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We consider two eigenvalue problems, associated with a continuous function and
with his approximation through a simple (step) function. We prove that their
corresponding eigenvalues have very different properties.
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1. INTRODUCTION

Consider µW < µO and an increasing piecewise - C1 function such that

(1) µ : (0, L)→ R, µW ≤ µ(x) ≤ µO.
We study the eigenvalue problem

(2) −(µfx)x + k2µf =
1

σ
k2fµx, x ∈ (0, L), k > 0;

(3) (µfxf)+(0) = µWkf
2(0), (µfxf)−(L) = −µOkf2(L);

where + and − are lateral limit values, k is a parameter (wave number) and
σ, f are the eigenvalues and eigenfunctions.

We consider the same problem (2)-(3) when µ is approximated through a
simple (step) function µS , with jumps in some interior points xi ∈ (0, L); then
(µS)x is a Dirac distribution. The corresponding eigenvalues and eigenfunctions
are denoted by fS , σS . The functions µ, µS are “very close” if the number of
interior points xi is very large (see the Figure 1 below).

When µ is linear and continuous, we get an upper bound of σ which is not
depending on k. Moreover, we prove that σ becomes arbitrary small (positive)
with increasing L. On the contrary, we get fS such that the corresponding σS
become infinite with increasing k, independent of L.

The main results of this paper is following. Even if the step function
µS is very close to µ, there exists a strong difference betwen the eigenvalues
corresponding to µS and µ.
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Graphs of a function f and the approximating simple function φ1
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Graphs of a function f and the approximating simple function φ2 

φ1(x) =

{
0, 0 ≤ f(x) < 1,

1, f(x) ≥ 1.

φ2(x) =





0, 0 ≤ f(x) < 1
2 ,

1
2 ,

1
2 ≤ f(x) < 1,

1, 1 ≤ f(x) < 3
2 ,

3
2 ,

3
2 ≤ f(x) < 2,

2, f(x) ≥ 2.

Figure 1: Approximations of a continuous function by simple (step) functions.

The system (1)-(2) is related with the linear stability of the displacements
in a Hele-Shaw cell (a technical device described in [1], [10]). The three-layer
Hele-Shaw model is studied in [2], [8], [9]. The papers [3]-[6] are concerning the
multi-layer Hele - Shaw model. In these models, the boundary conditions (3)
contain also σ. Therefore, even if the system (1)-(2) is much more simpler, we
have a “singular behavior” of the eigenvalues. Some contradictions concerning
the multi-layer model are proved in [11].

The very strong dependence of the eigenvalues of an algebraic matrix, as
functions of the coefficients, has been highlighted in the well-known book [12].

2. WHEN µ IS A CONTINUOUS FUNCTION

We consider the linear continuous function µ such that

(4) µ(x) = (µO − µW )x/L+ µW , ∀x ∈ [0, L].

We multiply with f in (2), we integrate on [0, L] and get
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(5) (µfxf)+(0)− (µfxf)−(L)+
∫ L

0
µf2x + k2

∫ L

0
µf2 =

k2

σ

∫ L

0
µxf

2.

The relations (2)-(3) and (5) give us

(6) σL =
k2
∫ L
0 µxf

2

µWkf2(0) + µOkf2(L) +
∫ L
0 (µf2x + k2µf2)

.

We neglect some positive terms in the denominator and for the linear µ we
obtain

(7) σL ≤
∫ L
0 µxf

2

∫ L
0 µf2

≤ µO − µW
LµW

.

In the general case, when µ(x) is an arbitrary continuous function on [0, L]
(not related with µW and µO), from (6) we obtain the following estimate for
the corresponding eigenvalue, denoted by σC :

(8) σC ≤
Maxx (µx)

Minx (µ)
.

Both above estimates are not depending on k. Moreover, the relation (7) gives
us

(9) L→∞⇒ σL → 0.

3. WHEN µ IS APPROXIMATED BY A SIMPLE (STEP)
FUNCTION µS

We divide (0, L) in N small intervals, separated by the interfaces xi,

(10) xi = iL/N, i = 0, 1, ..., N ; x0 = 0, xN = L.

For i = 1, ..., N we introduce the step function

(11) µS(x) = µW + i[µ], x ∈ [xi−1, xi); [µ] = [µO − µW ]/(N + 1).

When N = 3 we have
- three “intermediate ” values µi, such that µW < µ1 < µ2 < µ3 < µO;
- four equally spaced interfaces x0 = 0, x1 = L/3, x2 = 2L/3, x3 = L

such that
µS(x) = µW + µi, x ∈ [xi−1, xi);

- four equal jumps µ1−µW = µ2−µ1 = µ3−µ2 = µO−µ3 = (µO−µW )/4.
From now on, we omit the subscript S .
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The step function (11) is very “close” to the function (4) when N is large
enough. The derivative µx is a Dirac distribution, therefore (see Remark 2
below)

(12)

∫ L

0
µxf

2 =

i=N−1∑

i=1

f2(xi)[µ]i,

(13) −
∫ L

0
(µfxf)x = (µ+f+x f)(x0)− (µ−f−x f)(xN ) +

i=N−1∑

i=1

[µfx]if(xi),

where [F ]i = F+(xi) − F−(xi). As µi is constant on each small interval, we
get

(14) −fxx + k2f = 0, x ∈ (xi−1, xi).

We consider the following particular solution of (14):

(15) f(x) =

{
ekx , x ∈ [x0, xN−1];

f(xN−1)e
−k(x−xN−1), x ∈ [xN−1, xN ].

The above function f is continuous, but fx is not and (recall xN = L)

(16) f(xN−1) = ekL(N−1)/N , f(xN ) = ek(2xN−1−L) = ekL(N−2)/N .

We multiply (2) withf , then from (12), (13), (15) we get

(17) σ =

∑i=N−1
i=1 k2[µ]if

2
i

DEN +
∑i=N

i=1 Ii
,

(18) DEN = µ1kf
2
0 + µNkf

2
N +

i=N−2∑

i=1

[µ]ikf
2
i − (µN−1 + µN )kf2N−1,

(19) Ii =

∫ xi

xi−1

µi(f
2
x + k2f2), fi = f(xi).

Remark 1. For large N we have DEN > 0. For this, we need (see (18))

(20) µ1 + µNf
2
N +

i=N−2∑

i=1

[µ]if
2
i > (µN−1 + µN )f2N−1.

We recall (16) and use the well known relation

y + y2 + ...+ yN−2 = (yN−1 − 1)/(y − 1), y = e2kL/N ,

therefore (20) is equivalent with

µ1 + (µO −
µO − µW
N + 1

)e2kL(N−2)/N +
µO − µW
N + 1

× yN−1

y − 1
>
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(µO − 2
µO − µW
N + 1

)e2kL(N−1)/N .

The last inequality holds for N large enough, when (N − 1)/N → 1, (N −
2)/N → 1.

By direct calculation we get

Lemma 1.

(21) f(x) = e
+
−kx, J(a, c) =

∫ c

a
(f2x + k2f2)⇒ J(a, c) ≤ k{f2(a) + f2(c)}.

The main result of this section is set out in the following proposition.

Proposition 1.

(22) σ →∞ when k →∞.

Proof. From the relations (17), (20), (21), we get

(23) σ ≥ k
∑i=N−1

i=1 [µ]ie
2kxi

a0 +
∑i=N−1

i=1 aie2kxi + aNe2kz
, ai > 0.

We prove that the maximum value of the exponential is the same in the nu-
merator and the denominator of the above ratio. Indeed, from the relations
(15) - (16) it follows

f(xN ) = ekz, z =
2(N − 1)L

N
− L =

L(N − 2)

N
.

Therefore

2xN−1 = 2
(N − 1)L

N
> 2

L(N − 2)

N
= 2z.

It was very important that jumps [µ]i were positive.

Remark 2. We give a proof for the formula (12). Consider µ : [a, c]→ R,
b ∈ (a, c), µ(x) = A, x ∈ [a, b); µ(x) = B, x ∈ [b, c]. We see that µx(x) = 0
for almost every x ∈ [a, c]. Only in the point x = b, we have

µx(b) = lim
ε→0

µ(b)− µ(b− ε)
ε

= lim
ε→0

B −A
ε

.

The next property is verified by a sufficiently smooth function F : there exists
a point χ ∈ (b − ε, b) such that

∫ b
b−ε F (x)dx = εF (χ). Therefore, when ε → 0

we get
∫ c

a
µx(x)F (x)dx =

∫ b

b−ε
µx(x)F (x)dx→ [µ]bF (b), [µ]b = µ+(b)−µ−(b) = B−A.
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