EIGENVALUES AND APPROXIMATION THROUGH SIMPLE FUNCTIONS

GELU I. PAŞA

Communicated by Lucian Beznea

Abstract

We consider two eigenvalue problems, associated with a continuous function and with his approximation through a simple (step) function. We prove that their corresponding eigenvalues have very different properties.

AMS 2010 Subject Classification: 34B09, 34D20, 35C09, 35J20, 76S05.
Key words: Hele-Shaw displacements, hydrodynamic stability, eigenvalue problems, simple functions approximations.

1. INTRODUCTION

Consider $\mu_{W}<\mu_{O}$ and an increasing piecewise $-C^{1}$ function such that

$$
\begin{equation*}
\mu:(0, L) \rightarrow \mathbf{R}, \quad \mu_{W} \leq \mu(x) \leq \mu_{O} \tag{1}
\end{equation*}
$$

We study the eigenvalue problem

$$
\begin{equation*}
-\left(\mu f_{x}\right)_{x}+k^{2} \mu f=\frac{1}{\sigma} k^{2} f \mu_{x}, \quad x \in(0, L), \quad k>0 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left(\mu f_{x} f\right)^{+}(0)=\mu_{W} k f^{2}(0), \quad\left(\mu f_{x} f\right)^{-}(L)=-\mu_{O} k f^{2}(L) ; \tag{3}
\end{equation*}
$$

where ${ }^{+}$and ${ }^{-}$are lateral limit values, k is a parameter (wave number) and σ, f are the eigenvalues and eigenfunctions.

We consider the same problem (2)-(3) when μ is approximated through a simple (step) function μ_{S}, with jumps in some interior points $x_{i} \in(0, L)$; then $\left(\mu_{S}\right)_{x}$ is a Dirac distribution. The corresponding eigenvalues and eigenfunctions are denoted by f_{S}, σ_{S}. The functions μ, μ_{S} are "very close" if the number of interior points x_{i} is very large (see the Figure 1 below).

When μ is linear and continuous, we get an upper bound of σ which is not depending on k. Moreover, we prove that σ becomes arbitrary small (positive) with increasing L. On the contrary, we get f_{S} such that the corresponding σ_{S} become infinite with increasing k, independent of L.

The main results of this paper is following. Even if the step function μ_{S} is very close to μ, there exists a strong difference betwen the eigenvalues corresponding to μ_{S} and μ.

Graphs of a function f and the approximating simple function ϕ_{1}

Graphs of a function f and the approximating simple function ϕ_{2}

$$
\phi_{1}(x)= \begin{cases}0, & 0 \leq f(x)<1 \\ 1, & f(x) \geq 1\end{cases}
$$

$$
\phi_{2}(x)= \begin{cases}0, & 0 \leq f(x)<\frac{1}{2} \\ \frac{1}{2}, & \frac{1}{2} \leq f(x)<1 \\ 1, & 1 \leq f(x)<\frac{3}{2} \\ \frac{3}{2}, & \frac{3}{2} \leq f(x)<2 \\ 2, & f(x) \geq 2\end{cases}
$$

Figure 1: Approximations of a continuous function by simple (step) functions.
The system (1)-(2) is related with the linear stability of the displacements in a Hele-Shaw cell (a technical device described in [1], [10]). The three-layer Hele-Shaw model is studied in [2], [8], [9]. The papers [3]-[6] are concerning the multi-layer Hele - Shaw model. In these models, the boundary conditions (3) contain also σ. Therefore, even if the system (1)-(2) is much more simpler, we have a "singular behavior" of the eigenvalues. Some contradictions concerning the multi-layer model are proved in [11].

The very strong dependence of the eigenvalues of an algebraic matrix, as functions of the coefficients, has been highlighted in the well-known book [12].

2. WHEN $\boldsymbol{\mu}$ IS A CONTINUOUS FUNCTION

We consider the linear continuous function μ such that

$$
\begin{equation*}
\mu(x)=\left(\mu_{O}-\mu_{W}\right) x / L+\mu_{W}, \quad \forall x \in[0, L] \tag{4}
\end{equation*}
$$

We multiply with f in (2), we integrate on $[0, L]$ and get

$$
\begin{gather*}
\left(\mu f_{x} f\right)^{+}(0)-\left(\mu f_{x} f\right)^{-}(L)+ \tag{5}\\
\int_{0}^{L} \mu f_{x}^{2}+k^{2} \int_{0}^{L} \mu f^{2}=\frac{k^{2}}{\sigma} \int_{0}^{L} \mu_{x} f^{2}
\end{gather*}
$$

The relations (2)-(3) and (5) give us

$$
\begin{equation*}
\sigma_{L}=\frac{k^{2} \int_{0}^{L} \mu_{x} f^{2}}{\mu_{W} k f^{2}(0)+\mu_{O} k f^{2}(L)+\int_{0}^{L}\left(\mu f_{x}^{2}+k^{2} \mu f^{2}\right)} \tag{6}
\end{equation*}
$$

We neglect some positive terms in the denominator and for the linear μ we obtain

$$
\begin{equation*}
\sigma_{L} \leq \frac{\int_{0}^{L} \mu_{x} f^{2}}{\int_{0}^{L} \mu f^{2}} \leq \frac{\mu_{O}-\mu_{W}}{L \mu_{W}} \tag{7}
\end{equation*}
$$

In the general case, when $\mu(x)$ is an arbitrary continuous function on $[0, L]$ (not related with μ_{W} and μ_{O}), from (6) we obtain the following estimate for the corresponding eigenvalue, denoted by σ_{C} :

$$
\begin{equation*}
\sigma_{C} \leq \frac{\operatorname{Max}_{x}\left(\mu_{x}\right)}{\operatorname{Min}_{x}(\mu)} \tag{8}
\end{equation*}
$$

Both above estimates are not depending on k. Moreover, the relation (7) gives us

$$
\begin{equation*}
L \rightarrow \infty \Rightarrow \sigma_{L} \rightarrow 0 \tag{9}
\end{equation*}
$$

3. WHEN μ IS APPROXIMATED BY A SIMPLE (STEP) FUNCTION μ_{S}

We divide $(0, L)$ in N small intervals, separated by the interfaces x_{i},

$$
\begin{equation*}
x_{i}=i L / N, \quad i=0,1, \ldots, N ; \quad x_{0}=0, \quad x_{N}=L \tag{10}
\end{equation*}
$$

For $i=1, \ldots, N$ we introduce the step function

$$
\begin{equation*}
\mu_{S}(x)=\mu_{W}+i[\mu], \quad x \in\left[x_{i-1}, x_{i}\right) ; \quad[\mu]=\left[\mu_{O}-\mu_{W}\right] /(N+1) \tag{11}
\end{equation*}
$$

When $N=3$ we have

- three "intermediate" values μ_{i}, such that $\mu_{W}<\mu_{1}<\mu_{2}<\mu_{3}<\mu_{O}$;
- four equally spaced interfaces $x_{0}=0, x_{1}=L / 3, x_{2}=2 L / 3, x_{3}=L$ such that

$$
\mu_{S}(x)=\mu_{W}+\mu_{i}, x \in\left[x_{i-1}, x_{i}\right)
$$

- four equal jumps $\mu_{1}-\mu_{W}=\mu_{2}-\mu_{1}=\mu_{3}-\mu_{2}=\mu_{O}-\mu_{3}=\left(\mu_{O}-\mu_{W}\right) / 4$.

From now on, we omit the subscript S.

The step function (11) is very "close" to the function (4) when N is large enough. The derivative μ_{x} is a Dirac distribution, therefore (see Remark 2 below)

$$
\begin{equation*}
\int_{0}^{L} \mu_{x} f^{2}=\sum_{i=1}^{i=N-1} f^{2}\left(x_{i}\right)[\mu]_{i} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
-\int_{0}^{L}\left(\mu f_{x} f\right)_{x}=\left(\mu^{+} f_{x}^{+} f\right)\left(x_{0}\right)-\left(\mu^{-} f_{x}^{-} f\right)\left(x_{N}\right)+\sum_{i=1}^{i=N-1}\left[\mu f_{x}\right]_{i} f\left(x_{i}\right) \tag{13}
\end{equation*}
$$

where $[F]_{i}=F^{+}\left(x_{i}\right)-F^{-}\left(x_{i}\right)$. As μ_{i} is constant on each small interval, we get

$$
\begin{equation*}
-f_{x x}+k^{2} f=0, \quad x \in\left(x_{i-1}, x_{i}\right) \tag{14}
\end{equation*}
$$

We consider the following particular solution of (14):

$$
f(x)= \begin{cases}e^{k x} & , x \in\left[x_{0}, x_{N-1}\right] \tag{15}\\ f\left(x_{N-1}\right) e^{-k\left(x-x_{N-1}\right)}, & x \in\left[x_{N-1}, x_{N}\right]\end{cases}
$$

The above function f is continuous, but f_{x} is not and (recall $x_{N}=L$)

$$
\begin{equation*}
f\left(x_{N-1}\right)=e^{k L(N-1) / N}, \quad f\left(x_{N}\right)=e^{k\left(2 x_{N-1}-L\right)}=e^{k L(N-2) / N} \tag{16}
\end{equation*}
$$

We multiply (2) with f, then from (12), (13), (15) we get

$$
\begin{equation*}
\sigma=\frac{\sum_{i=1}^{i=N-1} k^{2}[\mu]_{i} f_{i}^{2}}{D E N+\sum_{i=1}^{i=N} I_{i}}, \tag{17}
\end{equation*}
$$

$$
D E N=\mu_{1} k f_{0}^{2}+\mu_{N} k f_{N}^{2}+\sum_{i=1}^{i=N-2}[\mu]_{i} k f_{i}^{2}-\left(\mu_{N-1}+\mu_{N}\right) k f_{N-1}^{2}
$$

$$
\begin{equation*}
I_{i}=\int_{x_{i-1}}^{x_{i}} \mu_{i}\left(f_{x}^{2}+k^{2} f^{2}\right), \quad f_{i}=f\left(x_{i}\right) \tag{19}
\end{equation*}
$$

Remark 1. For large N we have $D E N>0$. For this, we need (see (18))

$$
\begin{equation*}
\mu_{1}+\mu_{N} f_{N}^{2}+\sum_{i=1}^{i=N-2}[\mu]_{i} f_{i}^{2}>\left(\mu_{N-1}+\mu_{N}\right) f_{N-1}^{2} \tag{20}
\end{equation*}
$$

We recall (16) and use the well known relation

$$
y+y^{2}+\ldots+y^{N-2}=\left(y^{N-1}-1\right) /(y-1), \quad y=e^{2 k L / N}
$$

therefore (20) is equivalent with

$$
\mu_{1}+\left(\mu_{O}-\frac{\mu_{O}-\mu_{W}}{N+1}\right) e^{2 k L(N-2) / N}+\frac{\mu_{O}-\mu_{W}}{N+1} \times \frac{y^{N-1}}{y-1}>
$$

$$
\left(\mu_{O}-2 \frac{\mu_{O}-\mu_{W}}{N+1}\right) e^{2 k L(N-1) / N} .
$$

The last inequality holds for N large enough, when $(N-1) / N \rightarrow 1, \quad(N-$ 2) $/ N \rightarrow 1$.

By direct calculation we get

Lemma 1.

$$
\begin{equation*}
f(x)=e^{+-k x}, \quad J(a, c)=\int_{a}^{c}\left(f_{x}^{2}+k^{2} f^{2}\right) \Rightarrow J(a, c) \leq k\left\{f^{2}(a)+f^{2}(c)\right\} \tag{21}
\end{equation*}
$$

The main result of this section is set out in the following proposition.
Proposition 1.

$$
\begin{equation*}
\sigma \rightarrow \infty \quad \text { when } \quad k \rightarrow \infty \tag{22}
\end{equation*}
$$

Proof. From the relations (17), (20), (21), we get

$$
\begin{equation*}
\sigma \geq k \frac{\sum_{i=1}^{i=N-1}[\mu]_{i} e^{2 k x_{i}}}{a_{0}+\sum_{i=1}^{i=N-1} a_{i} e^{2 k x_{i}}+a_{N} e^{2 k z}}, \quad a_{i}>0 . \tag{23}
\end{equation*}
$$

We prove that the maximum value of the exponential is the same in the numerator and the denominator of the above ratio. Indeed, from the relations (15) - (16) it follows

$$
f\left(x_{N}\right)=e^{k z}, \quad z=\frac{2(N-1) L}{N}-L=\frac{L(N-2)}{N} .
$$

Therefore

$$
2 x_{N-1}=2 \frac{(N-1) L}{N}>2 \frac{L(N-2)}{N}=2 z .
$$

It was very important that jumps $[\mu]_{i}$ were positive.
Remark 2. We give a proof for the formula (12). Consider $\mu:[a, c] \rightarrow \mathbf{R}$, $b \in(a, c), \mu(x)=A, x \in[a, b) ; \quad \mu(x)=B, x \in[b, c]$. We see that $\mu_{x}(x)=0$ for almost every $x \in[a, c]$. Only in the point $x=b$, we have

$$
\mu_{x}(b)=\lim _{\epsilon \rightarrow 0} \frac{\mu(b)-\mu(b-\epsilon)}{\epsilon}=\lim _{\epsilon \rightarrow 0} \frac{B-A}{\epsilon} .
$$

The next property is verified by a sufficiently smooth function F : there exists a point $\chi \in(b-\epsilon, b)$ such that $\int_{b-\epsilon}^{b} F(x) d x=\epsilon F(\chi)$. Therefore, when $\epsilon \rightarrow 0$ we get

$$
\int_{a}^{c} \mu_{x}(x) F(x) d x=\int_{b-\epsilon}^{b} \mu_{x}(x) F(x) d x \rightarrow[\mu]_{b} F(b), \quad[\mu]_{b}=\mu^{+}(b)-\mu^{-}(b)=B-A .
$$

REFERENCES

[1] J. Bear, Dynamics of Fluids in Porous Media. Elsevier, New York, 1972.
[2] C. Carsso and G. Paşa, An optimal viscosity profile in the secondary oil recovery. RAIRO M2AN - Mod. Math. et Analyse Numérique, 32 (1998), 2, 211-221.
[3] P. Daripa, Studies on stability in three-layer Hele-Shaw flows. Phys. Fluids., 20 (2008), 112101.
[4] P. Daripa, Hydrodynamic stability of multi-layer Hele-Shaw flows. J. Stat. Mech., Art. No. P12005 (2008).
[5] P. Daripa and X. Ding, Universal stability properties for Multi-layer Hele-Shaw flows and Applications to Instability Control. SIAM J. Appl. Math., 72 (2012), 1667-1685.
[6] P. Daripa and X. Ding, A Numerical Study of Instability Control for the Design of an Optimal Policy of Enhanced Oil Recovery by Tertiary Displacement Processes. Transport in Porous Media 93 (2012), 675-703.
[7] P. Daripa, Some Useful Upper Bounds for the Selection of Optimal Profiles. Physica A: Statistical Mechanics and its Applications 391 (2012). 4065-4069.
[8] S. B. Gorell and G. M. Homsy, A theory of the optimal policy of oil recovery by secondary displacement process. SIAM J. Appl. Math. 43 (1983), 79-98.
[9] S. B. Gorell and G. M. Homsy, A theory for the most stable variable viscosity profile in graded mobility displacement process. AIChE Journal, 31 (1985), 1598-1503.
[10] H. S. Hele-Shaw, Investigations of the nature of surface resistence of water and of streamline motion under certain experimental conditions. Inst. Naval Architects Transactions 40(1898), 21-46.
[11] G. Paşa, A strong contradiction in multi-layer Hele-Shaw flow. arXiv:1903.01455 [physics.flu-dyn], Submitted on 4 Mar 2019.
[12] J. H. Wilkinson, The algebraic eigenvalue problem. Oxford University Press, New York, 1988.

Received January 15, 2020

"Simion Stoilow" Institute of Mathematics of the Romanian Academy
Calea Grivitei nr. 21, Bucharest, Romania
gelu.pasa@imar.ro

