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We survey some of the fundamental classification results on low-type submani-
folds of non-flat model complex space forms (complex projective and hyperbolic
spaces) via the standard embeddings by projection operators. These results in-
clude classification of submanifolds of type 1 in these spaces, of CMC and Hopf
hypersurfaces of type 2, and investigation of the Chen type of totally real and
Kähler submanifolds. Some examples of submanifolds of type 3 are presented.
We also give some nonexistence results for certain families of CR-submanifolds
of complex space forms of Chen type two. For example, there exist no holo-
morphic submanifolds of the complex hyperbolic space which are of type 2 via
the standard embedding by projectors. This is contrasted with the situation in
the complex projective space, where there exist some parallel Einstein Kähler
submanifolds of type 2.
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1. THE IMMERSIONS OF FINITE TYPE

In the study of isometric immersions of Riemannian manifolds into Eu-
clidean or psedo-Euclidean spaces, one considers an isometric immersion x :
Mn → EN(K) of a Riemannian n-manifold, whose position vector allows spectral

resolution into a sum of a constant vector x0 (accounting for a translation) and
a finite number of vector eigenfunctions of the Laplacian on M,

(1.1) x = x0 + xt1 + xt2 + · · ·+ xtk ,

where x0 = const, xti 6= const, and ∆xti = λtixti , i = 1, ..., k, λti ∈ R,
and the Laplacian acts on an EN -valued function componentwise. If all λti , i =
1, 2, . . . , k are different, the submanifold Mn is said to be of k-type (also of Chen
type k) in the ambient (pseudo) Euclidean space via the immersion x. If such
finite decomposition is not possible, the immersion x is of infinite type. This
concept was introduced and developed by Bang-Yen Chen (see [3]) and over
the past four decades many differential geometers contributed to the theory of
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submanifolds of finite type, which, in some ways, is an extension of the study
of minimal submanifolds of Euclidean spaces and round spheres, the class of
submanifolds which are of Chen type 1 in this terminology. An example of a
surface of type 2 in E3 is a right circular cylinder

x(θ, t) = (cos θ, sin θ, t) = (0, 0, t) + (cos θ, sin θ, 0),

for which the (non-constant) eigenfunction (0, 0, t) comes from the 0-eigenspace
of the Laplacian. When that happens for some xti in the decomposition (1.1),
the immersion x, i.e. the submanifold Mn (which must be necessarily non-
compact), is of null k-type. For a compact submanifold Mn, the constant
term x0 is the center of mass, i.e. x0 = 1

V ol(M)

∫
M x dV. The set of indices

T (x) = {t1, t2, . . . , tk}, indicating from which eigenspaces of the Laplacian the
constituent functions xti came from, is called the order of the immersion.

The Chen type of a submanifold is not an intrinsic invariant, but it de-
pends on a particular immersion used - one and the same underlying manifold
can be of different types if different immersions are considered. For example,
the Cartan hypersurface M3 = SO(3)/(Z2 × Z2), which is one of the minimal
isoparametric hypersurface of S4, is of 1-type in the ambient E5, but of 3-type
in E15 via the Veronese immersion of S4 by means of the products of coordinate
functions in E5 [7].

For any desired type k and any preassigned order, one can construct a
k-type immersion of that particular order, using the diagonal immersion of the
standard immersions of a compact homogeneous space, but the codimension
of such submanifold is, generally speaking, high. For submanifolds of small
codimension in a Euclidean space, there is a paucity of known examples of those
that are of finite type, which prompted B. Y. Chen to formulate a conjecture
(still open), stating that the round spheres are the only compact finite-type
hypersurfaces of Euclidean space.

When the image x(Mn) of a submanifold lies in a certain centered hy-
perquadric (e.g. a hypersphere) of the ambient (pseudo) Euclidean space, the
immersion is said to be mass-symmetric in that hyperquadric, if the constant
term x0 in decomposition (1.1) coincides with the center of that hyperquadric.
Submanifolds of null k-type are automatically mass-symmetric, since the con-
stant term x0 can be changed to match any desired value.

After studying finite-type submanifolds in Euclidean spaces and spheres,
the researchers in this area turned their attention to submanifolds of more gen-
eral spaces such as complex space forms, because these ambient spaces admit
some of the simplest equivariant embeddings with parallel second fundamental
form into (pseudo) Euclidean spaces, realized by means of the projection oper-
ators associated to the orthogonal projections onto the complex lines. Equiv-
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ariancy and constant isotropy of the embedding are important, because these
properties enable us to do computations locally, at a selected point, and pro-
duce a simple formula for the expression of the shape operator of the embedding
in the direction of the second fundamental form (formula (3.8)).

While the standard embeddings of projective spaces and their hyper-
bolic duals by projection operators are constant isotropic, in the sense that
||σ(X,X)|| is constant for every unit tangent vector X, that is no longer the
case with a general Grassmannian of a higher rank, for which there is no con-
venient expression for the shape operator, akin to the one available for the
projective and hyperbolic spaces. That is why the study of finite type is more
promising for submanifolds of projective and hyperbolic spaces than for sub-
manifolds of a general Grassmannian [6].

By applying the Laplacian to (1.1) in succession k times and eliminating
xti , i = 1, 2, . . . , k, from the resulting k + 1 equations, we see that a k-type
submanifold satisfies a polynomial equation in the Laplacian, viz. P (∆)(x −
x0) = 0, where P is the monic polynomial of degree k whose coefficients are
elementary symmetric functions of the eigenvalues λti . For example a 2-type
immersion x = x0 + xp + xq satisfies

(1.2) ∆2x− a∆x+ b(x− x0) = 0, a = λp + λq, b = λpλq

The converse is also true for compact submanifolds, in the sense that if P (∆)(x−
x0) = 0, where P is a monic polynomial of degree k, then the immersion x is
of finite type ≤ k.

2. STANDARD EMBEDDINGS OF CPm AND CHm

We use the Hopf fibration π : S2m+1(1) → CPm(4) from an odd dimen-
sional unit sphere in Cm+1 = R2m+2 to the complex projective space. Given a
point p ∈ CPm we select z ∈ π−1(p) ⊂ S2m+1 ⊂ Cm+1, where z is regarded as
a column vector with m + 1 components, and define Φ(p) = zz∗, where ∗ de-
notes conjugate transpose. The matrix Φ(p) does not depend on the selection
of z in the fiber π−1(p) = [z] and defines an embedding of CPm into the set of
Hermitian matrices of order m+ 1,

H(m+ 1) = {A ∈Mm+1(C) |A∗ = A},

which is made into a Euclidean space EN of dimension N = (m+ 1)2 by intro-
ducing the metric g̃(A,B) = 1

2tr (AB). Φ([z]) is the matrix of the projection
operator P onto the complex line Cz (a 2-dimensional plane in R2m+2) given
by

P (v) = g(z, v)z + g(iz, v)iz,
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where g = Re Ψ and Ψ(z, w) =
∑m

k=0 z̄kwk, z = (z0, z1, . . . , zm), w = (w0, w1, . . . , wm).
The image of CPm(4) under Φ is given by

Φ(CPm) = {P ∈ H(m+ 1)|P 2 = P, trCP = 1}

and it lies in the hypersphere of EN = H(m + 1) centered at I/(m + 1) of
radius

√
m/2(m+ 1) as a minimal submanifold. It also lies in the hyperplane

{A | trA = 1}, whose normal vector is the identity matrix I of order m + 1.
The embedding Φ has parallel second fundamental form σ and is U(m + 1)-
equivariant, where the action of the unitary group in EN = H(m + 1) is by
conjugation. In other words, Φ(A[z]) = AΦ([z])A−1, A ∈ U(m + 1). This
embedding is realized, up to a translation, by a basis of eigenfunctions of the
Laplacian on CPm coming all from the first eigenspace that corresponds to the
smallest non-zero eigenvalue λ1 = 2(m + 1) of the Laplacian. Hence, Φ is an
example of a mass-symmetric embedding of Chen type 1, whose order is {1}.

A similar construction is used to get the complex hyperbolic space CHm(−4)
by Hopf fibration from the anti - de Sitter space H2m+1

1 , which is a complete
Lorentzian hypersurface of Cm+1

1 with the standard Hermitian form Ψ now
of signature (m, 1). By identifying a time-like complex line L = [z] with the
operator of the orthogonal projection P onto L we obtain an embedding of
CHm into the space of Ψ-Hermitian matrices H1(m + 1), which is a pseudo-
Euclidean space ENK of dimension N = (m + 1)2, index K = m2 + 1, and the
metric g̃(A,B) = −1

2tr (AB). We denote the complex projective and hyper-
bolic spaces jointly by CQm(4c), with c = +1 corresponding to the projective
case and c = −1 to the hyperbolic case. Then the projection onto a (time-like)
complex line L = [z], where Ψ(z, z) = c, is given by

P (v) = cΨ(z, v)z = cg(z, v)z + cg(iz, v)iz,

for any v ∈ Cm+1. Its matrix is

P =


|z0|2 cz0z̄1 · · · cz0z̄m
z1z̄0 c|z1|2 · · · cz1z̄m

...
...

. . .
...

zmz̄0 czmz̄1 · · · c|zm|2

 ∈ H(1)(m+ 1) = EN(K).

The image Φ(CQm) lies in the hyperquadric centered at I/(m+ 1) defined by

g̃

(
A− I

m+ 1
, A− I

m+ 1

)
=

cm

2(m+ 1)
,

as a minimal submanifold. Although the dimensionN ofH(1)(m+1) is (m+1)2,
the image Φ(CQm) of the complex space form lies fully in the hyperplane
{A | trA = 1}, so there is actually reduction of codimension by 1.
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The essence of the preceding discussion is that there is an equivariant
embedding Φ of a complex space form with parallel second fundamental form,
namely

Φ : CPm(4) −→ EN = H(m+ 1), g̃(A,B) =
1

2
tr (AB)

for the complex projective space and

Φ : CHm(−4) −→ ENK = H1(m+ 1), g̃(A,B) = −1

2
tr (AB)

for the complex hyperbolic space, equivariant with respect to the action of the
Ψ-unitary group, where Ψ(z, w) = c z̄0w0 +

∑m
j=1 z̄jwj , z, w ∈ Cm+1.

For more details on the embedding Φ see [23], [18], [11], [5].

Therefore, with any isometric immersion x : Mn → CQm(4c), the sub-
manifold Mn of CQm can be seen also as a submanifold of the (pseudo) Eu-
clidean space EN(K) via the composite immersion x̃ = Φ ◦ x, so it makes sense
to study Chen type of submanifolds of non-flat complex space forms via the
embedding Φ. In other words, we want to see when such immersion x̃ can be
decomposed, up to a translation, into a sum of one, two, tree, etc. vector
eigenfunctions of the Laplace operator ∆M of M. Such an eigenfunction, we
recall, is a field of Ψ-Hermitian matrices over M, seen as EN(K)-valued vector
field.

3. SOME BASIC FORMULAS AND NOTATION

Let x : Mn → CQm(4c) be an isometric immersion of a Riemannian n-
manifold into a non-flat model space form CQm(4c). Let Φ : CQm → H(1)(m+
1) be the standard embedding of CQm into the set of Hermitian matrices of
order m+ 1, as in the preceding section. The composite immersion x̃ = Φ ◦ x
realizes M as a submanifold of a (pseudo) Euclidean space EN(K) = H(1)(m +

1), equipped with the usual trace metric 〈A,B〉 = c
2tr (AB). Let ∇, A,D,

denote respectively the Levi-Civita connection, the Weingarten endomorphism,
and the metric connection in the normal bundle, related to CQm and the
embedding Φ. Let the same letters without bar denote the respective objects
for a submanifold M and the immersion x, whereas the same symbols with
tilde will denote the corresponding objects related to the composite immersion
x̃ = Φ◦x of M into the (pseudo) Euclidean space H(1)(m+1). As usual, we use
σ for the second fundamental form of CQm in EN(K) via Φ and symbol h for the
second fundamental form of a submanifold in CQm.An orthonormal basis of the
tangent space TpM at a general point will be denoted by {ei}, i = 1, 2, · · · , n,
and a basis of the normal space T⊥p M will be represented by {er}. In general,
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indices i, j, k will range from 1 to n and indices r, s from n + 1 to 2m. The
tangent vector fields to M will be denoted by letters X,Y, · · · , and vectors
normal to M in CQm by ξ, η, · · · . For a normal basis vector er, the Weingarten
map Aer is abbreviated to Ar and is related to the second fundamental form
by

〈h(X,Y ), er〉 = 〈ArX,Y 〉.
The mean curvature vectorH is defined byH := 1

n

∑
i h(ei, ei) = 1

n

∑
r(trAr)er,

and the squared norm of the second fundamental form by

||h||2 :=
∑
i,j

〈h(ei, ej), h(ei, ej)〉 =
∑
r

trA2
r .

For a normal vector ξ ∈ T⊥M we define its ancillary normal vector field â(ξ)
by

(3.1) â(ξ) :=
∑
i

h(ei, Aξei) =
∑
r

tr (AξAr) er,

which is related to the allied vector field a(ξ) of Chen [3], the latter being the
component of â(ξ) in the direction perpendicular to ξ. Then â : Γ(T⊥M) →
Γ(T⊥M) is a symmetric endomorphism of the normal bundle satisfying

(3.2) 〈â(ξ), η〉 = 〈ξ, â(η)〉 = tr (AξAη), tr â = ‖h‖2.

The operator â is called the Simons operator of the immersion (after [21]) and
figures prominently in many of our formulas.

We give next some important formulas, which are repeatedly used in
subsequent expressions for the iterated Laplacians. For a general submanifold
M, local tangent fields X,Y ∈ Γ(TM) and a local normal field ξ ∈ Γ(T⊥M),
the formulas of Gauss and Weingarten are

(3.3) ∇XY = ∇XY + h(X,Y ), ∇Xξ = −AξX +DXξ.

Let J be the standard Kähler almost complex structure of CQm and M
an arbitrary submanifold. Define an endomorphism S of the tangent space
and a normal bundle valued 1-form F by SX = (JX)T , FX = (JX)N ,
i.e. for X ∈ Γ(TM), JX = SX + FX is the decomposition of JX into
tangential and normal parts. Similarly, for a normal vector ξ we set Jξ =
(Jξ)T + (Jξ)N = Lξ +Kξ, K defining an endomorphism of the normal space
and L : T⊥M → TM a linear map from the normal to the tangent space. The
curvature tensor of CQm(4c) is given by
(3.4)
R(X,Y )Z = c [〈Y,Z〉X −〈X,Z〉Y + 〈JY, Z〉JX −〈JX,Z〉JY − 2〈JX, Y 〉JZ ],
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and the equations of Gauss and Codazzi for a submanifold of CQm(4c) are
respectively given by
(3.5)
R(X,Y, Z,W ) = R(X,Y, Z,W ) + 〈h(X,W ), h(Y, Z)〉 − 〈h(X,Z), h(Y,W )〉,

(3.6)
(∇Xh)(Y,Z)− (∇Y h)(X,Z) = c [〈SY,Z〉FX − 〈SX,Z〉FY − 2〈SX, Y 〉FZ].

The Ricci (1,1)-tensor Q of M as an endomorphism of the tangent space of M
is defined by Q(X) =

∑
iR(X, ei) ei. From (3.4) and (3.5) one gets

(3.7) Q(X) = c(n− 1)X − 3cS2X + nAHX −
∑
r

A2
rX.

The following formula of A. Ros for the shape operator of Φ in the
direction of σ(X,Y ) is also well known (see, for example, [18] and [5])
(3.8)
Āσ(X,Y )V = c [2〈X,Y 〉V + 〈Y, V 〉X + 〈X,V 〉Y + 〈JY, V 〉JX + 〈JX, V 〉JY ].

We also have

(3.9) σ(JX, JY ) = σ(X,Y ), 〈σ(X,Y ), x̃〉 = −〈X,Y 〉, 〈σ(X,Y ), I〉 = 0.

Aurel Bejancu [1], [2], defined a CR-submanifold of a Kähler manifold
(M, g, J) with almost complex structure J , as a submanifold M for which there
exists a differentiable distribution D : p → Dp ⊂ TpM on M so that at each
of its points (1) D is holomorphic, i.e. JDp = Dp and (2) The complementary
orthogonal distribution D⊥ : p → D⊥p ⊂ TpM is anti-invariant, i.e. JD⊥p ⊂
T⊥p M for every point p ∈ M. So, its tangent space splits at each point p ∈ M
into a direct sum of two complementary orthogonal subspaces Dp and D⊥p of
constant dimensions so that

TpM = Dp ⊕D⊥p , with JDp ⊂ Dp and JD⊥p ⊂ T⊥p M.

When dim D⊥p = 0, a submanifold is said to be holomorphic (or J−invariant),
and when dim Dp = 0, it is said to be totally real submanifold. Further, if
dim D⊥p = 1 at every point, a CR-submanifold is said to be of maximal CR-
dimension [10]. At each point of a CR-submanifold M, the tangent space of the
ambient manifold M is decomposed into an orthogonal direct sum of subspaces
as follows

TpM = Dp ⊕D⊥p ⊕ JD⊥p ⊕Wp,

where the first two subspaces span TpM , the last two span T⊥p M, and D and
W are J−invariant (holomorphic) subspaces. It can be shown that M is a
CR-submanifold if and only if FS = 0 [29]. A totally real submanifold Mn is
called a Lagrangian submanifold if T⊥p M = J(TpM) at each point p ∈Mn.
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The gradient of a smooth function f is a vector field given by ∇f =∑
i(eif)ei and the Laplacian of f is

∆f =

n∑
i=1

[(∇eiei)f − eieif ].

The Laplace operator is then extended to act on a vector field V along x̃(M)
by

∆V =
∑
i

[∇̃∇eiei
V − ∇̃ei∇̃eiV ].

The product formula for the Laplacian, which is used in the ensuing computa-
tions, is

(3.10) ∆(f g) = (∆f) g + f(∆g)− 2
∑
i

(eif)(eig),

for smooth functions f, g ∈ C∞(M) and it can be then extended to the scalar
product of vector valued functions, so that the formula is valid also for matrix
products.

The following computation of the second iterated Laplacian of x̃ is pre-
sented in detail in [9]. From the Beltrami’s formula ∆x̃ = −nH̃ we get

(3.11) ∆x̃ = −nH̃ = −nH −
n∑
i=1

σ(ei, ei),

where, here and in the following computations, we understand the Laplacian
to be applied to vector fields along M (viewed as EN(K)−valued functions, i.e.

matrices) componentwise. Taking the Laplacian of (3.11) and using the pre-
ceding formulas we obtain, after a long computation, the expression for the
second iterated Laplacian of the immersion x̃ :

∆2x̃ = − 2n trADH −
n2

2
∇α2 − 3cnS(LH)− n∆⊥H − cn(3n+ 4)H

+ cnJ(JH)T − nâ(H)− 4c
∑
i,j

〈Jh(ej , ei), ej〉Jei

+ n2σ(H,H)− 2c(n+ 1)
∑
i

σ(ei, ei) + 6c
∑
i

σ(FSei, ei)(3.12)

− 2n
∑
i

σ(ei, AHei) + 4n
∑
i

σ(ei, DeiH)− 2c
∑
i

σ(Sei, Jei)

− 2
∑
i,r

σ(Arei, Arei) + 2
∑
r

σ(er, â(er)),

where α2 = 〈H,H〉 is the squared mean curvature and

trADH :=
∑
i

ADeiH
ei, ∆⊥H :=

∑
i

(
D∇eiei

H −DeiDeiH
)
.
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Formula (3.12) holds for any submanifold of CQm(4c). Note that for CR-
submanifolds, S ◦L = 0 and F ◦ S = 0, so that the above expression simplifies
accordingly.

4. SUBMANIFOLDS OF CQm(4c) OF TYPE 1 OR 2

The study of 1-type submanifolds of CPm was initiated in [18], where
CR-minimal submanifolds of the complex projective space were classified. A
parallel investigation for hypersurfaces of CHm was later carried out in [11].
The complete classification of 1-type submanifolds of a non-flat complex space
form CQm(4c), without any a priori assumptions, was achieved in our papers
[4], [5] and is presented below. These submanifolds are of three kinds: canoni-
cally embedded complex space forms of lower dimensions, minimal Lagrangian
submanifolds Mn of a canonically embedded CQn, and, in the case of CPm
only, a geodesic sphere of radius arctan

√
n+ 2 of a canonical CPn.

Theorem 1 ([5]). Let Mn be a complete connected Riemannian manifold
and x : Mn → CQm(4c) an isometric immersion into a non-Euclidean complex
space form. Then x̃ = Φ◦x is of Chen type1 if and only if one of the following
cases occurs

(i) n is even, Mn is congruent to a complex space form CQn/2(4c) and x
embedds Mn as a complex totally geodesic CQn/2(4c) ⊂ CQm(4c).

(ii) Mn is immersed as a totally real minimal submanifold of a complex totally
geodesic CQn(4c) ⊂ CQm(4c).

(iii) n is odd and Mn is embedded by x as a geodesic hypersphere of radius
ρ = cot−1(1/

√
n+ 2) of a complex, totally geodesic CP (n+1)/2(4c) ⊂

CPm(4c).

There is also a local version of this result. Note that all three examples are
CR-submanifolds of CQm: CQn/2 (n even) in part (i) is a holomorphic subman-
ifold, any submanifold in part (ii) is a totally real (actually Lagrangian) one,
and the geodesic sphere in (iii) is an example of CR-submanifold of maximal
CR-dimension. This particular geodesic sphere is not minimal (the minimal
one has radius ρ = cot−1(1/

√
n)), but is distinguished by a certain stabil-

ity property, namely it is the maximal stable geodesic hypersphere of CPn(4)
under variations that preserve the enclosed volume.

Submanifolds of complex space forms of Chen-type 2 have been studied
by several authors. A non-totally geodesic compact Kähler submanifold Mn of
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type 2, lying fully in CPm, was characterized by A. Ros [19] by being Einstein-
Kähler submanifold for which the Simons operator â is constant-homothetic.
This condition is then shown in [25] to be equivalent to Mn being Einstein
parallel submanifold. The known list of these parallel submanifolds from [17]
was used to obtain the following classification

Theorem 2 ([26]). Let x : Mn → CPm be a full isometric holomorphic
immersion of a compact Kähler manifold, which is not totally geodesic. Then
x̃ = Φ◦x is of type 2 if and only if M is an Einstein Kähler parallel submanifold
of degree 2, i.e. one of the following:

(i) CPn(1/2) with complex codimension n(n+ 1)/2.

(ii) A complex quadric Qn with complex codimension 1.

(iii) CPn × CPn with complex codimension n2.

(iv) U(s+ 2)/U(2)× U(s), s ≥ 3, with complex codimension s(s− 1)/2.

(v) SO(10)/U(5) with complex dimension 10 and complex codimension 5.

(vi) E6/Spin(10) × T with complex dimension 16 and complex codimension
10.

It is noteworthy, as observed by Udagawa [26], that all of these submani-
folds have the same order {1, 2}. With the addition of totally geodesic complex
submanifolds and Segre embeddings of general CP k ×CP l, these are precisely
the complex symmetric submanifolds (equivalently, those with parallel second
fundamental form) of CPm, by a result of [17]. In particular, CPn in part (i)
is not a totally geodesic one, but immersed by the second canonical embedding
F2. Example (ii) is the Grassmannian G+

2 (Rn+1) of oriented 2-planes, embed-
ded as a complex quadric that is determined in homogeneous coordinates by
the equation z20 + z21 + · · · + z2n = 0. Example (iii) is realized by the Segre
embedding, explicitly given in homogeneous coordinate by

([z0 : · · · : zn], [w0 : · · · : wn]) 7→ [z0w0 : · · · : zµwν : . . . znwn]

with all possible products of the coordinates, each coordinate of z multiplying
each coordinate of w. The example in part (iv) is realized by the Plücker
embedding of the complex 2-plane Grassmannian G2(Cn).

In contrast to this situation, we have the following non-existence result
for submanifolds of CHm(−4).

Theorem 3 ([9]). There are no holomorphic immersions of Kähler man-
ifolds into CHm which are of 2-type in H1(m+ 1).
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In the proofs of both of the preceding two theorems, the key step is to
show that a submanifold is Einstein and that Simons operator â is constant-
homothetic. Since the main result of Umehara [28] states that holomorphic
Einstein submanifolds of CHm must be totally geodesic (and these are actually
of type 1), the result of Theorem 3 follows. Furthermore, it was shown in [25]
that homothetic â for a Kähler Einstein submanifold Mn of CPm is equivalent
to the normal bundle T⊥M admitting Einstein Kähler metric, which is further
shown to be equivalent to Mn being parallel Einstein Kähler submanifold,
which led to the classification in Theorem 2.

On the opposite end from holomorphic submanifolds among all CR-submani-
folds are the totally real (or anti-invariant) submanifolds, for which the tangent
space of such submanifold is sent into the normal space by the almost complex
structure J of CQm(4c). From ∇̄X(JY ) = J∇̄XY we get

(4.1) AJYX = AJXY = −[Jh(X,Y )]T = −L(h(X,Y )),

so that

(4.2)
∑
i,j

〈Jh(ej , ei), ej〉Jei = −
∑
j

JAJejej = nJ(LH).

This expression is then used in formula (3.12) in order to analyze the 2-type
equation (1.2) for minimal or mass-symmetric totally real submanifolds of
CQm. Separating the components of that equation in all possible directions
leads to the following characterization

Theorem 4 ([9]). Let x : Mn → CQm(4c) be a totally real isometric
immersion of a Riemannian n−manifold into a non-flat complex space form of
constant holomorphic sectional curvature 4c, c = ±1, and let T⊥M = V ⊕W
be the orthogonal decomposition of the normal bundle into the totally real and
holomorphic subbundles. Then if x̃ = Φ ◦ x : Mn → H(1)(m + 1) is a mass-
symmetric immersion of type 2 satisfying

∆2x̃− p∆x̃+ q(x̃− I/(m+ 1)) = 0,

we have

(i) The mean curvature α is constant.

(ii) trADH = 0;

(iii) ∆⊥H + â(H) + [c(3n+ 4)− p]H + 3cJ(LH) = 0;

(iv) Q(X)− J(â(JX))− 2nAHX − kX + n2

2 〈LH,X〉LH = 0,
for every X ∈ Γ(TM), where k = c

4 [q+ 2cf2 + 4n(n+ 3)− 2c(n+ 1)p] is
a constant;
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(v) 〈JDXH,Y, 〉 = 〈JDYH,X〉, for every X,Y ∈ Γ(TM);

(vi) n2

2 〈LH,X〉KH − nK
2(DXH)−K(â(JX)) = 0;

(vii) n2

2 〈KH, ξ〉LH + n
∑

i〈DeiH, ξ〉ei − L(â(Jξ)) = 0, for ξ ∈ W;

(viii)

n2

2
〈H, ξ〉H +

n2

2
〈KH, ξ〉KH + k′ξ

− n
∑
i

〈DeiH,Kξ〉Jei + â(ξ)−K(â(Jξ)) = 0,

for any ξ ∈ W where k′ = c
4 [2cnp− 4n(n+ 1)− 2cf2 − q].

Conversely, if (i)− (viii) hold, then the immersion is mass-symmetric and of
type 1 or 2, provided that the polynomial t2 − pt+ q = 0 has simple real roots
or M is compact.

Shen [20] attempted a study of minimal totally real submanifolds in CPm
which are of Chen type 2, obtaining some information on eigenvalue relations.
Nonetheless, it seems difficult to obtain any concrete classification or informa-
tion on totally real submanifolds of type 2 (minimal, mass-symmetric, etc.)
beyond the above relations describing their geometry. While any classification
of totally real submanifolds of type 2 in CQm remains elusive at present, one
can try to determine the Chen type of some model examples of totally real
symmetric submanifolds in CPm given in [15] and [16], such as (in irreducible
case) SU(n)/SO(n), SU(n), SU(2n)/Sp(n) and E6/F4.

From this characterization we obtain for a Lagrangian immersion the
following

Corollary 5 ([9]). If x : Mn → CQn(4c) is a Lagrangian immersion
for which x̃ is mass-symmetric and of type 2 then

(i) f := nα = const;

(ii) trADH = 0

(iii) ∆⊥H + â(H) + [c(3n+ 1)− p]H = 0;

(iv) Q(X)− J(â(JX))− 2nAHX − kX + n2

2 〈JH,X〉JH = 0, for every X ∈
Γ(TM)

(v) 〈JDXH,Y 〉 = 〈JDYH,X〉, for every X,Y ∈ Γ(TM).
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(vi) DJHH = 0, ∇JH(JH) = 0, and AH(JH) = Jh(JH, JH).
In particular, the integral curves of JH are geodesics.

As we know from Theorem 1 (ii), minimal Lagrangian submanifolds in
CQm(4c) are actually of type 1 (they are also mass-symmetric) and the only to-
tally real submanifolds Mn of CQm which are of type 1 are minimal Lagrangian
submanifolds in a canonically embedded CQn ⊂ CQm, [18] , [5]. It would be
interesting to find out which totally real minimal submanifolds (which are not
Lagrangian in some smaller-dimensional CQn) are of type 2.

The classification of real hypersurfaces of Chen type 2 was undertaken in
[14], [27] for hypersurfaces of CPm with constant mean curvature and in [8]
for Hopf hypersurfaces of CQm, where Udagawa’s classification from [27] was
corrected and completed. A hypersurface M2m−1 ⊂ CQm is a Hopf hypersur-
face if the structure vector field U := −Jξ, where ξ is a unit normal to the
hypersurface, is proper for the shape operator A, i.e A(U) = µU.

Theorem 6 ([8]). Let M2m−1 be a Hopf hypersurface of CPm(4), (m ≥
2). Then M2m−1 is of type 2 in H(m + 1) via Φ if and only if it is an open
portion of one of the following

(i) A geodesic hypersphere of any radius r ∈ (0, π2 ), except r = cot−1
√

1
2m+1

(ii) The tube of radius r = cot−1
√

k+1
m−k about a canonically embedded totally

geodesic CP k(4) ⊂ CPm(4), for any k = 1, ...,m− 2

(iii) The tube of radius r = cot−1
√

2k+1
2(m−k)+1 about a canonically embedded

CP k(4) ⊂ CPm(4), for any k = 1, ...,m− 2

(iv) The tube of radius r = cot−1(
√
m +

√
m+ 1) about the complex quadric

Qm−1 ⊂ CPm(4)

(v) The tube of radius r = cot−1
√√

2m2 − 1 +
√

2m2 − 2 about the complex
quadric Qm−1 ⊂ CPm(4).

It turns out that under the 2-type condition, being a Hopf hypersurface
is equivalent to having constant mean curvature (CMC). Therefore, the same
classification holds when M is assumed to have constant mean curvature, in-
stead of being Hopf. In that regard Theorems 1 and 2 in [27] are deficient and
incomplete since Udagawa’s list contains examples (i)− (iii) only. The list of
items (i)− (v) is the correct and complete classification of CMC hypersurfaces
of type 2 in CPm(4). Likewise, a previous announcement of our theorem in [6]
is incomplete, since it was based on Udagawa’s result.

In the complex hyperbolic space we have the following
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Theorem 7 ([8]). Let M2m−1 be a real hypersurface of CHm(−4), (m ≥
2) for which we assume that it is a Hopf hypersurface or has constant mean
curvature. Then M2m−1 is of type 2 in H1(m + 1) via Φ if and only if it is
(an open portion of) either a geodesic hypersphere of arbitrary radius r > 0
or a tube of arbitrary radius r > 0 about a totally geodesic complex hyperbolic
hyperplane CHm−1(−4).

Another well-studied class of hypersurfaces of CQm is the class of ruled
real hypersurfaces [12], [13]. Such a hypersurface M2m−1 is obtained by mov-
ing a totally geodesic CQm−1(4c) along a curve in CQm(4c) so that M is
foliated by complex hyperplanes CQm−1(4c). Ruled hypersurfaces are never
Hopf hypersurfaces, as AU has components in both U and U⊥ directions, where
U := −Jξ is the structure vector field. Thus, there is a unit tangent vector
W ⊥ U in the holomorphic subspace of TM so that AW = νU, ν 6= 0. Then,
AU = 〈AU,U〉U + νW. For these hypersurfaces we have

Theorem 8 ([9]). There exist no real ruled hypersurface of CQm which
is mass-symmetric and of type 2 in EN(K).

5. SOME EXAMPLES OF CR-SUBMANIFOLDS OF 3-TYPE

In his papers [24] and [26], S. Udagawa gave several examples of compact
Kähler submanifolds in CPm that are of type 3.

Example 1 ([26]). All compact irreducible Hermitian symmetric subman-
ifolds of degree 3 in CPm(1) are of type 3 and of order {1, 2, 3}. They have one
of the following homogeneous representations

CPn(1/3), SU(r + 3)/S(U(r)× U(3)) (r ≥ 3), Sp(3)/U(3),

SO(12)/U(6), SO(14)/U(7), E7/E6 × T.

Example 2 ([24]). The Segre embedding f : CPn×CPm −→ CPmn+n+m,
where m > n, is of type 3 and of order (a) {1, 3, 4}, if 2n + 4 < m + 1 (b)
{1, 2, 4}, if m + 1 < 2n + 4 < n + m + 2 (c) {1, 2, 3}, if 2n + 4 = m + 1 or
n+m+ 2 ≤ 2n+ 4. None of these submanifolds is an Einstein manifold.

Example 3 ([24]). The extended Segre embedding

CPn × CPn × CPn −→ CP (n+1)3−1 (n ≥ 2),

where homogeneous coordinates, one chosen in each of the three factors, are
multiplied together for all possible selections of these coordinates to obtain the
embedding. This embedding is of type 3 and of order {1, 2, 4}. Moreover, the
embedded submanifold in this case is Einstein.
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Hopf hypersurfaces of CPm and CHm, m ≥ 2, with constant principal
curvatures are homogeneous and they are known. There are six classes of them
in CPm labeled as A1, A2, B,C,D, and E (forming what is known as Takagi’s
list) and five of them in CHm, labeled as A0, A

′
1, A

′′
1, A2 and B (forming the so-

called Montiel’s list). In particular, a class-B Hopf hypersurface in CPm(4) is
a tube of arbitrary radius r ∈ (0, π/4) about a canonically embedded complex
quadric Qm−1 = SO(m + 1)/SO(2) × SO(m − 1), whereas a class-B Hopf
hypersurface in CHm(−4) is a tube of arbitrary radius r ∈ R+ about the
canonically embedded (totally geodesic, totally real) RHm in CHm. The two
examples presented in Theorem 6 (iv), (v), are class-B Hopf hypersurfaces with
constant principal curvatures which are of Chen type 2. We can show that all
the others in that class are of Chen type 3. Moreover, any Hopf hypersurface
of class-B is mass-symmetric in a hyperquadric of EN(K) centered at I/(m+ 1).

Example 4 ([8]). Every class-B Hopf hypersurface in CHm(−4) is mass-
symmetric and of type 3 via x̃.

Example 5 ([8]). Every class-B Hopf hypersurface in CPm(4) is mass-
symmetric and of type 3, with the exception of those two tubes about Qm−1

given in Theorem 2 (iv), (v), which are mass-symmetric and of type 2.

Continuing the investigation, it is possible to compute the third iterated
Laplacian of x̃ for holomorphic submanifolds. Namely, using the necessary
formulas from Section 3, take the Laplacian of a simplified formula (3.12) for
holomorphic submanifolds to get

∆3x̃ = − 8c∇‖h‖2 − 4(n+ 2)(3n+ 8)
∑
i

σ(ei, ei)− 4
∑
i

σ(Q2ei, ei)

+ 4c(3n+ 8)
∑
i

σ(Qei, ei)− 8
∑
i,r

σ((∇eiQ)(Arei), er)

+ 2
∑
i

σ((∆Q)ei, ei) + 4
∑
i,j,r

σ(h(ei, Arej), h(ei, Arej))

+ 4c(n+ 2)
∑
r

σ(er, â(er)) + 4
∑
r

σ(â(er), â(er))(5.1)

− 4
∑
i,r,s

tr (ArAs)σ(Arei, Asei) + 8
∑
i,r

σ(Arei, (Dei â)er)

+ 2
∑
r

σ(er, (∆
⊥â)er).

where Q is the Ricci tensor.
Since the only term tangent to a holomorphic submanifold M in these

iterated Laplacians is −8c∇‖h‖2, it follows that a type-3 full holomorphic im-
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mersion x : Mn → CQm is mass-symmetric if and only if ‖h‖ is constant, which
is equivalent, by means of the Gauss equation, to M having constant scalar
curvature and conversely. The formula (5.1) is essential in any investigation
of holomorphic submanifolds of complex space forms of type 3, the study of
which we hope to pursue in a subsequent paper.

In this survey we presented results on CR-submanifolds of low Chen type,
dealing primarily with real hypersurfaces and complex and totally real sub-
manifolds, the two classes that are on the opposite ends of the entire spec-
trum of CR-submanifolds. The case of Chen type of a general (proper) CR-
submanifold, which is none of the mentioned kinds, largely remains terra incog-
nita and deserves closer scrutiny in future research.
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[6] I. Dimitrić, Low-type submanifolds of projective spaces and Grassmannians. In: D. An-
drica and S. Moroianu (Ed.), Contemporary Geometry and Topology and Related Topics.
The 8th International Workshop on Differential Geometry and its Applications, pp. 113-
140. Cluj University Press, Cluj-Napoca, 2008.
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[10] M. Djorić and M. Okumura, CR Submanifolds of Complex Projective Space. Springer
Verlag, New York, 2010.

[11] O. J. Garay and A. Romero, An isometric embedding of the complex hyperbolic space in
a pseudo-Euclidean space and its application to the study of real hypersurfaces. Tsukuba
J. Math. 14 (1990), 293–313.

[12] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space.
Trans. Amer. Math. Soc. 296 (1986), 137–149.



17 Chen Type of Some Classes of CR-Submanifolds 455

[13] Y. Maeda, On real hypersurfaces of a complex projective space. J. Math. Soc. Japan 28
(1976), 394–316.

[14] A. Martinez and A. Ros, On real hypersurfaces of finite type in CPm. Kodai Math. J. 7
(1984), 304–316.

[15] H. Naitoh, Totally real parallel submanifolds in Pn(c). Tokyo J. Math. 4 (1981), 279–306.

[16] H. Naitoh and M. Takeuchi, Totally real submanifolds and symmetric bounded domains.
Osaka J. Math. 19 (1982), 717–731.

[17] H. Nakagawa and R. Takagi, On locally symmetric Kaehler submanifolds in a complex
projective space. J. Math. Soc. Japan 28 (1976), 638–667.

[18] A. Ros, Spectral geometry of CR-minimal submanifolds in the complex projective space.
Kodai Math. J. 6 (1983), 88–99.

[19] A. Ros, On spectral geometry of Kaehler submanifolds. J. Math. Soc. Japan 36 (1984),
433–448.

[20] Y.-B. Shen, On spectral geometry of totally real minimal submanifolds (Chinese). Chinese
Ann. Math., Ser A 12 (1991), 745–753.

[21] J. Simons, Minimal varieties in Riemannian manifolds. Ann. of Math. (2) 88 (1968),
62–105.

[22] B. Smyth, Differential geometry of complex hypersurfaces. Ann. of Math. (2) 85 (1967),
246–266.

[23] S.S. Tai, Minimum imbeddings of compact symmetric spaces of rank one. J. Differential
Geom. 2 (1968), 55–66.

[24] S. Udagawa, Spectral geometry of compact Hermitian symmetric submanifolds. Math. Z.
192, 57–72, (1986).

[25] S. Udagawa, Einstein-parallel Kaehler submanifolds in a complex projective space. Tokyo
J. Math. 9 (1986), 335–340.

[26] S. Udagawa, Spectral geometry of Kaehler submanifolds of a complex projective space. J.
Math. Soc. Japan 38 (1986), 453–472.

[27] S. Udagawa, Bi-order real hypersurfaces in a complex projective space. Kodai Math. J.
10 (1987), 182–196.

[28] M. Umehara, Einstein Kaehler submanifolds of a complex linear or hyperbolic space.
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