrals vanish. Substituting into (6) we obtain

∫
Rn

xixjpt(x) dx =


∫
Rn uiujq(u) du, if i 6= j∫
Rn uiujq(u) du + t, if i = j

The previous result has applications to Principal Component Analysis
(PCA). According to PCA, the information stored in the n-dimensional random
variable X can be analysed on principal components, which are the eigenvectors
of the covariance matrix Cov(Xi, Xj) (which being a symmetric matrix has real
eigenvalues). The corresponding eigenvalues represent the information weight
contained within each principal component.
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Proposition 7.3. Let Xt be the stochastic process obtained by applying
the heat-flow to the random variable X. Then each value t, for which the
covariance matrix Cov(Xi(t), Xj(t)) becomes singular, represents the negative
of an eigenvalue λ = −t of matrix Cov(Xi, Xj).

Proof. Applying Proposition 7.1, we have

detCov(Xi(t), Xj(t)) = det(Cov(Xi, Xj) + tδij) = det(Cov(Xi, Xj)− λδij).

Hence, detCov(Xi(t), Xj(t)) = 0 if and only if λ = −t is an eigenvalue of
Cov(Xi, Xj).

It is worth noting that if the components of X are independent random
variables, then Cov(Xi, Xj) = V ar(Xi)δij is a diagonal matrix with only pos-
itive eigenvalues. Therefore, in this case, detCov(Xi(t), Xj(t)) 6= 0 for all
t > 0.
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