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We prove that generators of transient translation invariant Dirichlet forms have
fundamental solutions belonging to certain ψ-Bessel potential spaces where ψ is
the symbol of the generator. This implies so far unknown regularity results for
solutions of the equation ψ(D)u = f . Moreover, we can identify the fundamental
solution with the kernel of the abstract potential operator and in the case where

ψ
1
2 generates a metric on Rn (which is the generic case) the fundamental solution,

hence the potential kernel often admits a representation with the help of ψ
1
2 .

This extends the well known case of rotational invariant symbols.
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INTRODUCTION

Fundamental solutions of linear partial differential operators with con-
stant coefficients are indeed fundamental tools to study such operators and
corresponding partial differential equations. As a standard reference we refer
to [14] and [15]. The analysis of the equation P (D)E = ε0, where ε0 denotes
the Dirac measure at 0, can make use of the fact that the symbol of P (D) is a
polynomial P (ξ), hence an analytic function. As pointed out by Hörmander,
in order to obtain optimal regularity results for solutions of P (D)u = f given
by u = E ∗f it is desirable to find an E that belongs to certain function spaces
determined by P (ξ), i.e. the symbol of P (D).

The generator of a Lévy process is a pseudo-differential operator −ψ(D) with
a continuous negative definite symbol ψ : Rn → C, the characteristic exponent
of the process, and such a symbol is in general not even a Ck-function for some
k ≥ 1. Hence the study of the equation ψ(D)E = ε0 cannot rely on all the
tools available when ψ(D) is replaced by a polynomial. The central part of
the paper establishes, for a (real-valued) continuous negative definite symbol
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ψ : Rn → R under certain generic conditions, the existence of a fundamental
solution to the operator ψ(D) belonging to a certain ψ-Bessel potential space

Hψ,s
p (Rn), compare with [7] for this class of function spaces. The existence

result has immediate consequences for solutions u = E ∗ f of the equation
ψ(D)u = f , see Theorem 2.2 and its corollaries.

A key point in our investigations is the study of F−1( 1
ψ ) in S ′(Rn) and we

add the assumption 1
ψ ∈ Lploc(R

n) for some p > 1 which implies that the
symmetric Dirichlet form E and the corresponding symmetric sub-Markovian
semigroup (Tt)t≥0 are transient. Besides [9], the classical papers [2], [3] and
[6] are still worthy of being consulted for our problems. It follows that the
associated abstract potential operator, or the resolvent at 0, is defined, and up
to a constant it has to coincide with the fundamental solution E. This in turn
allows us to study E and the equation ψ(D) = f from a second point of view,
i.e. a potential theoretic one. This is done in Section 3, where the more obvious
results are compiled, and in Section 4 where a new aspect is added. This new
aspect takes into account that if ψ : Rn → R is a continuous negative definite
function such that ψ(ξ) = 0 if and only if ξ = 0, then dψ(ξ, η) := ψ

1
2 (ξ−η) is a

metric on Rn which under natural conditions generates the Euclidean topology
in Rn. In Section 4 we start to explore the consequences when E (or the
potential kernel κ) can be expressed in terms of this metric. For the rotational
invariant case, i.e. ψ(ξ) = ϕ(|ξ|), this is always possible, hence this extra
assumption leads to a non-empty class. One question we discuss is that of
further local regularity properties of u ∗ f provided f satisfies a type of Hölder
condition with respect to dψ. The final section provides examples and they are
of some importance in order to demonstrate the non-triviality of the class of
pseudo-differential operators under investigation.

We also would like to mention that using the existence results from [16] and
[12], for further detail see [17]-[18], it is possible to construct a transient sym-
metric Dirichlet form generated by a pseudo-differential operator−p(x,D) with
a negative definite symbol p(x, ξ) such that its extended Dirichlet space is com-
parable (with respect to the Dirichlet norm) with a fixed translation invariant
Dirichlet form Eψ. By results of Tomisaki [24], see also [18], this leads to
interesting comparison results for the corresponding transition densities. So
far it is an open question as to whether these comparison results in turn will
allow us to compare the fundamental solution Eψ related to ψ(D) with the
fundamental kernel or parametrix corresponding to p(x,D). In cases where a
symbolic calculus is available such results have already been obtained and we
refer to [4].
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In the first section we fix our notation and we collect auxiliary results from the
theory of extended Dirichlet spaces and on ψ-Bessel potential spaces.

1. SETTING THE SCENE

Throughout this paper ψ : Rn → R is a continuous negative definite
function. The associated symmetric L2-sub-Markovian semigroup we denote by
(Tψt )t≥0 or just by (Tt)t≥0 and we note that this semigroup extends to all spaces
Lp(Rn) as a symmetric Lp-sub-Markovian semigroup. Further, we assume the

property that ψ(ξ) = 0 if and only if ξ = 0. Consequently, dψ(ξ, η) := ψ
1
2 (ξ−η)

is a translation invariant metric on Rn. Note ψ satisfies the estimate

(1.1) 0 ≤ ψ(ξ) ≤ cψ(1 + |ξ|2) for all ξ ∈ Rn.

We add the assumption that the metric dψ generates the Euclidean topology
on Rn which is according to [19], Lemma 3.2, equivalent to the condition

(1.2) lim inf
|ξ|→∞

ψ(ξ) > 0.

Hence (Rn, dψ, λ(n)) is a metric measure space, the underlying topology is the
Euclidean one and λ(n) is the Lebesgue measure in Rn. For certain considera-
tions it is convenient to assume that (Rn, dψ, λ(n)) has the doubling property,
i.e.

(1.3) λ(n)(B
dψ
2r (x)) ≤ γλ(n)(Bdψ

r (x))

holds for all x ∈ Rn and r > 0 where γ > 0 is a constant independent of

x and r. Under this condition, the volume of the open ball B
dψ
r (x) := {y ∈

Rn|dψ(x, y) < r} has at most power growth as r → ∞ and furthermore the
doubling condition implies that (Rn, dψ, λ(n)) is a homogeneous space in the
sense of Coifman and Weiss [5]. It is convenient to introduce the volume
function

(1.4) Vψ(r) := λ(n)(B
dψ
r (0))

as well as

(1.5) Ṽψ(r) := Vψ(
√
r).

In addition to conditions on ψ or dψ relating to properties of the metric measure
space (Rn, dψ, λ(n)), we assume that

(1.6)
1

ψ
∈ L1

loc(Rn).
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It is known, see [1], [9] or [17], that with a continuous negative definite function
ψ : Rn → R we can associate a symmetric translation invariant Dirichlet space
(E , D(Eψ)) where

(1.7) Eψ(u, v) =

∫
Rn
ψ(ξ)û(ξ)v̂(ξ) dξ

and

(1.8) D(Eψ) = Hψ,1(Rn).

Here, Hψ,s(Rn), s ∈ R, is the space

(1.9) Hψ,s(Rn) := {u ∈ S ′(Rn)|‖u‖ψ,s <∞}
where

(1.10) ‖u‖ψ,s = ‖(1 + ψ(·)
s
2 û‖0.

The space Hψ,s(Rn) is a Hilbert space with scalar product

(1.11) (u, v)s := ((1 + ψ(·))
s
2 û, (1 + ψ(·))

s
2 v̂)0

which takes on S(Rn) the form

(1.12) (u, v)s =

∫
Rn

(1 + ψ(ξ))sû(ξ)v̂(ξ) dξ,

and (·, ·)0 is the scalar product in L2(Rn). The condition

(1.13) ψ(ξ) ≥ c0|ξ|ρ0 for ξ ≥ R
with c0 > 0, ρ0 > 0 and R0 ≥ 0 implies that if s > n

ρ0
then Hψ,s(Rn) is

continuously embedded into the space C∞(Rn) and that the estimate

(1.14) ‖u‖∞ ≤ cψ,s,n‖u‖ψ,s
holds. The continuity of the embedding of Hψ,t(Rn) into Hψ,s(Rn) is for t ≥ s
trivial. For the continuous negative definite function ψ0(ξ) = |ξ|2 we have

(1.15) ‖u‖ψ0,s = ‖(1 + | · |2)
s
2 û‖0,

i.e. Hψ0,s(Rn) coincides with the classical Bessel potential space Hs(Rn).

For several reasons we have to extend the scale Hψ,s(Rn), s ∈ R, and following

[7] we introduce the scale of ψ-Bessel potential spaces Hψ,s
p (Rn).

Definition 1.1. Let ψ : Rn → R be a continuous negative definite func-
tion. The ψ-Bessel potential space Hψ,2

p (Rn) of order 2 with respect to Lp(Rn),
1 ≤ p <∞, is defined as

(1.16) Hψ,2
p (Rn) := {u ∈ Lp(Rp)|‖u‖

Hψ,2
p

<∞}

where

(1.17) ‖u‖
Hψ,2
p

:= ‖(id + ψ(D))u‖Lp .
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Remark 1.2. A. The meaning of 1.17 is discussed in detail in [7]. For our
purposes it is sufficient to interpret 1.17 in the obvious way, say for u ∈ S(Rn).

B. For p = 2 we have of course Hψ,2
2 (Rn) = Hψ,2(Rn).

Denoting for a moment the generator of the Lp-semigroup (Tψt )t≥0 by

(A(p), D(A(p)))

we find

(1.18) D(A(p)) = Hψ,2
p (Rn)

and (A(p), Hψ,2
p (Rn)) is an extension of (−ψ(D),S(Rn)), indeed the closure of

(−ψ(D),S(Rn)) in Lp(Rn).
Next we introduce for s > 0 and 1 ≤ p <∞

(1.19) Hψ,s
p (Rn) := (id−A(p))−

s
2 (Lp(Rn)).

With some effort, see [7], it can be proved that

(1.20) Hψ,s
p (Rn) = {u ∈ Lp(Rn)|‖F−1((1 + ψ)

s
2 û)‖Lp <∞},

and we set

(1.21) ‖u‖
Hψ,s
p

:= ‖F−1((1 + ψ)
s
2 û)‖Lp = ‖(id−A(p))

s
2u‖Lp .

Now certain embedding results follow along standard arguments, e.g.

(1.22) Hψ,s+t
p (Rn) ↪→ Hψ,s

p (Rn), t, s ≥ 0,

or the fact that S(Rn) is dense in Hψ,s
p (Rn). It is further possible to extend

the scale Hψ,s
p (Rn), s ≥ 0, to s ∈ R and for s ≥ 0 the space Hψ,−s

p′ (Rn) we

can identify with (Hψ,s
p (Rn))∗, 1

p + 1
p′ = 1, see [7]. In particular, we have for

u ∈ Hψ,s
p (Rn) and v ∈ Hψ,−s

p′ (Rn) the estimate

(1.23) |〈v, u〉| ≤ ‖u‖
Hψ,s
p
‖v‖

Hψ,−s
p′

.

To formulate the most general embedding theorem for Hψ,s
p -spaces we need

Definition 1.3. A tempered distribution m ∈ S ′(Rn) is called a Fourier
multiplier of type (p, q) if

(1.24) ‖m‖(p,q) := sup

{
‖F−1(mϕ̂)‖Lq(Rn)
‖ϕ‖Lp(Rn)

∣∣0 6= ϕ ∈ S(Rn)

}
<∞.

By Mp,q we denote the space of all Fourier multipliers of type (p, q).
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We refer to [13] for the main properties of Mp,q.
Here we only mention

(1.25) F (L1(Rn)) ⊂Mp,p ⊂M2,2 = L∞(Rn), 1 < p <∞
as well as

(1.26) M1,q ⊂Mq′,∞ = F (Lq(Rn)), 1 ≤ q ≤ ∞, 1q + 1
q′ = 1.

Moreover, we have Mp,q ⊂ L1
loc(Rn) for q ≤ 2. Now we state the embedding

result.

Theorem 1.4. Let ψ1, ψ2 : Rn → R be two continuous negative definite
functions. Furthermore, let r, s ∈ R and 1 ≤ p, q <∞. In this case we have a
continuous embedding

(1.27) Hψ1,s
p (Rn) ↪→ Hψ2,r

q (Rn)

if and only if

(1.28) m := (1 + ψ2)
r
2 (1 + ψ1)

− s
2 ∈Mp,q.

In addition, a type of Sobolev embedding theorem holds, compare with Theo-
rem 2.3.4 in [7].

Theorem 1.5. The condition

(1.29) F−1((1 + ψ)−
s
2 ) ∈ Lp′(Rn), 1 < p <∞, s ∈ R,

is necessary and sufficient for the continuous embedding

(1.30) Hψ,s
p (Rn) ↪→ C∞(Rn),

1

p
+

1

p′
= 1.

Now we return to our discussion of Dirichlet space and we note that (1.13)
implies e−tψ(·) ∈ L1(Rn), t > 0, see [21], and therefore (2π)−

n
2 e−tψ(·) has the

inverse Fourier transform

(1.31) pt(x) := (2π)−n
∫
Rn
eix·ξe−tψ(ξ) dξ

which belongs to C∞(Rn).
The condition (1.6) is necessary and sufficient for (Eψ, Hψ,1(Rn)) to be a tran-
sient Dirichlet form. Recall that a symmetric Dirichlet form (E ,F) is transient
if and only if for a strictly positive and bounded L1-function g we have the
estimate

(1.32)

∫
|u|g dx ≤ E

1
2 (u, u)

for all u ∈ F . In this case we can define the corresponding extended Dirichlet
space (Ee,Fe) as follows:
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Fe consists of all measurable functions u : Rn → R such that |u| <∞ a.e.
and for u there exists a sequence (uk)k∈N, uk ∈ F , which converges a.e. to
u and (uk)k∈N is a Cauchy sequence with respect to E , i.e.
limk,l→∞ E(uk − ul, uk − ul) = 0.

It is well known that F = Fe ∩ L2 and

(1.33) Ee(u, u) = lim
k→∞

E(uk, uk)

for every sequence satisfying the condition in the above definition. As we
have already mentioned under condition (1.6), the extended Dirichlet space

(Eψ, Hψ,1
e (Rn)) exists where we also use Eψ as a symbol for Eψe for convenience,

which is justified by (1.33).

The transience of a Dirichlet space is closely related to that of the associated
operator semigroup (Tt)t≥0. For u ∈ L2 we set

(1.34) Stu :=

∫ t

0
Tsuds, t > 0,

and for u ∈ L1, u ≥ 0 a.e., the potential generator G is defined by

(1.35) Gu(x) := lim
N→∞

SNu(x) = sup
N∈N

SNu(x) ≤ ∞,

where the non-negativity of u entails the existence of the limit by monotone
convergence. The semigroup (Tt)t≥0 is called transient if and only ifGu(x) <∞
a.e. for all u ∈ L1, u ≥ 0 a.e. It is known that (E , D(E)) is transient if and
only if (Tt)t≥0 is transient. Note, and this is of importance, that G is not a
linear operator since its domain is not a vector space. Following K. Yosida
we introduce in the L2-context the abstract potential operator (R0, D(R0))
associated with (Tt)t≥0 or equivalently with (E , D(E)) by defining

(1.36) D(R0) := {u ∈ L2| lim
λ→0

Rλu exists in L2}

and

(1.37) R0u := lim
λ→0

Rλu, u ∈ D(R0),

where the limit in (1.37) is the L2-limit. Here, (Rλ)λ>0 denotes the resolvent
associated with (Tt)t≥0 or (E , D(E)), i.e.

(1.38) Rλu :=

∫ ∞
0

e−λtTtu dt, u ∈ L2, λ > 0.

Of importance is the following result, see [9].
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Proposition 1.6. Let (Tt)t≥0 be a symmetric transient sub-Markovian
semigroup on L2 with generator (A,D(A)). In this case, the corresponding
potential operator and the abstract potential operator coincide as L2-operators
on the intersection of their domains and as an L2-operator we have for R0 the
relations

(1.39) A = −R−10 and R0 = −A−1.
We remark that R0 is often called the resolvent at 0 and if we extend G to L2

by R0 we can read (1.39) as

(1.40) A = −G−1 and G = −A−1.
In both lines we have to consider the first equations to hold on D(A) whereas
the second equations hold on L2.

We now return to the concrete case (E , Hψ,1(Rn)) under the assumption (1.6).
A formal calculation yields

(R0u)(x) =

∫ ∞
0

(Ttu)(x) dx

=

∫ ∞
0

(2π)−
n
2

(∫
Rn
eix·ξe−tψ(ξ)û(ξ) dξ

)
dt

= (2π)−
n
2

∫
Rn
eix·ξ

∫ ∞
0

e−tψ(ξ)dt û(ξ) dξ

= (2π)−
n
2

∫
Rn
eix·ξ

1

ψ(ξ)
û(ξ) dξ,

i.e.

(1.41) R0u = F−1
(

1
ψ

)
û) =

(
F−1

(
1
ψ

))
∗ u

which we relate to

(1.42) Au = −F−1(ψû).

We introduce, at the moment still on a formal level,

(1.43) κ := E := F−1
(

1

ψ

)
.

In (1.43) we want to give F−1
(

1
ψ

)
two different interpretations. We want to

interpret κ as the potential kernel associated with G(= R0) or (Tt)t≥0 where
(Tt)t≥0 is of course associated with the convolution semigroup (µt)t≥0, i.e.

(1.44) Ttu = µt ∗ u
and

(1.45) µ̂t(ξ) = (2π)−
n
2 e−tψ(ξ).
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However, we want to look at E as a fundamental solution to the pseudo-
differential operator ψ(D) with symbol ψ, i.e.

(1.46) ψ(D)u(x) = (2π)−
n
2

∫
Rn
eix·ξψ(ξ)û(ξ) dξ,

or ψ(D) = −A. The goal of this paper is firstly to give a precise mathematical
setting for these ideas and then to use the metric measure space (Rn, dψ, λ(n))
if possible, to investigate κ = E.

2. FUNDAMENTAL SOLUTIONS FOR ψ(D)

By definition, a fundamental solution for a linear partial differential op-
erator P (D) =

∑
|α|≤m aαD

α, aα ∈ C and Dα = (−i)|α|∂α, is a distribution

E ∈ D ′(Rn) satisfying

(2.1) P (D)E = ε0,

where ε0 denotes the Dirac measure at 0. The precise meaning of (2.1) is

(2.2) 〈E,P t(D)ϕ〉 = 〈ε0, ϕ〉 = ϕ(0)

for all ϕ ∈ D(Rn) = C∞0 (Rn) where P t(D) =
∑
|α|≤m(−1)|α|aαD

α is the for-
mal transposed differential operator to P (D). By the Malgrange-Ehrenpreis
theorem every linear partial differential operator with constant coefficients ad-
mits a fundamental solution. If E ∈ D ′(Rn) and P (D)u = 0 then E + u is
a further fundamental solution, thus a fundamental solution of P (D) is not
unique. Suppose that E is a fundamental solution of P (D) and f ∈ E ′(Rn) is
a distribution with compact support then u := E ∗ f is well defined and solves
in D ′(Rn) the equation P (D)u = f . Moreover, since

sing supp(E ∗ f) ⊂ sing suppE + sing suppf,

where sing suppu denotes the singular support of u ∈ D ′(Rn), we can use
properties of a fundamental solution to obtain (local) regularity results for
solutions of P (D)u = f . For example, if sing suppE =

{
0
}

then

sing suppu = sing supp(E ∗ f) ⊂ sing suppf,

where u := E∗f , f ∈ E ′(Rn), solves P (D)u = f . In particular, if f
∣∣
G
∈ C∞(G),

G ⊂ Rn open, then u
∣∣
G
∈ C∞(G). Thus fundamental solutions are rather

useful tools to (locally) study linear partial differential operators with constant
coefficients. Differential operators are local and pseudo-local operators, i.e.
they satisfy

suppP (D)u ⊂ suppu
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and

sing suppP (D)u ⊂ sing suppu.

The first property we used already in (2.2): for every ϕ ∈ C∞0 (Rn) the function

P t(D)ϕ belongs to C∞0 (Rn) too and we can form the term 〈E,P t(D)ϕ〉.
Now let ψ : Rn → R be a continuous negative definite function and define

ψ(D)u(x) = (2π)−
n
2

∫
Rn
eixξψ(ξ)û(ξ)dξ

which is due to (1.1) well defined on S(Rn), hence on C∞0 (Rn). We may ask
how to extend ψ(D) to D ′(Rn), if possible, and whether we can introduce the
notion of a fundamental solution for ψ(D) analogously to the case of differential
operators. Since we are dealing with real-valued symbols ψ, let us restrict for
a moment to real-valued functions ϕ ∈ C∞0 (Rn) and then we need to define
the term 〈E,ψt(D)ϕ〉 for ϕ ∈ C∞0 (Rn). But for ψ real-valued we must have
ψt(D) = ψ(D) and the problem is to define 〈E,ψ(D)ϕ〉 for some E ∈ D ′(Rn),
ϕ ∈ C∞0 (Rn). However, the operator ψ(D) is in general not local and it
preserves C∞0 (Rn) if and only if the Lévy measure ν of ψ in its Lévy-Khinchine
representation

ψ(ξ) =

n∑
k,l=1

qklξkξl +

∫
Rn\
{
0
}(1− cos yξ)ν(dy)

has a bounded support. This condition is too restrictive for our purposes.
Thus in general ψ(D)ϕ does not belong to C∞0 (Rn) and therefore 〈E,ψ(D)ϕ〉
is for E ∈ D ′(Rn) not defined. We want to find conditions under which E =

F−1
(

1
ψ

)
is defined and gives a fundamental solution of ψ(D). (Note in the

following that ψ being real-valued implies that F

(
1
ψ

)
= F−1

(
1
ψ

)
.

The problem to handle the potential operator within the theory of distributions
was studied already in the 1970s and 1980s, with some first considerations even
in the 1960s. The main contributors were C. Herz, J-P. Kahane and F. Hirsch
who developed the theory of the “opérateur de Laplace généralisée” and used
their result to handle the problem of spectral synthesis with the Newton kernel

replaced by F−1
(

1
ψ

)
. Eventually the opérateur de Laplace généralisée is the

inverse to u 7→ F−1
(

1
ψ

)
∗u, however the crucial question is about domains, i.e.

regularity. We refer to the important paper [11] by F. Hirsch and the references
given there. The main difference in our approach is that as in the theory of
linear partial differential operator we aim at precise regularity conditions for
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F−1
(

1
ψ

)
, compare with the comments in [14]. In addition, we make a first

attempt to use geometric information in the form of the metric dψ to study
solutions to ψ(D)u = f .
First we note the Hausdorff-Young theorem

Theorem 2.1. For 1 < p ≤ 2 the Fourier transform F : S(Rn)→ S(Rn)
extends to a linear continuous mapping from Lp(Rn) to Lp

′
(Rn) with operator

norm (2π)
(p−2)n

2p , i.e. we have

‖Fu‖Lp′ ≤ (2π)
(p−2)n

2p ‖u‖Lp ,
1

p′
+

1

p
= 1.

A consequence of Theorem 2.1 is the following estimate for v ∈ S(Rn)∫
Rn
|v̂(ξ)|dξ =

∫
Rn

(1 + ψ(ξ))
− s0

2p′ |(1 + ψ(ξ))
s0
2p′ v̂(ξ)|dξ

=

∫
Rn

(1 + ψ(ξ))
− s0

2p′ |F ((1 + ψ(D))
s0
2p′ v)(ξ)|dξ

≤
∥∥∥(1 + ψ)

− s0
2p′
∥∥∥
Lp

∥∥∥F ((1 + ψ(D))
s0
2p′ v)

∥∥∥
Lp′

≤ (2π)
(p−2)n

2p

∥∥∥(1 + ψ)
− s0

2p′
∥∥∥
Lp

∥∥∥(1 + ψ(D))
s0
2p′ v

∥∥∥
Lp
,

or with the help of (1.21)∫
Rn
|v̂(ξ)|dξ ≤ (2π)

(p−2)n
2p

∥∥∥(1 + ψ)
− s0

2p′
∥∥∥
Lp
‖v‖

H
ψ,
s0
p′

p

,

provided (1 + ψ)
− s0

2p′ ∈ Lp(Rn), i.e. (1 + ψ)
− s0p

2p′ = (1 + ψ)−
s0(p−1)

2 ∈ L1(Rn).
Now we assume that 1

ψ

∣∣
B1(0)

∈ Lp(B1(0)) for some 1 < p ≤ 2 and for v ∈ S(Rn)

we find

|〈 1
ψ
, v̂〉| ≤

∣∣∣∣ ∫
B1(0)

1

ψ
v̂dξ

∣∣∣∣+

∣∣∣∣ ∫
Bc1(0)

1

ψ
v̂dξ

∣∣∣∣
≤
∥∥∥∥ 1

ψ

∥∥∥∥
Lp(B1(0))

‖v̂‖Lp′ (B1(0))
+ c̃ψ

∫
Bc1(0)

|v̂(ξ)|dξ,

where c̃ψ := supξ∈Bc1(0)
1

ψ(ξ) which we assume to be finite. By the Hausdorff-
Young theorem we have

‖v̂‖Lp′ (B1(0))
≤ (2π)

(p−2)n
2p ‖v‖Lp ,

If (1 + ψ)−
s0(p−1)

2 ∈ L1(Rn) then our previous calculation yields

c̃ψ

∫
Rn
|v̂|dξ ≤ (2π)

(p−2)n
2p c̃ψ

∥∥∥(1 + ψ)−
s0(p−1)

2

∥∥∥ 1
p

L1
‖v‖

H
ψ,
s0
p′

p

.
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Since for s0
p′ > 0 we have ‖v‖Lp ≤ ‖v‖

H
ψ,
s0
p′

p

, we arrive at

|〈 1
ψ
, v̂〉| ≤ cs0,p,n,ψ‖v‖

H
ψ,
s0
p′

p

,

and we have proved

Theorem 2.2. Let ψ : Rn → R be a continuous negative definite function
such that (1.13) holds and such that 1

ψ

∣∣
B1(0)

∈ Lp(B1(0)) for some 1 < p ≤ 2.

For any s0 >
2n

ρ0(p−1) it follows that we can identify with 1
ψ a distribution in

S ′(Rn), the Fourier transform of which belongs to H
ψ,
−s0
p′

p′ (Rn).

From F ((1 + ψ(D))t(u ∗ v)) = (2π)
n
2 (1 + ψ(ξ))tû(ξ)v̂(ξ) we deduce that

(1 + ψ(D))
t
2 (u ∗ v) = (1 + ψ(D))

t1
2 u ∗ (1 + ψ(D))

t−t1
2 v

and from Young’s inequality

(2.3) ‖u ∗ v‖Lr ≤ ‖v‖Lq̃‖u‖Lp̃
for 1

r + 1 = 1
p̃ + 1

q̃ , 1 ≤ p̃, q̃, r <∞, we obtain now∥∥∥(1 + ψ(D))
t
2 (u ∗ v)

∥∥∥
Lr
≤
∥∥∥(1 + ψ(D))

− s0
2p′ v

∥∥∥
Lq̃

∥∥∥(1 + ψ(D))
1
2
(t+

s0
p′ )u

∥∥∥
Lp̃

or

(2.4) ‖u ∗ v‖
Hψ,t
r
≤ ‖v‖

H
ψ,− s0

p′
q̃

‖u‖
H
ψ,t+

s0
p′

p̃

,

which holds for u ∈ H
t+

s0
p′

p̃ (Rn) and v ∈ H
ψ,− s0

p′
q̃ (Rn). In particular for r =∞

inequality (2.3) reads as

‖u ∗ v‖∞ ≤ ‖v‖Lp̃′‖u‖Lp̃

with u ∗ v ∈ Cb(Rn), however we cannot work with the space Hψ,s
∞ (Rn) using

the result from [7].
We note that 1

ψ

∣∣
B1(0)

∈ Lp(B1(0)) implies 1
ψ

∣∣
B1(0)

∈ Lq(B1(0)) for 1 ≤ q ≤ p

which implies

Corollary 2.3. Suppose that ψ : Rn → R is a continuous negative
definite function such that (1.13) holds and such that for some p, 1 < p ≤ 2,
fixed 1

ψ

∣∣
B1(0)

∈ Lp(B1(0)). Then 1
ψ ∈ S

′(Rn) and for some Ẽ ∈ S ′(Rn) we have

Ẽ = F−1
(

1
ψ

)
. For every 1 < p0 ≤ p it follows that s0 >

2n
ρ0(p0−1) implies

(2.5) Ẽ ∈
⋂

p0≤q≤p
H
ψ,− s0

q′

q′ (Rn) =
⋂

p
p−1
≤q′≤ p0

p0−1

H
ψ,− s0

q′

q′ (Rn),
1

q
+

1

q′
= 1.
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Moreover, E := (2π)−
n
2 Ẽ is a fundamental solution to ψ(D) in the sense that

in S ′(Rn) we have ψ(D)E = ε0.

Proof. Since 1
ψ

∣∣
B1(0)

∈ Lp(B1(0)) implies 1
ψ

∣∣
B1(0)

∈ Lq(B1(0)) for 1 ≤
q ≤ p, we immediately deduce (2.5). Moreover, since we are allowed to take in
ψ(D)E = ε0 the Fourier transform on both sides and under our conditions we
have (ψ(D)E)∧ = ψ(·)Ê the result follows.

Corollary 2.4. Under the assumptions of Corollary 2.3 let

E := (2π)−
n
2 F−1

(
1
ψ

)
be a fundamental solution to ψ(D), let 1 < q < p,

1
q′ + 1

q = 1, and consider E as an element in H
ψ,− s0

q′

q′ (Rn). Further let f ∈

H
ψ,t+

s0
p′

p̃ (Rn), t > 0. Then by w := E∗f a distributional solution to ψ(D)u = f

is given which belongs to Hψ,t
r (Rn), where r = p̃·q

q−p̃ provided q > p̃.

Proof. We may apply (2.4) with v = E ∈ H
ψ,− s0

q′

q′ (Rn) and

u = f ∈ H
ψ,t+

s0
p′

p (Rn). It remains to check the conditions on r. Recall that we
must have 1

r + 1 = 1
q′ + 1

p̃ and r ≥ 1. The identity is satisfied by our definition

of r. The condition r ≥ 1 holds if and only if p̃q
q−p̃ ≥ 1 and since q > p̃ this is

equivalent to 1 ≥ 1
p̃ −

1
q or q+1

q ≥
1
p̃ which means p̃ ≥ q

q+1 and by assumption
we have p̃ > 1.

Of course we can combine Corollary 2.4 and (2.3) in order to obtain further
(local) regularity results for solutions of the equation ψ(D)u = f . However our
next step is to make use of the fact that for 1

ψ ∈ L
1
loc(Rn) the Dirichlet space

(Eψ, Hψ,1(Rn)) is transient and F−1
(

1
ψ

)
is its potential kernel.

3. FUNDAMENTAL SOLUTIONS AS POTENTIAL KERNELS

Let ψ : Rn → R be a continuous negative definite function such that
ψ(ξ) = 0 if and only if ξ = 0, (1.13) holds and 1

ψ

∣∣
B1(0)

= Lp(B1(0)) for some

1 < p ≤ 2. It follows that the corresponding Dirichlet space (Eψ, Hψ,1(Rn))
is transient and its extended Dirichlet space exists. Denote by (µt)t≥0 the
symmetric convolution semigroup corresponding to ψ, i.e.

µ̂t(ξ) = (2π)−
n
2 e−tψ(ξ).



170 K. P. Evans, H. T. Fry, and N. Jacob 14

It follows that for every compact set K ⊂ Rn we have

κ(K) :=

∫ ∞
0

µt(K)dt <∞

and by

κ :=

∫ ∞
0

µtdt

a measure is defined. With

(3.1) ρλ :=

∫ ∞
0

e−λtµtdt

we get for all u ∈ C0(Rn)

〈κ, u〉 =

∫
Rn
udκ = lim

λ→∞

∫
Rn
udρλ = lim

λ→∞
〈ρλ, u〉.

Moreover, (µt)t≥0 is integrable and

(3.2) κ = F−1
(

1

ψ

)
.

We refer to [1] where these results are discussed in great detail. For our pur-
pose the equality (3.2) is of importance since it states that in the case under
consideration we have

(3.3) Ẽ = κ = F−1
(

1

ψ

)
,

which implies that properties of κ are those of E = (2π)−
n
2 Ẽ.

From (3.3) it follows immediately that E is even and that if ψ is rotational
invariant then E is rotational invariant too. For reference purposes let us
summarize all conditions on ψ needed in the following.

Assumption 3.1. The function ψ : Rn → R is a continuous negative
definite function satisfying

i)

(3.4) ψ(ξ) = 0 if and only if ξ = 0;

ii)

(3.5)
1

ψ

∣∣∣∣
B1(0)

∈ Lp(B1(0)) for some p > 1;

iii) for some c0 > 0, γ0 > 0, and R0 ≥ 0 we have

(3.6) c0|ξ|γ0 ≤ ψ(ξ) for |ξ| ≥ R0;
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iv) for some c1 ≥ 0, γ1 > 0, and R1 ≥ 0 we have

(3.7) ψ(ξ) ≤ c1|ξ|γ1 for |ξ| ≥ R1.

Clearly we may choose γ1 ≤ 2 and in (3.5) we can restrict ourselves always to
the cases 1 < p ≤ 2.

Lemma 3.2. Under (3.4)− (3.7) and γ1 ≤ n we have

κ(0) = lim
r→∞

∫
Br(0)

1

ψ(ξ)
dξ = +∞.

Proof. For r > R1 we have∫
Br(0)

1

ψ(ξ)
dξ ≥

∫
Br(0)\BR1

(0)

1

ψ(ξ)
dξ ≥ 1

c1

∫
Br(0)\BR1

(0)

1

|ξ|γ1
dξ

=
ωn
c1

∫ r

R1

ρn−1−γ1dρ

=
ωn
c1

{
1

n−γ1 ρ
n−γ1

∣∣r
R1 , n 6= γ1,

ln ρ
∣∣r
R1 , n = γ1,

where wn is the volume of the unit ball. For γ1 ≤ n the result follows.

Since we always have γ1 ≤ 2, only in the one-dimensional case we might not
apply Lemma 3.2.

Since ξ 7→ 1
ε+ψ(ξ) is a positive definite function, it follows that 1

ψ ∈ L
1
loc(Rn) ⊂

D ′(Rn) is a positive definite distribution and by the Bochner-Schwartz theorem

E = (2π)
n
2 F−1

(
1
ψ

)
is a positive measure of at most polynomial growth (which

of course can be identified with an element belonging to S ′(Rn)). From (3.6)
it follows that the operator semigroup (Tt)t≥0 associated with (µt)t≥0 admits
a density given by

pt(x) = (2π)−n
∫
Rn
eixξe−tψ(ξ)dξ

i.e.

(Ttu)(x) = (µt ∗ u)(x) =

∫
Rn
pt(x− y)u(y)dy

for all u ∈ S(Rn) (and for all extensions to Lq(Rn), 1 ≤ q ≤ ∞, or C∞(Rn)).
Since

κ =

∫ ∞
0

µtdt

we deduce now that κ has a density k given by

k(x) =

∫ ∞
0

pt(x)dt, x 6= 0
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and

k(0) = +∞.
In general however we cannot expect k to be integrable, i.e. to belong to
L1(Rn).

Let us summarize where we are: Suppose that Assumption 3.1 holds and con-
sider the pseudo-differential operator ψ(D). This pseudo-differential operator
admits a fundamental solution E ∈ S ′(Rn) which even belongs to the space

H
ψ,− s0

p′

p′ (Rn), s0 >
2n

ρ0(n−1) , and whenever E ∗ f is defined in the sense of dis-

tributions, e.g. f ∈ E ′(Rn) or f ∈ H
ψ,t+

s0
p′

p̃ (Rn) as in Corollary 2.4, then the
equation ψ(D)u = f has the distributional solution u = E ∗ f . In particular,
we have the information

sing supp u ⊂ sing suppE + sing supp f,

e.g. if f ∈ C∞(Rn) and sing suppE =
{

0
}

then u ∈ C∞(Rn). In addition, we

know that E = (2π)
n
2 k, k ≥ 0, and kλ(n) is a polynomially bounded measure.

Hence if E ∗ f is defined (as a distribution) and f ≥ 0 then the solution
u = E ∗ f to ψ(D)u = f is non-negative too. Thus when considering ψ(D)
in certain spaces of distributions such that f 7→ E ∗ f becomes its inverse
operator, this inverse operator is positivity preserving, hence monotone.

In a next step we want to discuss whether the fact that dψ(ξ, η) := ψ
1
2 (ξ − η)

is a metric in Rn will provided us with further information about solutions to
ψ(D)u = f .

4. METRIC AND POTENTIAL

It is a natural question whether we can “recover” the metric dψ or at
least some of its properties when studying the fundamental solution E or the
potential kernel κ. Of course properties of the scalar product x ·ξ in relation to
dψ must play a crucial role and we are far away from a detailed understanding
of the general situation.

The best understood case is of course the rotational invariant case. The Fourier
transform of a rotational invariant distribution is itself rotational invariant,
hence if ψ is a rotational invariant continuous negative definite function satis-
fying our standard conditions then E is a rotational invariant distribution. If in
addition ψ is a homogeneous function, E must be homogeneous too. Moreover,
we note that generic rotational invariant continuous negative definite functions
are of the type ψ(ξ) = f(|ξ|2) where f is a Bernstein function (and the corre-
sponding process or Dirichlet form is associated with a subordinate Brownian
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motion). Thus in this case we must have for E a representation

E(x− y) = h(|x− y|) = g

(
1

dψ(x, y)

)
or

E(x− y) = g

(
1

ψ
1
2 (x− y)

)
.

This implies in turn that if f is a rotational invariant function such that E∗f is
properly defined then the solution u = E∗f of ψ(D)u = f is rotational invariant
too. More interesting is that we can also deduce regularity properties of u
provided that f satisfies further Hölder conditions. The result and the proof
are obviously a modification of that for the Newton (or the Riesz) potentials
and we refer to the considerations in [10].

In the general case we still might encounter situations where

(4.1) E(x− y) = g

(
1

dψ(x, y)

)
and then a Hölder condition with respect to dψ, i.e. a condition such as

(4.2) |f(x)− f(y)| ≤ (ω(dψ(x, y)))β

will yield local Hölder continuity of u = E∗f with respect to dψ. More precisely,
if we can find a non-negative continuous increasing function ω : [0,∞) → R
such that ω(0) = 0 and ω(t) > 0 for t 6= 0, and for some α > 0 we have for
δ ≤ r that

ω(δ)

∫
δ
2
≤dψ(z,0)<r

g

(
1

dψ(z, 0)

)
dz ≤M(r) <∞,

then (4.2) implies for 0 < γ < β − α that for u = E ∗ f we have for x in a
compact set

(4.3)
u(x)− u(x+ η)

(ω(dψ(η, 0)))γ
→ 0 as ω(dψ(η, 0))→ 0,

where 0 < γ < β − α. The detailed proof of this result is given in [8] and
as already mentioned it follows along the standard arguments as given in [10].
A remark to (4.3) is now in order. Since our general assumptions imply (lo-
cally) for ψ(ξ) lower and upper bounds against some powers of |ξ|, the result
(4.3) implies local Hölder continuity in the classical sense, but (4.3) gives more
precise information for the module of continuity of E ∗ f .

In the following paragraph we will provide examples for (4.1) to hold for ψ not
being rotational invariant.
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5. SOME EXAMPLES

In this paragraph we want to provide some examples. The first class of
examples shows that the set of continuous negative definite functions satisfying
our basic assumptions is quite rich. The only non-trivial assumption to check
will be 1

ψ

∣∣
B1(0)

∈ Lp(B1(0)) for some p > 1. The second class of examples is

intended to assure the reader that for much more than just rotational invariant
continuous negative definite function we can express the fundamental solutions,
i.e. the potential kernel, as a function of dψ.

Example 5.1. The function ξ → |ξ|α, 0 < α ≤ 2, and ξ 7→ ψ(ξ) =
|ξ|

α
2 arctan|ξ|

α
2 are both continuous negative definite functions with ξ = 0

being their only zero and lower as well as upper bounds for |ξ| large are obvious.
Clearly, 1

|·|α ∈ L
p
loc(R

n) if and only if α < n
p . Since

s
1
2arctans

1
2 = s

1
2

∫ s
1
2

0

1

1 + x2
dx ≥ s

2
for s ≤ 1,

it follows that 1

|·|
α
2 arctan|·|

α
2
∈ Lploc(R

n) if and only if α < n
p .

Example 5.2. This example gives the prototype of anisotropic continuous
negative definite functions with mixed homogeneity. We restrict ourselves to
two summands and a simple case, i.e. we do not consider all possible cases.
Let Rn = Rn1+n2 = Rn1 × Rn2 and ξ ∈ Rn1 , η ∈ Rn2 . Further let 0 < α < 1
and 0 < β < α. The function (ξ, η) 7→ |ξ|α + |η|β is on Rn a continuous
negative definite function satisfying the required bounds for |ξ|2 + |η|2 large.
For |ξ|2 + |η|2 < 1 we find

|ξ|α + |η|β ≥ (|ξ|2 + |η|2)
α
2

and consequently we have 1
|ξ|α+|η|β ∈ L

p
loc(R

n) for α < 2
p(n1 + n2) = 2n

p . This

calculation also implies for the continuous negative definite function given on
Rn1+n2 by ψ(ξ, η) = (|ξ|α + |η|β)arctan(|ξ|α + |η|β)

1
2 that 1

ψ ∈ L1
loc(Rn) for

α < 2n
p . This part of our example extends when s 7→ s

1
2arctans

1
2 is replaced

by a Bernstein function f satisfying f(s) ≥ sρ0 for ρ0 > 0 and s < 1. In this
case we have 1

f(ψ) ∈ L
1
loc(Rn1+n2) if αρ0 <

2
p(n1 + n2). For large collection of

concrete Bernstein functions we refer to [23].

Example 5.3. The following symbol was introduced in [22], see also [20],
as an example of a negative definite symbol not admitting a principal part.
Let 1 < α1, α2 < 2, 1 < β1, β2 < 2, 0 < γ1, γ2 < 1, α1γ1 = β2γ2, α2γ2 = β1γ1,
α1γ1 > α2γ2 and αjγj > 1, βjγj > 1 for j = 1, 2. Then we have for ξ ∈ Rn1

and η ∈ Rn2 for the continuous negative definite function

ψER(ξ, η) = (|ξ|α1 + |η|β1)γ1 + (|ξ|α2 + |η|β2)γ2
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the estimate
κ0(|ξ|2 + |η|2)

α1γ1
2 ≤ ψER(ξ, η), κ0 > 0

and 1
ψER
∈ Lploc(R

n1+n2) if α1γ1 <
2
p(n1 + n2).

We now want to investigate the fundamental solution related to ψ(ξ, η) =
|ξ|+ |η|, (ξ, η) ∈ R2, or certain derived symbols such as (|ξ|+ |η|)α. Since the
potential kernel κ corresponding to ψ is given by

κ(x, y) =

∫ ∞
0

pt(x, y)dt =
1

π2

∫ ∞
0

t2

(x2 + t2)(y2 + t2)
dt,

with some efforts, see [8] for full details, we find

κ(x, y) =
1

2π

1

|x|+ |y|
, x2 6= y2

and for x2 = y2 a separate calculation shows

κ(x, x) =
1

4π

1

|x|
=

1

2π

1

|x|+ |x|
.

Thus we find

E(x, y) = cκ(x, y) =
c

2π

1

ψ(x, y)
or

E(x, y) = c̃
1

d2ψ((x, y), (0, 0))
.

Note that

sing suppE =
{

(0, 0)
}
∪ sing suppψ = sing suppψ,

and
sing suppψ = (

{
0
}
× R) ∪ (R×

{
0
}

).

Example 5.4. For ψα(ξ, η) = (|ξ| + |η|)α, (ξ, η) ∈ R2, 0 < α < 1, the
potential kernel κα is given by

κα(x, y) =
2Γ(1− α)

π
sin

(
1− α

2
π

)
1

|x|+ |y|

(
|x|α − |y|α

|x| − |y|

)
, |x| 6= |y|.

and in the limit |y| → |x| it follows that

κα(x, x) =
αΓ(1− α)

π
sin

(
1− α

2
π

)
1

|x|2−α
.

Remark 5.5. For Example 5.4 we have so far not established a general
relation of κ(x, y) to dψ(x, y). However, for α = 1

2 we can establish the estimate,
see [8],

1√
2π

1

d6ψ((x, y), (0, 0))
≤ k 1

2
(x, y) ≤

√
2

π

1

d6ψ((x, y)(0, 0))
.

Analogous results we can obtain for α = 1
2m , m ∈ N. It is open as to whether

we can establish such a type of two-sided estimates for a general α ∈ (0, 1).
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