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This work is a continuation of the authors’ work in [11]. In [11] the equation
satisfied by an incompressible fluid with stochastic transport is analysed. Here
we lift the incompressibility constraint. Instead we assume a weighted incom-
pressibility condition. This condition is inspired by a physical model for a fluid
in a basin with a free upper surface and a spatially varying bottom topography
(see [23]). Moreover, we assume a different form of the vorticity to stream func-
tion operator that generalizes the standard Biot-Savart operator which appears
in the Euler equation. These two properties are exhibited in the physical model
called the great lake equation. For this reason we refer to the model analysed
here as the stochastic great lake equation. Just as in [11], the deterministic model
is perturbed with transport type noise. The new vorticity to stream function
operator generalizes the curl operator and it is shown to have good regularity
properties. We also show that the initial smoothness of the solution is preserved.
The arguments are based on constructing a family of viscous solutions which is
proved to be relatively compact and to converge to a truncated version of the
original equation. Finally, we show that the truncation can be removed up to a
positive stopping time.
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1. INTRODUCTION

Consider the following two-dimensional stochastic system which models
the evolution of the vorticity corresponding to an inviscid fluid on the two-
dimensional torus T2:

(1) dωt + Lutωtdt+
∑
i

Lξiωt ◦ dW
i
t = 0

∇ · (bu) = 0

ω = b−1curl v

v = u+
1

6
δ2b2∇(∇ · u).
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The initial condition ω0 is assumed to be an element of the weighted Sobolev
space Wk,2

b (T2). The velocity of the fluid is denoted by ut and ωt stands for
the corresponding vorticity. The term Lutωt can be interpreted as the Lie
derivative which expresses the change of vorticity along the flow generated by
the velocity vector field ut, while Lξiωt is a circulation-preserving perturbation
of this field (see [10], [16]). A new variational approach for deriving stochastic
partial differential equations which preserve fundamental properties of classi-
cal fluid dynamics has been introduced in [16]. This method is now known as
Stochastic Advection by Lie Transport (SALT). The model presented here is
inspired by the so-called great lake equations (see [5], [6], [23] for the determin-
istic case) which model the circulation of an inviscid fluid in a shallow water
basin with varying bottom topography b. The stochastic counterpart has been
described in [17] for a three-dimensional box. The domain we consider in this
paper is the two-dimensional torus. The vector fields ξi are time-independent
and divergence-free and can be associated with uncertainty induced by missing
physics or incomplete data (see [7], [8]). The processes W i, i ≥ 1, are indepen-
dent Brownian motions and δ is the aspect ratio of the domain (that is the ratio
between vertical and horizontal length scales). The function b is fixed in time
and there exist two constants bmin and bmax such that 0 < bmin ≤ b(x) ≤ bmax
for any x ∈ T2. If b is constant then the great lake equations formally reduce
to the classical 2D Euler equations ([23]).

Nonlinear transport equations play a central role in modelling a broad
range of phenomena such as flood waves, chemical reactions, gas dynamics, etc.
Nonetheless, there are numerous small-scale physical processes which are still
under-represented: turbulent multi-scale motion, friction, radiation, tropical
cumulus convection (see e.g. [18]). The introduction of a stochastic term of
transport type aims at providing a better strategy for encoding randomness
into a priori deterministic transport models. The noise structure is chosen
such that the original physical properties of the model (e.g. Kelvin circulation
theorem, energy conservation) are preserved also in the new stochastic setting:
see [16] or [27].

The stochastic part of our model follows the stochastic advection by Lie
transport theory presented in [16] and [12], and is represented by a stochas-
tic integral of Stratonovich type. Well-posedness for the deterministic version
of this system has been proven in [23]. In [11] we have considered a simi-
lar stochastic vorticity equation but without taking into account the bottom
topography b.

In this paper we prove that the system (1) admits a pathwise unique

and probabilistically strong solution in the Sobolev space Wk,2
b (T2), the initial

smoothness of the system being preserved. For a detailed analysis we use the
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Itô form of the vorticity equation. Consequently, we must control a second
order term which comes from the Itô correction and involves the operator L2

ξi
.

We manage to do this by combining it with the quadratic variation of the
stochastic integral. Further complications come out when trying to control
the higher-order derivatives of the vorticity. Notwithstanding, we do this by
proving a set of specific inequalities for the operator Lξi (see Lemma 18) which
are based on some smoothness and summability assumptions for the vector
fields ξi (see Assumptions 3). These assumptions would be of particular interest
when using this model as a signal process in stochastic filtering applications:
see for instance [7], [8], [9] in the case of the stochastic 2D Euler equation.

Note that the classical incompressibility condition ∇ · u = 0 is not true
here, a fact which usually generates technical difficulties when trying to control
the nonlinear term and to obtain uniform a priori bounds. However, we have
the weighted incompressibility condition ∇ · (bu) = 0. Due to this, working

in the weighted Sobolev space Wk,2
b (T2) comes as natural and we are able to

extend the techniques from [11] to this more general case. One of the key
points here is to prove that the vorticity to stream function operator can be
generalised (see Section 5) and therefore the smoothness of the velocity vector
field is still controlled by the smoothness of its corresponding vorticity. We will
show that even in a stochastic framework, b affects just the geometry of the
ambient space, not the topology, a positive consequence of the non-degeneracy
of b. In [23] it has been shown that this property holds in a deterministic
framework. In contrast to [11] and following the idea from [23] we control
the smoothness of the velocity vector field using Lax-Milgram-type arguments
instead of Fourier analysis techniques.

In the sequel, T2 is the two-dimensional torus, k ≥ 0 is a fixed positive
integer and Wk,2

b is a weighted Sobolev space (see Section 2). The main result
of this paper reads as follows:

Theorem. Under certain conditions on the vector fields (ξi)i, the vor-
ticity equation of the two-dimensional stochastic great lake system (1) admits

a pathwise unique local strong solution which belongs to the space Wk,2
b (T2).

Remark 1. The corresponding Itô form of the above evolution equation
for ω is

(2) dωt + Lutωtdt+

∞∑
i=1

LξiωtdW
i
t =

1

2

∞∑
i=1

L2
ξi
ωtdt.

The assumptions on the vector fields (ξi)i are described in Section 2.
In brief, they are assumed to be sufficiently smooth and their corresponding
norms to decay sufficiently fast as i increases, so that the infinite sums in (1),
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respectively, in (2), make sense in the right spaces, (see condition (3) below).
Since u is such that ∇ · (bu) = 0, there exists ([25]) a stream function ψ
such that u = b−1∇⊥ψ. According to [5], using the weighted incompressibility
condition ∇ · (bu) = 0, the relationship between v and u is defined through a
linear operator M as follows:

v =Mu = u+ δ2b−1

[
− 1

3
∇(b3∇ · u)− 1

2
∇(b2u · ∇b) +

1

2
b2(∇ · u)∇b

+b(u · ∇b)∇b
]
.

The introduction of a stream function here allows one to recover u from ω.
Qualitatively, if u = Kω and ω is the solution of the vorticity equation, we
want to show that K has good regularity properties and that it imposes the
right incompressibility conditions on u. Note that ψ is the solution of the
elliptic problem

ω = b−1curl
(
M(b−1∇⊥ψ)) on T2.

The great lake equation is more general than the Euler equation in the sense
that the link between the vorticity field and the velocity field is not given by
the curl operator only, but by a more general (linear) operator which is proved
to have good regularity properties.

The paper is organised as follows: In Section 2 we introduce the main
assumptions and key notations. In Section 3 we introduce the main results. In
Section 4 we show that the solution of the great lake equation is almost surely
pathwise unique. Section 5 contains the regularity properties of the vorticity
to stream function operator. In Section 7 one can find the proof for existence
of a strong solution (in the sense of Definition 3) and for uniqueness, of a
truncated version of the great lake equation. In Section 6 we explain how the
local solution of the great lake equation is obtained from the global solution
of its truncated version. In Section 8 we show continuity with respect to ini-
tial conditions for the original equation. In Section 9 we show that the family
of approximating solutions is relatively compact. In Section 10 one can find
a couple of technical properties which are essential in proving a priori estimates.

2. PRELIMINARIES

We summarise the notation used throughout the manuscript. Let X
be a generic Banach space and b a weight function as described above. Let
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(Ω,F , (Ft)t≥0,P) be a filtered probability space with the sequence (W i)i∈N of
independent Brownian motions defined on it.

• We denote by T2 = R2/Z2 the two-dimensional torus.

• Lpb(T
2;X) is the class of all measurable p - integrable functions f de-

fined on the two-dimensional torus, with values in X (p is a positive
real number)1. The space is endowed with its canonical weighted norm

‖f‖b,p =

(∫
T2

‖f‖pXb(x)dx

)1/p

. Conventionally, for p = ∞ we denote

by L∞ the space of essentially bounded measurable functions.

• For a1, a2 ∈ L2
b

(
T2
)
, we denote by 〈·, ·〉b the scalar product

〈a1, a2〉b :=

∫
T2

a1(x) · a2(x)b(x)dx.

• Wm,p
b (T2) is the Sobolev space of functions f ∈ Lpb(T

2) such that Dαf ∈
Lpb(T

2) for 0 ≤ |α| ≤ m, where Dαf is the distributional derivative of f
and |α| is the length of the multi-index α. The canonical norm of this

space is ‖f‖b,m,p =

( ∑
0≤|α|≤m

‖Dαf‖pb,p

)1/p

, with m a positive integer

and 1 ≤ p < ∞. We denote by W−m,pb the dual of Wm,p
b . When p = ∞

we define ‖f‖k,∞ := max
|α|≤k

‖Dαf‖∞ = max
|α|≤k

(ess sup
x
|Dαf(x)|). A detailed

presentation of Sobolev and weighted Sobolev spaces can be found in [1]
and [20], respectively.

• Cm(T2;X) is the (vector) space of all X-valued functions f which are
continuous on T2 with continuous partial derivatives Dαf of orders |α| ≤
m, for m ≥ 0. C∞(T2;X) is regarded as the intersection of all spaces
Cm(T2;X).

• C([0,∞);X) is the space of continuous functions from [0,∞) toX equipped
with the uniform convergence topology over compact subintervals of [0,∞).

• D([0,∞);X) is the space of càdlàg functions that is functions f : [0,∞)→
X which are right-continuous and have limits to the left, endowed with
the Skorokhod topology. This topology is a natural choice in this case be-
cause its corresponding metric transforms D([0,∞);X) into a complete
separable metric space. For further details see [14] Chapter 3, Section 5,
pp. 117-118.

1Here and later if the space X coincides with the Euclidean space R or R2, it is omitted
from the notation: For example Lp(T2;X) becomes Lp(T2), etc.
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• Given a1 : T2 → R2, we define the differential operator La1 by La1a2 :=
a1 · ∇a2 for any map a2 : T2 → R such that the weighted scalar product
between a1 and a2 makes sense. In line with this,

Liωt := Lξiωt := ξi · ∇ωt and L2
iωt := L2

ξi
ωt := ξi · ∇(ξi · ∇ωt).

Denote the dual of L by L? that is 〈La1, a2〉 = 〈a1,L?a2〉.

• D1 :=
{
u ∈ C∞(T2) : ∇ · (bu) = 0

}
.

• D2 := the completion of D1 in the L2
b - norm.

• D3 := the completion of D1 in the W1,2
b - norm.

• P := the L2
b - orthogonal projection onto D2.

• For any vector u ∈ R2 we denote the gradient of u by ∇u = (∂1u, ∂2u)
and the corresponding orthogonal by ∇⊥u = (∂2u,−∂1u).

Remark 2. If div (bξi) = ∇ · (bξi) = 0, then the dual of the operator Li
is −Li.

Assumptions on the vector fields (ξi)i

The vector fields ξi : T2 → R2 are chosen to be time-independent quantities
such that ∇· (bξi) = 0, which need to be specified from the underlying physics.
We assume that for any f ∈ W2,2

b (T2):

∞∑
i=1

‖Lif‖2b,2 ≤ C‖f‖2b,1,2,
∞∑
i=1

‖L2
i f‖2b,2 ≤ C‖f‖2b,2,2,

∞∑
i=1

‖ξi‖2k+1,∞ <∞.(3)

Provided that ω ∈ L2
b(0, T ;W2,2

b (T2,R)), the first two conditions in (3) ensure
that the infinite sums of stochastic integrals

(4)
∞∑
i=1

∫ t

0
ξi · ∇ωsdW i

s

are well defined and belong to L2
b(0, T ;L2

b(T2,R)) Similarly, the processes s→
ξi · ∇(ξi · ∇ωs) are well-defined and belong (pathwise) to L2

b(0, T ;L2
b(T2,R)).

In particular, the Itô correction in (2) is well-defined. The third condition is
needed for proving a number of required a priori estimates (see Lemma 19). In
the following definitions k ≥ 2 is a fixed integer.
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Definition 3.

a. A strong2 solution of the stochastic partial differential equation (2) is
an (Ft)t-adapted process ω : Ω × T2 → R with trajectories in the space

C([0,∞);Wk,2
b (T2)), such that the identity

ωt = ω0−
∫ t

0
us ·∇ωsds−

∞∑
i=1

∫ t

0
ξi ·∇ωsdW i

s +
1

2

∞∑
i=1

∫ t

0
ξi ·∇

(
ξi ·∇ωs

)
ds

with ω|t=0
= ω0, holds P-almost surely in L2

b(T2;R).

b. A weak/distributional solution of equation (2) is an (Ft)t-adapted process
ω : Ω × T2 → R with trajectories in the set C([0,∞);L2

b(T2)), which
satisfies the equation i.e.

〈ωt, ϕ〉b = 〈ω0, ϕ〉b −
∫ t

0
〈ωs,L?usϕ〉bds−

∞∑
i=1

∫ t

0
〈ωs,L?iϕ〉bdW i

s

+
1

2

∞∑
i=1

∫ t

0
〈ωs,L?iL?iϕ〉bds

holds P-almost surely for all ϕ ∈ C∞(T2,R).

c. A weak probabilistic solution of equation (2) is a triple (ω̃, (W̃ i)i),
(Ω̃, F̃ , P̃), (F̃t)t such that (Ω̃, F̃ , P̃) is a probability space, (F̃t)t is a filtra-
tion defined on this space, ω̃ : Ω×T2 → R is a continuous (F̃t)t-adapted

process with trajectories in the set C([0,∞);Wk,2
b (T2)), (W̃ i)i are inde-

pendent (F̃t)t-adapted Brownian motions, and the identity

ωt = ω0−
∫ t

0
us ·∇ωsds−

∞∑
i=1

∫ t

0
ξi ·∇ωsdW i

s +
1

2

∞∑
i=1

∫ t

0
ξi ·∇

(
ξi ·∇ωs

)
ds

with ω|t=0
= ω0, holds P̃-almost surely in L2

b(T2;R).

d. A classical solution of equation (2) is an (Ft)t-adapted process

ω : Ω× [0,∞)× T2 → R

with trajectories of class C([0,∞);C2(T2;R)).

e. A local solution of equation (2) is given by a pair (ω, τ) consisting of a
stopping time τ : Ω → [0,∞) and a process ω : Ω × [0, τ ] × T2 → R

2Note that this solution is strong in both probabilistic and PDE sense, as it is defined on
the probability space fixed in advance.
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such that the solution trajectory is of class C([0, τ ];Wk,2
b (T2)), ωt∧τ is

(Ft)t-adapted, and for any stopping time τ ′ ≤ τ the integral identity

ωτ ′ = ω0−
∫ τ ′

0
us·∇ωsds−

∞∑
i=1

∫ τ ′

0
ξi·∇ωsdW i

s+
1

2

∞∑
i=1

∫ τ ′

0
ξi·∇

(
ξi·∇ωs

)
ds

with ω|τ ′=0
= ω0, holds P-almost surely in L2

b(T2;R).

Remark 4. The velocity field v is not uniquely identified through the
equation ω = b−1curl v. Indeed any two velocity fields that differ by a constant
will lead to the same vorticity map ω. Instead we identify v through the
”explicit” formula v = M

(
b−1∇⊥ψ

)
, where ψ is a stream function which

exists due to the fact that ∇ · (bu) = 0.

Remark 5. Note that ωt ∈ Wk,2
b (T2) implies ut ∈ Wk+1,2

b (T2) (see Section

5). By standard Sobolev embedding theorems Wk+1,2
b (T2) ↪→ Wk,2

b (T2) ↪→
C(T2) for k ≥ 2, hence the terms Lutωt = ut ·∇ωt ∈ L2

b(T2,R) and 〈ωs,L?usϕ〉b
are well defined.

Remark 6. Naturally, if ωt is a strong solution in the sense of Defini-
tion 3a, then it is also a weak/distributional solution in the sense of Defini-
tion 3b. Note also that if ωt is a weak/distributional solution with paths in

C([0, T ];Wk,2
b (T2)) then, by integration by parts, it is also a (probabilistic)

strong solution.

3. MAIN RESULTS

Let (Ω,F , (Ft)t,P) be a filtered probability space and k ≥ 2 a fixed integer
as above. The main result of the paper reads as follows:

Theorem 7. If ω0 ∈ Wk,2
b (T2) then the two-dimensional stochastic great

lake equation (1)

dωt + Lutωtdt+
∞∑
i=1

Liωt ◦ dW i
t = 0

admits a pathwise unique and probabilistically strong local solution (in the
sense of Definition 3) ω = {ωt, t ∈ [0,∞)} with trajectories in the space

C([0,∞);Wk,2
b (T2)). In particular, if k ≥ 4 the solution is classical.

Moreover, we have continuity with respect to initial conditions:

Theorem 8. Let ω, ω̃ be two Wk,2
b (T2)-solutions of the great lake equa-

tion (1). Define the process B = (Bt)t as Bt :=

∫ t

0
‖ωs‖b,k,2ds, for any t ≥ 0.
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Then there exists a positive constant C independent of the two solutions ω and
ω̃ such that

(5) E[e−CBt ||ωt − ω̃t||2b,k−1,2] ≤ ||ω0 − ω̃0||2b,k−1,2.

The proof of these two theorems are covered in Sections 4, 6, and 7.

4. PATHWISE UNIQUENESS

In this section we prove that any two solutions ω1 and ω2 defined on
the same probability space (Ω,F ,P), driven by the same Brownian motion
(W i)i, and with P-almost surely the same initial conditions ω1

0 and ω2
0, are

indistinguishable, that is

P
(
ω1
t = ω2

t for all t ≥ 0
)

= 1.

From a probabilistic perspective this means that the solution is pathwise unique.
This result is essential for the proof of existence of a strong solution in the sense
of Definition 3.

Suppose that equation (1) admits two Ft-adapted solutions ω1 and ω2 with

trajectories in the space C([0,∞);Wk,2
b (T2)) and let ω̄ := ω1 − ω2. Con-

sider the corresponding velocities u1 and u2 such that b−1curl
(
Mu1

)
= ω1,

b−1curl
(
Mu2

)
= ω2 and ū := u1−u2. Since both ω1 and ω2 satisfy (2), their

difference satisfies

dω̄t + (Lūtω1
t + Lu2t ω̄t)dt+

∞∑
i=1

Liω̄tdW i
t −

1

2

∞∑
i=1

L2
i ω̄tdt = 0.

By the Itô formula one obtains

d‖ω̄t‖2b,2 = −2

∞∑
i=1

〈ω̄t,Liω̄t〉bdW i
t − 2〈ω̄t,Lūtω1

t + Lu2t ω̄t〉bdt

+
∞∑
i=1

(〈
ω̄t,L2

i ω̄t
〉
b

+ 〈Liω̄t,Liω̄t〉b
)
dt.

Note that the last term in the above identity is null (see Lemma 18) and that
|〈ω̄t,Lūtω1

t 〉b| ≤ ‖ω̄t‖b,2‖ūt‖b,4‖∇ω1
t ‖b,4 ≤ C‖ω̄t‖2b,2‖ω1

t ‖b,k,2.

This is true since by the Sobolev embedding theorem (see [1] Theorem 4.12
case A) one has ‖∇ω1

t ‖b,4 ≤ C‖ω1
t ‖b,k,2 and due to the smoothness properties

proved in Section 5 one has ‖ūt‖b,4 ≤ C‖ūt‖b,1,2 ≤ C‖ω̄t‖b,2.
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Finally, observe that 〈ω̄t,Lu2t ω̄t〉b = −1
2

∫
T2

(∇ · (bu2
t ))(ω̄t)

2dx = 0 since

∇ · (bu2
t ) = 0. It follows that

(6) d‖ω̄t‖2b,2 = −2〈ω̄t,Lūtω1
t 〉bdt ≤ C‖ω1

t ‖b,k,2‖ω̄t‖2b,2dt.
Since we only have a priori bounds for the expected value of the process t →
‖ω1

t ‖b,k,2 and not for its pathwise values, the uniqueness cannot be deduced
through a classical Gronwall-type argument. Instead, we proceed as follows:

let B = (Bt)t be the process defined as Bt :=

∫ t

0
C‖ω1

s‖b,k,2ds, for any t ≥ 0.

This is an increasing process that stays finite P-almost surely for all t ≥ 0 as
the paths of ω1 are in C([0,∞);Wk,2

b (T2)). By the product rule,

d
(
e−Bt‖ω̄t‖2b,2

)
= e−Bt(d‖ω̄t‖2b,2 − C‖ω̄t‖2b,2‖ω1

t ‖k,2dt) ≤ 0,

which leads to e−Bt‖ω̄t‖2b,2 ≤ 0.
We conclude that e−Bt‖ω̄t‖22 = 0, and since e−Bt cannot be null due to the
finiteness of Bt we deduce that ‖ω̄t‖2b,2 = 0 almost surely, which gives the
claim.

5. THE VORTICITY TO STREAM FUNCTION MAP

In this section we provide a generalisation of the Biot-Savart law from
[11], which is the main ingredient used to extend the well-posedness properties
to a more general class of stochastic partial differential equations. Note that
the stochastic part does not interfere with this generalisation. This is due to the
fact that stochasticity has been introduced as a constraint within a variational
principle such that the physical meaning of the quantities of interest has not
been altered: see [16], [12]. More precisely, ω = b−1curl v where v depends
on the deterministic, unperturbed velocity vector field u only, without any
stochasticity involved. The central result is Proposition 10 3.

Lemma 9. The restriction of the operatorM to the space D2 is a continu-
ous, positive, invertible and self-adjoint operator such that for every u ∈ L2

b(T2)
one has

PMPu = P
(
u+

δ2

3
∇b (∇b · Pu)

)
.

Proof. Let u, v ∈ D1. We have

Mu = u+ δ2

(
−1

3
b−1∇

(
b3∇ · u

)
− 1

2
b−1∇

(
b2u · ∇u

)
+

1

2
b (∇ · u)∇b+ (u · ∇b)∇b

)
3The proofs from this section follow closely the arguments from [23] Section 2.
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and the bilinear form ` considered below can be written as

`(u, v) := 〈Mu, v〉b =

∫
T2

Mu · vbdx

= 〈u, v〉b −
δ2

3

∫
T2

b−1∇
(
b3∇ · u

)
· vbdx− δ2

2

∫
T2

b−1∇
(
b2u · ∇u

)
· vbdx

+
δ2

2

∫
T2

b2(∇ · u)(∇b · v)dx+ δ2

∫
T2

b(u · ∇b)(∇b · v)dx

= 〈u, v〉b +
δ2

3

∫
T2

b3(∇ · u)(∇ · v)dx+
δ2

2

∫
T2

b2(u · ∇b)(∇ · v)dx

+
δ2

2

∫
T2

b2(∇ · u)(v · ∇v)dx+ δ2

∫
T2

b(u · ∇b)(v · ∇b)dx

= 〈u, v〉b −
δ2

3

∫
T2

b(u · ∇b)(v · ∇b)dx− δ2

2

∫
T2

b(u · ∇b)(v · ∇b)dx

− δ2

2

∫
T2

b(u · ∇b)(v · ∇b)dx+ δ2

∫
T2

b(u · ∇b)(v · ∇b)dx

= 〈u, v〉b +
δ2

3
〈u · ∇b, v · ∇b〉b

≤ c‖u‖b,2‖v‖b,2.
The calculations have been simplified by the fact that u, v ∈ D1 implies ∇·u =
−b−1u · ∇b and ∇ · v = −b−1v · ∇b. Therefore ` is continuous and symmetric
and due to the Poincaré inequality it is also coercive. By the Lax-Milgram
theorem (see for instance [4], pp. 140, Corollary 5.8) we can conclude that the
operator M is invertible.

Proposition 10. For every ω ∈ W−1,2
b (T2) there exists a unique function

u ∈ D2 such that u = Kω. Moreover, K is continuous and

‖Kω‖b,k,p ≤ C‖ω‖b,k−1,p.

Proof. Let u, v ∈ D1. Then (see [26]) there exist ϕ1, ϕ2 ∈ C∞(T2) such
that bu = ∇⊥ϕ1 and bv = ∇⊥ϕ2. We integrate by parts and use the previous
lemma to write

˜̀(ϕ1, ϕ2) := 〈ϕ1, ω〉b =
〈
ϕ1, b

−1curl
(
M
(
b−1∇⊥ϕ2

))〉
b

=

∫
T2

(
b−1∇⊥ϕ1

)
· M

(
b−1∇⊥ϕ2

)
bdx

≤ C‖u‖b,2‖v‖b,2.
On the other hand, we can also write〈

ϕ1, b
−1curl

(
M
(
b−1∇⊥ϕ2

))〉
b
≤ C‖ϕ1‖b,1,2‖ϕ2‖b,1,2
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and by the Poincaré inequality

‖ϕ1‖2b,1,2 ≤ C
〈
ϕ1, b

−1curl
(
M
(
b−1∇⊥ϕ1

))〉
b

which explains also the elliptic character of the operator. The same estimates
hold for ϕ1, ϕ2 ∈ W1,2(T2) by a density argument. Therefore the bilinear
form ˜̀ is continuous and coercive. By the Lax-Milgram theorem, for any
ω ∈ W−1,2(T2) there exists a unique u ∈ D2 such that u = Kω and K :
W−1,2(T2)→ D2 is continuous. Note that the problem

ω = b−1curl
(
M(b−1∇⊥ψ)) on T2

is elliptic and therefore by regularity theorems for elliptic problems (see [15]
Section 6.3 or [31] Section 6.2.8) we actually have

‖ψ‖b,k,p ≤ C‖ω‖b,k−2,p.

6. LOCAL EXISTENCE FOR THE GREAT LAKE EQUATION

The existence of the solution of equation (2) is proved by first showing
that a truncated version of it has a solution, and then removing the truncation
up to a positive stopping time. In particular we truncate the nonlinear term in
(2) by using a smooth function fR equal to 1 on [0, R], equal to 0 on [R+1,∞),
and decreasing on [R,R+1], for arbitrary R > 0, with fR(uRt ) := fR(‖uRt ‖b,k,2).
Then we have the following:

Proposition 11. If ω0 ∈ Wk,2
b (T2) such that ∇ · (bω0) = 0, then the

following equation

(7) dωRt + fR(uRt )LuRt ω
R
t dt+

∞∑
i=1

LiωRt ◦ dW i
t = 0

admits a unique global Ft-adapted solution ωR = {ωRt , t ∈ [0,∞)} with trajec-

tories in the space C([0,∞);Wk,2
b (T2)). In particular, if k ≥ 4, the solution is

classical.

Remark 12. Observe that, by definition, the truncation function fR de-
pends on the norm ‖ωRt ‖b,k−1,2 and not on the norm ‖ωRt ‖b,k,2. This is not
incidental as it suffices to control the norm ‖uRt ‖b,k,2 (see Section 5).

We prove Proposition 11 in Section 7. For now let us proceed with the
proof of local existence for the solution of the stochastic great lake equation
(2). Define the stopping time

τR(ω) := inf
t≥0

{
‖ωRt ‖b,k−1,2 ≥

R

C

}



13 Local well-posedness for the great lake equation with transport noise 143

where C is such that ‖∇u‖∞ ≤ C‖ω‖b,k,2. Observe that such a constant exists

due to the Sobolev embedding Wk,2
b ↪→ L∞ and to the regularity properties

proven in Section 5, since ‖∇u‖∞ ≤ C‖∇u‖b,k,2 ≤ C‖u‖b,k+1,2 ≤ C‖ω‖b,k,2.

Lemma 13. Let ω0 ∈ Wk,2
b (T2) and ωR : Ω× [0,∞)×T2 → R be a global

Wk,2
b (T2)-solution of the truncated equation (7) and ω : Ω× [0, τR]×T2 → R be

the restriction of ωR to the time interval [0, τR]. Then ω is a local Wk,2
b (T2)-

solution of the original great lake equation (2).

Proof. Observe that for t ∈ [0, τR] we have ‖∇ut‖∞ ≤ C‖ωt‖b,k,2 ≤ R.
Thus, fR(uRt ) = 1 and taking into account the pathwise uniqueness property we
conclude that the truncated equation coincides with the original equation.

Remark 14. If we dispense with the requirement of showing the existence
of a strong solution, then similar uniqueness and relative compactness argu-
ments can be used to show the existence of a unique global weak solution,
provided ω0 ∈ L∞(T2). The key result here is the fact that the L∞-norm
of the solution of (2) as well as that of any of its truncated versions remains
constant in time (see Lemma 18):

‖ωt‖∞ = ‖ω0‖∞
‖ωRt ‖∞ ≤ ‖ωR0 ‖∞.

This is an extension of the result in [3]. In particular, one can show the
existence of a global solution ωt ∈ W−2,2

b (T2).

7. UNIQUENESS AND EXISTENCE FOR THE TRUNCATED
EQUATION

In this section we prove that the truncated equation admits a global
unique solution. Any global solution for the truncated equation, restricted to
the corresponding stopping time, is a local solution for the original great lake
equation.

7.1. Pathwise uniqueness for the truncated equation

The strategy for showing that any solution of the truncated equation is
pathwise unique is similar to the one presented in Section 4. The only difference
arises due to the truncated terms. We have

d‖ω̄t‖2b,2 + 2
∞∑
i=1

〈ω̄t,Liω̄t〉bdW i
t = −2〈ω̄t, (fR(ω1

t )Lu1t − fR(ω2
t )Lu2t )ω

1
t 〉bdt
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One can show that (see [10] for a proof) there exists a constant C = C(R) such
that

‖fR(ω1
t )u

1
t − fR(ω2

t )u
2
t ‖b,4 ≤ C‖ω̄t‖b,k−1,2

and therefore

|〈ω̄, (fR(ω1
t )Lu1t − fR(ω2

t )Lu2t )ω
1
t 〉b| ≤ C‖ω̄t‖b,2‖ūt‖b,4‖∇ω1

t ‖b,4
≤ C‖ω̄t‖b,2‖ω̄t‖b,k−1,2‖ω1

t ‖b,k,2.

We deduce that

d‖ω̄t‖2b,2 + 2
∞∑
i=1

〈ω̄t,Liω̄t〉bdW i
t ≤ C‖ω1

t ‖b,k,2‖ω̄t‖2b,2dt.

Similar arguments are used to control ‖∂αω̄t‖2b,2 where α is a multi-index with
|α| ≤ k − 1 and to deduce that there exists a constant C = C(R) such that

d‖∂αω̄t‖2b,2 + 2
∞∑
i=1

〈∂αω̄t, ∂αLiω̄t〉bdW i
t ≤ C‖ω1

t ‖b,k,2‖ω̄t‖2b,2dt,

where we use the control (see Lemma 18)〈
∂αω̄t, ∂

αL2
i ω̄t
〉
b

+ 〈∂αLiω̄t, ∂αLiω̄t〉b ≤ C‖ω̄‖2b,k,2.

We need to pay special attention to the case when |α| = k − 1, as ∂αL2
i ω̄t is

no longer well defined. In this case we use the weak form of equation (7) to
rewrite

〈
∂αω̄t, ∂

αL2
i ω̄t〉b as −

〈
∂α1∂αω̄t, ∂

α2L2
i ω̄t〉b and then we can proceed as

above by using that

−
〈
∂α1∂αω̄t, ∂

α2L2
i ω̄t〉b + 〈∂αLiω̄t, ∂αLiω̄t〉b ≤ C‖ω̄t‖2b,k,2.

The above control is true for functions inWk+1,2
b (T2) and, by the continuity of

both sides in the above inequality, it is also true for functions which belong to
the larger spaceWk,2

b (T2), sinceWk+1,2
b (T2) is dense inWk,2

b (T2). The proof is
now concluded in an identical manner as that for the uniqueness of the original
equation.

7.2. Existence of solution for the truncated equation

Given the fact that the topology of Wk,2
b (T2) is equivalent to the topol-

ogy of Wk,2(T2) for a nondegenerate weight b (see [20]), the proof is similar to
the proof from [11]. The strategy is to construct an approximating sequence
of processes that will converge in distribution to a solution of the equation
(7). This justifies the existence of a weak solution. Together with the path-
wise uniqueness obtained in Section 7.1, we then deduce that a strong unique
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solution exists. For any t ≥ 0 we construct the sequence (ωνn,R,nt )n≥0 with

ων0,R,0t := ω0
0 and for n ≥ 1:

(8)

ωνn,R,n0 := ωn0

dωνn,R,nt =
(
νn∆ωνn,R,nt − fR(u

νn−1,R,n−1
t )L

u
νn−1,R,n−1

t

ωνn,R,nt

)
dt

−
∞∑
i=1

Liωνn,R,nt ◦ dW i,n
t ,

where νn = 1
n is the viscous parameter and u

νn−1,R,n−1
t = Kω

νn−1,R,n−1
t . The

corresponding Itô form of equation (8) is 4

(9) dωνn,R,nt =
(
νn∆ωνn,R,nt + Pn−1,n

t (ωνn,R,nt )
)
dt−

∞∑
i=1

Liωνn,R,nt dW i,n
t ,

where Pn−1,n
t (ωνn,R,nt ) is defined as

Pn−1,n
t (ωνn,R,nt ) := −fR(u

νn−1,R,n−1
t )L

u
νn−1,R,n−1

t

ωνn,R,nt

+
1

2

∞∑
i=1

L2
iω

νn,R,n
t , t ≥ 0.

(10)

Theorem 15. If ωνn,R,n0 ∈ C∞(T2) then the two-dimensional stochastic
vorticity equation (9) admits a unique global Ft-adapted solution ωνn,R,n =
{ωνn,R,nt , t ∈ [0,∞)} which belongs to the space C

(
[0,∞);C∞(T2)

)
.

The stochastic equation (9) is a particular case of the more general equation
(1.1) − (1.2) analysed in Chapter 4, Section 4.1, pp.129 from [30]. All the
assumptions required by Theorem 1 and Theorem 2 in [30], Chapter 4, are
fulfilled. Therefore there exists a unique solution ωνn,R,nt which belongs to the

class L2(0, T ;Wk,2
b (T2)) ∩ C([0, T ],Wk−1,2

b (T2)) and satisfies equation (9) for
all t ∈ [0, T ] and for all ω in Ω′ ⊂ Ω with P(Ω′) = 1. Furthermore, since the
conditions are fulfilled for all k ∈ N, using Corollary 3 from pp. 141 in [30],

we obtain that ωνn,R,nt is P-a.s. in C
(
[0, T ], C∞(T2)

)
. Note that u

νn−1,R,n−1
t ∈

C∞(T2) for any n ≥ 1, using the regularity properties of the vorticity to

stream function operator and an inductive argument. One has u
νn−1,R,n−1
t =

Kω
νn−1,R,n−1
t where K is the vorticity to stream function operator as before.

We have

‖Kωνn−1,R,n−1

t ‖b,k+1,p ≤ C‖ω
νn−1,R,n−1

t ‖b,k,p.

4The stochastic Itô integral is understood here in the usual sense, see [13] .
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Since ω
νn−1

t belongs to C∞(T2) we deduce that u
νn−1,R,n−1
t also belongs to

C∞(T2). This, together with the initial assumptions (3) ensures that all the
coefficients of equation (9) are infinitely differentiable. The uniform bounded-

ness is ensured by the truncation fR(u
νn−1,R,n−1
t ), as proved in Lemma 18.

Remark 16. (Continuity of the approximating sequence). There exists a
constant C = C(T ) independent of n and R such that

E[‖ωνn,R,nt − ωνn,R,ns ‖4L2
b
] ≤ C(t− s)2, t, s ∈ [0, T ].

In particular, by the Kolmogorov-Čentsov criterion (see [19]), the processes
ωνn,R,n have continuous trajectories in L2

b(T2). An explicit proof of this fact is
based on L2-estimates for each term and can be found in [11] Section 5.2.

Proposition 17. The laws of the family of solutions (ωνn,R,n)νn∈[0,1] is
relatively compact in the space of probability measures over D([0, T ], L2

b(T2))
for any T ≥ 0.

Proof of existence for the solution of equation (7)

From Proposition 17 and the fact that lim
n→∞

ωνn,R,n0 = ω0 we can deduce,

using a diagonal subsequence argument, the existence of a subsequence (ωνnj )j
with lim

j→∞
νnj = 0 which is convergent in distribution over D([0,∞), L2

b(T2)).

We show that the limit of the corresponding distributions is the distribution of a
stochastic process which solves the truncated equation (7). This justifies the ex-
istence of a weak probabilistic solution. By using the Skorokhod representation
theorem (see [2]), there exists a probability space (Ω̃, F̃ , P̃) and a sequence of

processes (ω̃νn,R,n, ũνn,R,n, (W̃ i,n)i, n = 1,∞) which has the same distribution
as that of the original converging subsequence and which converges, for n→∞,
almost surely to a triplet (ω̃R, ũR, (W̃ i,n)i) in D([0, T ], L2

b(T2)×W1,2
b (T2)×RN).

Observe that ωνn,R,n and ω̃νn,R,n have the same distribution, therefore for any
test function ϕ ∈ C∞(T2) we have

(11)

〈ω̃νn,R,nt , ϕ〉b = 〈ω̃νn,R,n0 , ϕ〉b + νn

∫ t

0
〈ω̃νn,R,ns ,∆ϕ〉bds

+

∫ t

0
fR(ũ

νn−1,R,n−1
s )〈ω̃νn,R,ns ,L

u
νn−1,R,n−1
s

ϕ〉bds

+
1

2

∞∑
i=1

∫ t

0
〈ω̃νn,R,ns ,L2

iϕ〉bds+
∞∑
i=1

∫ t

0
〈ω̃νn,R,ns ,Liϕ〉bdW̃ i,n

s .
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Observe also that there exists a constant C = C(R, T ) such that

(12) sup
n≥1

Ẽ
[

sup
s∈[0,T ]

‖ω̃νn,R,ns ‖4b,k,2
]
≤ C,

where Ẽ is the expectation with respect to P̃. We prove this in Lemma 18 for
the original sequence, but since ω̃νn,R,n satisfies the same SPDE, the same a
priori estimates hold for ω̃νn,R,n. We know that the space of continuous func-
tions is a subspace of the space of càdlàg functions, therefore the Skorokhod
topology relativised to the space of continuous functions coincides with the uni-
form topology. It follows that the sequence (ω̃νn,R,n, ũνn,R,n, (W̃ i,n)i, n = 1,∞)

converges P̃-almost surely to (ω̃R, ũR, (W̃ i)i) when n → ∞, in the uniform
norm. It also holds that

lim
n→∞

Ẽ
[∫ t

0
||ω̃νn,R,ns − ω̃Rs ||2ds

]
= 0

and since

(13)

∞∑
i=1

Ẽ
[ ∫ t

0
〈ω̃νn,R,ns − ω̃Rs ,Liϕ〉2bds

]

≤
∞∑
i=1

‖Liϕ‖2b,2Ẽ
[∫ t

0
||ω̃νn,R,ns − ω̃Rs ||2ds

]
≤ C‖ϕ‖2b,1,2Ẽ

[∫ t

0
||ω̃νn,R,ns − ω̃Rs ||2ds

]
also the limit of the right hand side of (13) converges to 0 (we use here the
control

∑∞
i=1 ‖Liϕ‖2b,2 ≤ C‖ϕ‖2b,1,2 assumed in (3)). Now Theorem 4.2 in [21]

allows us to conclude that the stochastic term
∞∑
i=1

∫ t

0
〈ω̃νn,R,ns ,Liϕ〉bdW̃ i,n

s

converges in distribution to

∞∑
i=1

∫ t

0
〈ω̃Rs ,Liϕ〉bdW̃ i

s . Using a similar application

of the Skorokhod representation theorem we can also assume that on the prob-
ability space (Ω̃, F̃ , P̃), the term
∞∑
i=1

∫ t

0
〈ω̃νn,R,ns ,Liϕ〉bdW̃ i,n

s converges to
∞∑
i=1

∫ t

0
〈ω̃Rs ,Liϕ〉bdW̃ i

s P̃-almost surely

(and also in L2
b(P̃)). The convergence of the remaining terms is shown in a sim-

ilar fashion and similar to [11]. The only difference is that we have weighted
scalar products and norms, but given the fact that b is a bounded nondegen-
erate function, all the convergences hold as requested.
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We have proven so far that there exists a weak/distributional solution in
the sense of Definition 3. part b. on the probability space (Ω̃, F̃ , P̃). More-

over, since ω̃R belongs to the space Wk,2
b (T2) ↪→ Ck−m(T2) the solution is

also strong, as a solution on the space (Ω̃, F̃ , P̃). It follows that (ω̃, ũ, (W̃ i)i)
is a weak/probabilistic solution of the truncated equation (7) in the sense of
Definition 3 part c. Together with the pathwise uniqueness proved in Section
7.2 and using the Yamada-Watanabe theorem for the infinite-dimensional set-
ting (see, for instance, [29]) we conclude the existence of a strong solution of
the truncated great lake equation. Continuity follows as an application of the
Kolmogorov-Čentsov criterion for the approximating process, which provides

a control for E
[
‖ωνn,R,nt − ωνn,R,ns ‖4b,k,2

]
. Then we can pass to the limit using

an argument similar to the one from Section 8, to control E
[
‖ωRt − ωRs ‖4b,k,2

]
.

Therefore, we have obtained a solution in the sense of Definition 3, part a.
Now using the embedding Wk,2

b (T2) ↪→ Ck−m(T2) with 2 ≤ m ≤ k and k ≥ 4
we conclude that the solution is classical when k ≥ 4.

8. CONTINUITY WITH RESPECT TO INITIAL CONDITIONS

In this section we prove Theorem 8. Let ω, ω̃ be two C([0,∞);Wk,2
b (T2))-

solutions of equation (2) and define the process B = (Bt)t such that Bt :=∫ t

0
‖ωs‖b,k,2ds, for any t ≥ 0. Let ωR, ω̃R be their corresponding truncated

versions and also let (ωνn,R,nt )n≥0 and (ω̃νn,R,nt )n≥0 be, respectively, the cor-
responding sequences constructed as in Section 7.2 on the same space after
the application of the Skorokhod representation theorem. By Fatou’s lemma,
applied twice, we deduce that

E[e−CBt ||ωt − ω̃t||2b,k−1,2] ≤ E
[

lim inf
n

e−CB
n
t ||ωνn,R,nt − ω̃νn,R,nt ||2b,k−1,2

]
≤ lim inf

n
E[e−CB

n
t ||ωνn,R,nt − ω̃νn,R,nt ||2b,k−1,2]

where Bn = (Bn
t )t is the process defined by Bn

t :=

∫ t

0
‖ωνn,R,ns ‖b,k−1,2ds, for

any t ≥ 0. Following a similar proof with that of the uniqueness of the vorticity
equation presented in Section 4, we deduce that there exists a positive constant
C independent of the two solutions and independent of n such that

E[e−CB
n
t ||ωνn,R,nt − ω̃νn,R,nt ||2b,k−1,2] ≤ ||ω0 − ω̃0||2b,k−1,2

which gives the result. We emphasize that we use here the fact that the pro-
cesses (ωνn,R,nt )n≥0 and (ω̃νn,R,nt )n≥0 take values in Wk+2,2

b (T2) as an essential
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ingredient, a property that was not true for either the solution of the original
great lake equation (2) or its truncated version.

9. RELATIVE COMPACTNESS

In this section we prove that the approximating sequence of solutions
constructed in Section 7.2 is relatively compact in the space D([0,∞), L2

b(T2)).
For this, we will use Kurtz’ criterion for relative compactness (see [14] Theorem
8.6). We denote by (Sn(t))t the semigroup of the generator A := νn∆. This
semigroup is strongly continuous (see [24]) and for any f ∈ L2(T2) it is true
that

‖Sn(t)f‖k,2 ≤ ‖f‖k,2.

Proof of Proposition 17.
We need to show that, for every η > 0, there exists a compact set Kη,t ⊂

L2
b(T2) such that sup

n
P
(
ωνn,R,nt /∈ Kη,t

)
≤ η. We define the compact

Kη,t :=

{
ω ∈ Wk,2

b (T2)| ‖ω‖b,k,2 <
(
C

η

) 1
4

}
where C is the constant which appears in the a priori estimates (Lemma 18).
By a Sobolev compact embedding theorem, Kη,t is a compact set in L2

b(T2)
and

sup
n

P
(
ωνn,R,nt /∈ Kη,t

)
= sup

n
P

(
‖ωνn,R,nt ‖b,k,2 ≥

(
C

η

) 1
4

)

≤ sup
n

η

C
E

[
sup
t∈[0,T ]

‖ωνn,R,nt ‖4b,k,2

]
≤ η.

In order to show relative compactness, we need to justify part b) of Kurtz’
criterion, as per Theorem 8.6 in [14]. We will show that there exists a family
(γnδ )0<δ<1 of nonnegative random variables such that

E
[
‖ωνn,R,nt+l − ωνn,R,nt ‖2b,2|Ft

]
≤ E

[
γnδ |Ft

]
and lim

δ→0
lim sup

n
E
[
γnδ
]

= 0 for t ∈ [0, T ]. We use the mild form of equation (9),

that is

ωνn,R,nt = Sn(t)ωνn,R,n0 −
∫ t

0
Sn(t− s)Pn−1,n

s (ωνn,R,ns ))ds

−
∞∑
i=1

∫ t

0
Sn(t− s)Liωνn,R,ns dW i,n

s ,
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with Pn−1,n
s as defined in (10) and Sn(t) := eνn∆t. One has

‖ωνn,R,nt+l − ωνn,R,nt ‖2b,2 ≤ C

(
‖(Sn(t+ l)− Sn(t))ωνn,R,n0 ‖2b,2

+

∥∥∥∥∫ t

0
(Sn(t+ l − s)− Sn(t− s))Pn−1,n

s (ωνn,R,ns )ds

∥∥∥∥2

b,2

+

∥∥∥∥∫ t+l

t
Sn(t+ l − s)Pn−1,n

s (ωνn,R,ns )ds

∥∥∥∥2

b,2

+

∥∥∥∥ ∞∑
i=1

∫ t

0
(Sn(t+ l − s)− Sn(t− s))Liωνn,R,ns dW i,n

s

∥∥∥∥2

b,2

+

∥∥∥∥ ∞∑
i=1

∫ t+l

t
(Sn(t+ l − s)Liωνn,R,ns dW i,n

s

∥∥∥∥2

b,2

)
The calculations follow as per [11] Section 6. The process γνnl is defined as

γνnl := ‖(Sn(l)− 1)ωνn,R,n0 ‖b,2 +

∫ T

0
‖(Sn(l)− 1)Pn−1,n

s (ωνn,R,ns )‖2b,2ds

+ Cl2 sup
s∈[0,T+1]

‖Pn−1,n
s (ωνn,R,ns )‖2b,2 + l2 sup

s∈[0,T+1]
‖Liωνn,R,ns ‖2b,2

+

∫ T

0
‖
(
(t+ l − r)α−1Sn(l)− (t− r)α−1

)
Sn(t− r)z(r)‖2b,2dr

and γnδ := sup
l∈[0,δ]

γνnl . From Lemma 18 we deduce that there exist two constants

c1 and c2 such that E[sup
s
‖Pn−1,n

s (ωνn,R,ns )‖2b,2] ≤ c1 and E[sup
s
‖Liωνn,R,ns ‖2b,2] ≤

c2. The integrands in the integrals above converge pointwise to 0 when l → 0
due to the strong continuity of the semigroup Sn. At the same time, they are
bounded by integrable functions, therefore the convergence is uniform in space
by the dominated convergence theorem. Then the requirement

lim
δ→0

sup
νn

E
[
γnδ
]

= 0

is met. In conclusion all the conditions required by Kurtz’ criterion are fulfilled
and therefore (ωνn,R,nt )νn is relatively compact.

10. A PRIORI ESTIMATES

Lemma 18. Let ωt be the solution of the vorticity equation (2) and ωνn,R,nt

the solution of the linear approximating equation (8). Then the following prop-
erties hold:
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i. For any f ∈ W2,2
b (T2) we have〈

f,L2
i f
〉
b

+ 〈Lif,Lif〉b = 0.

ii. If ωt, ω
νn,R,n
t ∈ Wk,2

b (T2) then the following transport formulae hold P-
almost surely:

‖ωt‖Lpb = ‖ω0‖Lpb
‖ωνn,R,nt ‖Lpb ≤ ‖ω0‖Lpb
‖ωt‖∞ = ‖ω0‖∞
‖ωνn,R,nt ‖∞ ≤ ‖ω0‖∞.

provided that the initial condition is in L∞(T2).

iii. If ω ∈ Wk,2
b (T2), then (Pn−1,n

t )t defined in (10) and (Liωνn,R,nt )t are
processes with paths taking values in L2

b(T2).

iv. There exists a constant C1 such that:∣∣〈∂kωνn,R,nt , ∂k
(
L2
iω

νn,R,n
t

)〉
b

+
〈
∂k
(
Liωνn,R,nt

)
, ∂k
(
Liωνn,R,nt

)〉
b

∣∣
≤ C1‖ωνn,R,nt ‖2b,k,2.

v. There exist some constants C2 and C ′2 such that:∣∣〈∂kωνn,R,nt , fR(u
νn−1,R,n−1
t )∂k

(
L
u
νn−1,R,n−1

t

ωνn,R,nt

)〉
b

∣∣ ≤
C2‖∂kuνn,R,n−1

t ‖ab,2‖u
νn,R,n−1
t ‖1−ab,2 ‖ω

νn,R,n
t ‖2b,k,2

with 0 < a ≤ 1, and

|〈∂kωνn,R,nt , fR(u
νn−1,R,n−1
t )∂k

(
L
u
νn−1,R,n−1

t

ωνn,R,nt

)
〉b| ≤ C ′2‖ω

νn,R,n
t ‖2b,k,2.

The technical details of the proof of the above inequalities are similar to
the ones proven in Lemma 19 from [11]. The only difference is given by the fact
the on the right hand side we always have also the norm of the bounded nonde-
generate function b, which does not alter qualitatively the result. However, a
slightly more significant difference appears in the control of the higher deriva-
tives of the Lie derivative L

u
νn−1,R,n−1

t

ωνn,R,nt where instead of the divergence-

free assumption from [11] we use the regularity properties proven in Section
5.

Proposition 19. There exists a constant C(R, T ) independent of n such
that

E
[

sup
t∈[0,T ]

‖ωνn,R,nt ‖4b,k,2
]
≤ C(R, T ).
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Proof. : After applying the Itô formula to the approximating sequence
(8) we obtain

‖∂kωνn,R,nt ‖2b,2 = ‖∂kωνn,R,n0 ‖2b,2 + 2νn

∫ t

0
〈∂kωνn,R,ns , ∂k+2ωνn,R,ns 〉bds

− 2

∫ t

0
〈∂kωνn,R,ns , fR(uνn−1,R,n−1

s )∂kL
u
νn−1,R,n−1
s

ωνn,R,ns 〉bds

+
∞∑
i=1

∫ t

0
〈∂kωνn,R,ns , ∂kL2

iω
νn,R,n
s 〉bds

+
∞∑
i=1

∫ t

0
〈∂kLiωνn,R,ns , ∂kLiωνn,R,ns 〉bds

− 2
∞∑
i=1

∫ t

0
〈∂kωνn,R,ns , ∂kLiωνn,R,ns 〉bdW i,n

s .

We analyse each term. One can write

〈∂kωνn,R,ns , ∂k+2ωνn,R,ns 〉b = −‖∂k+1ωνn,R,ns ‖2b,2 ≤ 0.

We want to estimate the other terms independently of νn. All terms are esti-
mated above. After summing up we have

E
[

sup
s∈[0,t]

‖ωνn,R,ns ‖2b,k,2
]
≤ E

[
‖∂kων,R,n0 ‖2b,2

]
+C ′2(T )

∫ t

0
E
[

sup
s∈[0,t]

‖ωνn,R,ns ‖2b,k,2
]
ds

+ C1

∫ t

0
E
[

sup
s∈[0,t]

‖ωνn,R,ns ‖2b,k,2
]
ds

+ 2E
[

sup
s∈[0,t]

∞∑
i=1

∫ t

0
〈∂kωνn,R,ns , ∂kLiωνn,R,ns 〉bdW i,n

s

]
.

Let

Bt :=

∞∑
i=1

∫ t

0
〈∂kωνn,R,ns , ∂kLiωνn,R,ns 〉bdW i,n

s and βt := ‖ωνn,R,nt ‖2b,k,2.

Bt is a local martingale. We have

βt ≤ β0 − 2Bt + (C ′2 + C1)

∫ t

0
βsds

and by Gronwall lemma

E
[

sup
s∈[0,t]

β2
s

]
≤ 2e2(C′2+C1)t

(
β2

0 + 4E
[

sup
s∈[0,t]

B2
s

])
.
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Using the Burkholder-Davis-Gundy inequality there exists a constant α̃ such
that

E
[

sup
s∈[0,t]

B2
s

]
≤ α̃E

[√
〈B〉2s

]
.

It is easy to show that E
[
〈B〉s

]
≤ C2

2E[ sup
s∈[0,t]

β2
s ]: following the same calcula-

tions as those from step v. Lemma 18 we can see that

〈∂kωνn,R,ns , ∂kLiωνn,R,ns 〉b ≤ C2‖ωνn,R,ns ‖2b,k,2

if instead of making use of the truncation corresponding to ‖uνn−1,R,n−1
s ‖b,k,2

we take into account assumption (3). Hence

〈B〉s ≤ C2
2 sup
s∈[0,t]

‖ωνn,R,ns ‖4b,k,2 = C2
2 sup
s∈[0,t]

β2
s

and the above inequality follows. In conclusion

E
[

sup
s∈[0,t]

β2
s

]
≤ C̃1(T )β2

0 + C̃2(T )

∫ t

0
E
[

sup
s∈[0,t]

β2
s ]ds

with C̃1(T ) := 2 exp(2(C ′2+C1)T ) and C̃2(T ) := 8α̃C2
2 exp(2(C ′2+C1)T ). Using

again Gronwall’s inequality we have

E
[

sup
s∈[0,T ]

‖ωνn,R,ns ‖4b,k,2
]
≤ C(R, T )

with C(R, T ) := C̃1(T )β2
0 exp(C̃2(T )T ).

The following lemma is essential when showing that the limit of the approx-
imating sequence satisfies the great lake equation in Wk,2

b (T2) although the
relative compactness property holds in D

(
[0, T ], L2

b(T2)
)

for all T > 0.
Given the fact that the proof is similar to the proof of Lemma 23 in [11], we
do not redo it here.

Lemma 20.
i. Assume that (an)n is a sequence of functions such that lim

n→∞
an = a in

L2
b(T2) and sup

n>1
‖an‖b,s,2 < ∞ for s ≥ 0. Then a ∈ Ws,2

b (T2) and ‖a‖b,s,2 <

sup
n>1
‖an‖b,s,2. Moreover, lim

n→∞
an = a in Ws′,2

b (T2) for any s′ < s.

ii. Assume that an : Ω → Ws,2
b (T2) is a sequence of measurable maps

such that, lim
n→∞

an = a in L2
b(T2), P-almost surely or lim

n→∞
an = a in distri-

bution. Further assume that sup
n>1

E[‖an‖2b,s,2] < ∞. Then, P-almost surely,

a ∈ Ws,2
b (T2) and E[‖a‖2b,s,2] ≤ sup

n>1
E[‖an‖2b,s,2].
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Remark 21. The norm ‖ · ‖b,m,2 is equivalent to the norm defined as
|||f ||| := ‖f‖b,2 + ‖Dmf‖b,2, therefore it is enough to show that all properties
hold for the L2

b norm of f and for the L2
b norm of the maximal derivative Dmf

(see [4] pp. 217).
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