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1. INTRODUCTION

The main purpose of this paper is to provide simple criteria for com-
pactness of potential kernels (Theorem 4.3 and Corollary 4.5) in the general
framework of balayage spaces.

These criteria shall be essential in a forthcoming paper [2]. They are based
on [7, Lemma 3.1], where compactness of potential kernels for continuous real
potentials with compact superharmonic support has been stated. Its proof
used local equicontinuity of bounded families of harmonic functions without
providing any details or references. Therefore we shall first prove such an
equicontinuity before getting to compactness of potential kernels.

In classical potential theory this equicontinuity can be immediately ob-
tained by looking at the Poisson kernel for balls (similarly for the theory of
Riesz potentials). It has been proven with increasing generality for harmonic
spaces by G. Mokobodzki (unpublished) and in [12], [3], [11].

In the following let X be a locally compact space with countable base.
For every open set U in X, let B(U) (C(U), respectively) denote the set of all
Borel measurable numerical functions (continuous real functions, respectively)
on U . Further, let C0(U) be the set of all functions in C(U) which vanish at
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infinity with respect to U . Given any set F of functions, let Fb (F+ resp.)
denote the set of bounded (positive resp.) functions in F .

We recall that (X,W) is a balayage space, ifW is a convex cone of positive
numerical functions on X (they will be the positive hyperharmonic functions
on X) such that (B0) – (B3) hold:

(B0) W has the following continuity, separation and transience properties:

(C) Every w ∈ W is the supremum of its minorants in W ∩ C(X).

(S) For all x 6= y and γ > 0, there is a function v ∈ W such that
v(x) 6= γv(y).

(T) There are strictly positive functions u, v ∈ W ∩ C(X) such that
u/v ∈ C0(X).

(B1) If vn ∈ W, vn ↑ v, then v ∈ W.

(B2) If V ⊂ W, then înf V
f
∈ W.1

(B3) If u, v′, v′′ ∈ W, u ≤ v′ + v′′, then there exist u′, u′′ ∈ W such that
u = u′ + u′′ and u′ ≤ v′, u′′ ≤ v′′.

Remark 1.1. If P = (Pt)t>0 is a sub-Markov semigroup on X (for ex-
ample, the transition semigroup of a Hunt process X) such that its convex
cone

EP := {u ∈ B+(X) : sup
t>0

Ptu = u}
of excessive functions satisfies (B0), then (X, EP) is a balayage space; see [1,
II.4.9] or [8, Corollary 2.3.8]. We might note that the essential part of (B0),
the continuity property (C), holds, if the resolvent kernels Vλ :=

∫∞
0 e−λtPt dt,

λ > 0, are strong Feller, that is, Vλ(Bb(X)) ⊂ Cb(X). – For a converse, see
Remark 1.3.

For this and an exposition of the theory of balayage spaces in detail, see
[1, 8]; for a description, which is more expanded than the one given here and
includes a discussion of examples, we mention [6] and [10, Appendix 8.1].

In the following, let (X,W) be a balayage space. The set P(X) of con-
tinuous real potentials on X (with respect to (X,W)) is defined by

P(X) := {p ∈ W ∩ C(X) : ∃ w ∈ W ∩ C(X), w > 0, with p/w ∈ C0(X)}.
Of course, P(X) is a convex cone. Moreover,

(1.1) S(P(X)) := {sup pn : (pn) ⊂ P(X) increasing} =W
1Here ĝf is the greatest finely lower semicontinuous minorant of g, where the (W-)fine

topology on X is the coarsest topology such that functions in W are continuous.
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and, for every p ∈ P(X), there exists q ∈ P(X), q > 0, such that p/q ∈ C0(X)
(see [1, II.4.6] or [8, Proposition 1.2.1]).

For every open set V in X, we have the harmonic kernel HV given by

(1.2) HV p = RX\Vp := inf{w ∈ W : w ≥ p on X \ V }

for every p ∈ P(X), and the harmonic measures HV (x, ·), x ∈ V , are supported
by the complement X \ V (see [1, p. 98 and II.5.4] or [8, Section 4.2]).

For the moment, let us fix p ∈ P(X) and define F := W + Rp. For
x ∈ X, letMx(F) be the set of all positive Radon measures µ on X such that∫
f dµ ≤ f(x) for all f ∈ F . The fine support δ(p) is the Choquet boundary

of X with respect to F , that is, the set of all x ∈ X such thatMx(F) consists
only of the Dirac measure εx at x (see [1, p. 70]; by (1.1), it does not matter if
we take W or P(X) in the definition of F).

By a general minimum principle, f ≥ 0 on X, whenever f ∈ F such
that f ≥ 0 on δ(f) (see [1, I.2.2] or [8, 6.3.2]). Consequently, the closure C(p)
of δ(p), called the carrier of p, is the smallest closed set A in X such that

(1.3) p = inf{w ∈ W : w ≥ p on A}, that is, p = HX\Ap

(if (1.3) holds and x ∈ V := X \ A, then x /∈ δ(p), since HV (x, ·) ∈ Mx(F)
and HV (x, ·) 6= εx).

By [1, II.6.17]), there exists a unique kernel Kp on X, called associated
potential kernel or potential kernel for p, such that

• Kp1 = p,

• for every f ∈ B+b (X), Kpf ∈ P(X) and C(Kpf) ⊂ supp(f).

Remark 1.2. If there is a Green function G for (X,W) and p ∈ P(X)
such that

p = Gµ :=

∫
G(·, y) dµ(y)

for some measure µ ≥ 0 on X (see [9] for such a representation), then, for every
f ∈ B+(X),

Kpf = G(fµ) and C(Kpf) = supp(fµ).

We might note that p ∈ P(X) is strict, that is, δ(p) = X, if and only if
Kp1W 6= 0 for every finely open Borel set W 6= ∅ (see [1, VI.8.2]).

Remark 1.3. The following holds (see [1, II.8.6, proof of IV.8.1 and
VI.3.14]): If 1 ∈ W, then, for every strict p ∈ Pb(X), there exists a Hunt
process X on X such that its transition semigroup P = (Pt)t>0 satisfies

EP =W and

∫ ∞
0

Pt dt = Kp



182 W. Hansen 4

(so that, in particular, the resolvent kernels are strong Feller).
If τV is the exit time of an open set V , that is, τV := inf{t ≥ 0: Xt /∈ V },

then
E
x(f ◦XτV ) = HV f(x), f ∈ B+(X), x ∈ X.

Let us now turn to hyperharmonic functions and harmonic functions.
Given an open set U in X, let U(U) be the set of all open V ⊂ X with
compact closure in U . Let ∗H(U) denote the set of functions u ∈ B(X) which
are hyperharmonic on U , that is, are lower semicontinuous on U and satisfy

−∞ < HV u(x) ≤ u(x) for all x ∈ V ∈ U(U).

We note that ∗H+(X) = W (see [1, II.5.5] or [8, Proposition 4.1.7]). The set
H(U) := ∗H(U)∩(−∗H(U)) is the set of functions in B(X) which are harmonic
on U , that is,

H(U) = {h ∈ B(X) : h|U ∈ C(U), HV h = h for every V ∈ U(U)}.

It is easily seen that the carrier C(p) for p ∈ P(X) is the smallest closed
set such that p is harmonic on its complement. Hence C(p) is also called the
superharmonic support of p, and C(Kpf) ⊂ supp(f) for f ∈ B+b (X) amounts
to Kpf ∈ H(X \ supp(f)).

By [1, III.2.8 and III.1.2],

(1.4) P(X) = {p ∈ W ∩ C(X) : If h ∈ H+(X) and h ≤ p, then h = 0},

and

(1.5) HUf ∈ H(U), whenever f ∈ B(X), |f | ≤ s ∈ W ∩ C(X).

Further, we note that a function h ∈ B+(X) satisfying h|U ∈ C(U) is
harmonic on U provided that, for every x ∈ U , there is a fundamental system
V(x) ⊂ U(U) of neighborhoods of x with HV h(x) = h(x) for every V ∈ V(x)
(see [1, III.4.4] or [8, Corollary 5.2.8]). Analogously for hyperharmonic func-
tions. In particular, for positive functions, being harmonic (hyperharmonic
resp.) on an open set is a local property in the following sense: If (Ui)i∈I is
a family of open sets in X, then

(1.6)
⋂
i∈I
H+(Ui) = H+(

⋃
i∈I

Ui) and
⋂
i∈I

∗H+(Ui) = ∗H+(
⋃
i∈I

Ui).

Let us close this section with a simple, but useful observation on trans-
forms of our balayage space (X,W).

Remark 1.4. Let s ∈ W ∩ C(X) and W̃ := (1/s)W. It is immediately

verified that (X, W̃) is a balayage space with 1 ∈ W̃. Adding ˜ to the cor-
responding notations we see that P̃(X) = (1/s)P(X), H̃V f = (1/s)HV (sf),
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V ⊂ X open and f ∈ B+(X). Clearly, this implies that, for all open sets U
in X and p ∈ P(X),
∗H̃(U) = (1/s)∗H(U), H̃(U) = (1/s)H(U) and K̃(1/s)p = (1/s)Kp.

2. EQUICONTINUITY OF SETS OF HARMONIC FUNCTIONS

Let U be an open set in X, s ∈ W ∩ C(X) and

Hs(U) := {h ∈ H(U) : |h| ≤ s}.
The main result of this section is the following.

Theorem 2.1. The set Hs(U) is locally equicontinuous on U .

To prove it we may, by Remark 1.4, assume that s = 1. Moreover, it will
be sufficient to prove the equicontinuity for H+

1 (U). Indeed, if h ∈ H1(U) and
V ∈ U(U), then h = HV h = HV h

+ −HV h
−, where HV h

± ∈ H+
1 (V ), by (1.5).

Our proof of the equicontinuity at points in

X0 := {x ∈ X : lim
V ↓x

HV (x,W ) = 1 for every open neighborhood W of x}

is inspired by the the work of G. Mokobodzki [13] on the composition of two
strong Feller kernels on separable metric spaces.

Remark 2.2. In many cases, for example for harmonic spaces and for the
balayage space given by Riesz potentials (symmetric α-stable processes) on Rd,
we have X0 = X. We may note (but shall not use it) that in our general case
the set X \X0 is (at most) countable and consists of all finely isolated points
in X (see [1, III.7.2]). In [5] it is shown that, for X = (0, 1), the set X \ X0

can be any given countable subset of X.

We start with two lemmas which are immediate consequences of [13,
Lemmas 1 and 2] (cf. also the approach in [3, 11]). For the convenience of the
reader we include their short proofs.

Lemma 2.3. Let V ∈ U(X) and let (fn) be a bounded sequence in Bb(X).
Then there exists a subsequence (f ′n) of (fn) such that the sequence (HV f

′
n) is

pointwise convergent on V .

Proof. Without loss of generality it should be assumed that 0 ≤ fn ≤ 1 for
all n. Let {xm : m ∈ N} be a dense sequence in V and σ :=

∑∞
m=1 2−mHV (xm, ·).

Then σ(X) ≤ 1. Since L∞(σ) is the dual of L1(σ), by the Theorem of Banach-
Alaoglu, there exists a subsequence (f ′n) of (fn) and f ∈ Bb(X) such that
0 ≤ f ≤ 1 and

(2.1) lim
n→∞

∫
f ′ng dσ =

∫
fg dσ for every g ∈ L1(σ).
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Let x ∈ V and let A be a Borel set in V such that σ(A) = 0. Then
HV 1A(xm) = 0 for every m ∈ N, and hence HV (x,A) = 0, since the function
HV 1A is continuous on V , by (1.5). So, by the theorem of Radon-Nikodym,
there exists g ∈ L1(σ) such that HV (x, ·) = gσ. By (2.1), we conclude that
limn→∞HV f

′
n(x) = HV f(x).

Lemma 2.4. Let W ∈ U(X) and let (gn) be a bounded sequence in Bb(X)
which converges pointwise to a function g. Then the sequence (HW gn) con-
verges locally uniformly on W to HW g.

Proof. Without loss of generality g = 0. Then g′n := supk≥n |gk| ↓ 0 and
hence HW g

′
n ↓ 0 as n→∞. By (1.5), the functions HW g

′
n are harmonic (and

hence continuous) on W . So, by Dini’s theorem, the convergence of (HW g
′
n) is

locally uniform on W . The proof is completed observing that 0 ≤ |HW gn| ≤
HW g

′
n for every n ∈ N.

Remark 2.5. Let us suppose for a moment that (X,W) is a harmonic
space and let W,V ∈ U(U) be such that W ⊂ V . Then HW (1V h) = h on W
for every h ∈ H(U), since the measures HW (y, ·), y ∈W , are supported by the
boundary ∂W of W . Hence Lemmas 2.3 and 2.4 immediately yield that every
bounded sequence (hn) in H(U) contains a subsequence (h′n) which converges
locally uniformly on W .

For our general balayage space we obtain the following.

Proposition 2.6. If x ∈ U ∩X0, then H+
1 (U) is equicontinuous at x.

Proof. Let us suppose that H+
1 (U) is not equicontinuous at a point x in

U ∩X0. We will show that this leads to a contradiction. To this end let (An)
be a sequence of compact neighborhoods of x in U such that An ↓ {x} and
An+1 is contained in the interior of An, n ∈ N. Then there exists δ ∈ (0, 1)
such that, for every n ∈ N, there are hn ∈ H+

1 (U) and yn ∈ An satisfying

(2.2) |hn(yn)− hn(x)| ≥ 5δ.

Let V ∈ U(U) be such that x ∈ V . Clearly, HV hn = hn for every n ∈ N.
Passing to a subsequence we may assume, by Lemma 2.3, that (hn) converges
pointwise on V .

Since x ∈ X0, there exists a neighborhood W ∈ U(V ) of x such that
HW 1V (x) > 1 − δ. By continuity of HW 1U on W , there exists n0 ∈ N such
that A := An0 ⊂W and HW 1U > 1− δ on A. Since HW 1 ≤ 1, we obtain that

(2.3) HW 1X\U < δ on A.
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Let
gn := 1Whn for every n ∈ N and g := lim

n→∞
gn.

By (2.3), for every n ∈ N,

(2.4) |hn−HW gn|= |HW (hn−gn)|=HW (1X\Whn) ≤ HW 1X\W < δ on A.

By Lemma 2.4, the sequence (HW gn) converges locally uniformly on W to
HW g. For every n ≥ n1,

(2.5) |HW gn −HW g| < δ on A.

Further, by continuity of HW g on W , there exists n ≥ n1 such that

(2.6) |HW g −HW g(x)| < δ on An.

Finally, combining the estimates (2.4), (2.5) and (2.6) we obtain that

|hn − hn(x)| < 5δ on An

contradicting (2.2). Thus H+
1 (U) is equicontinuous at x.

To continue our proof of Theorem 2.1 (and for later use) we define

WU := ∗H+(U)|U
and observe that (U,WU ) is a balayage space (see [1, V.1.1]).

Let us now consider a point x ∈ X\X0. By [1, III.2.7], it is finely isolated.
Since W|U ⊂ WU , it is also finely isolated with respect to (U,WU ). Therefore

qx := inf{w ∈ WU : w(x) ≥ 1}

is a continuous real potential for (U,WU ) with C(qx) = {x} (see [1, p. 94 and
III.2.8] or [8, Lemma 4.2.13]).

Lemma 2.7. The set H+
1 (U) is equicontinuous at every point x ∈ U \X0.

Proof. Given δ > 0, there exists a neighborhood V of x in U such that

(2.7) qx > 1− δ on V.

We now fix h ∈ H+
1 (U). Then v := h|U ∈ WU and w := (1 − h)|U ∈ WU .

Applying (1.3) to the balayage space (U,WU ) we get that

v ≥ h(x)qx and w ≥ (1− h(x))qx.

Since 0 ≤ h(x) ≤ 1, this implies that, for every y ∈ V , by (2.7),

h(y) > h(x)− δ and 1− h(y) > 1− h(x)− δ,

that is, δ > h(x)− h(y) > −δ.

Having Proposition 2.6 and Lemma 2.7 the proof of Theorem 2.1 is com-
pleted.
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3. EQUICONTINUITY OF SPECIFIC MINORANTS OF p∈P(X)

Let ≺ denote the specific order on W, that is, if u, v ∈ W, then u ≺ v if
there exists w ∈ W such that u + w = v. If q ∈ P(X) and f ∈ Bb(X) such
that 0 ≤ f ≤ 1, then Kqf ≺ q, since Kq(1− f) ∈ P(X). If q, q′ ∈ P(X), then
obviously Kq+q′ = Kq + Kq′ , and hence Kqf ≺ Kq+q′f for every f ∈ B+(X).
For q ∈ P(X) and Borel sets A in X, let

qA := Kq1A.

Having Theorem 2.1 the proof given in [4] for the following result is com-
plete. However, for the convenience of the reader we add a quick presentation.

Proposition 3.1. For every p ∈ P(X), Mp := {q ∈ P(X) : q ≺ p} is
locally equicontinuous on X.

Proof. Let x ∈ X and δ > 0. There exists an open neighborhood U of x
such that pU\{x}(x) < δ, and hence pU\{x} < δ on some neighborhood V of x.
Moreover, we may assume that |p{x}−p{x}(x)| < δ on V (if {x} is totally thin,
then p{x} = 0). By Theorem 2.1, there exists a neighborhood W of x in V
such that, for every q ∈Mp, |qX\U − qX\U (x)| < δ on W .

Now let us fix q ∈ Mp. Then qU\{x} ≺ pU\{x} and q{x} ≺ p{x}. By (1.3),
q{x} = αp{x} with α ∈ [0, 1]. Thus |q − q(x)| < 3δ on W .

Corollary 3.2. For every p ∈ P(X), {Kpf : f ∈ B(X), 0 ≤ f ≤ 1} is
locally equicontinuous on X.

At first sight, Proposition 3.1 may look stronger than Corollary 3.2. How-
ever, it is not, since, for every q ≺ p, there exists a function f ∈ B(X) such
that 0 ≤ f ≤ 1 and Kpf = q; see [1, II.7.11].

4. COMPACTNESS OF POTENTIAL KERNELS

Let us introduce the following boundedness property for (X,W) (cf. Re-
mark 4.4):

(B) There is a strictly positive bounded function w0 ∈ W.

We first recall the statement of [7, Lemma 3.1] and prove it using Corol-
lary 3.2.

Proposition 4.1. Suppose (B) and let p ∈ P(X) be such that C(p) is
compact. Then Kp is a compact operator on (Bb(X), ‖ · ‖∞).
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Proof. Let (fn) be a bounded sequence in Bb(X). To show that (Kpfn)
contains a uniformly convergent subsequence, we may assume that 0 ≤ fn ≤ 1.
Then, by Corollary 3.2 and the theorem of Arzelà-Ascoli, there is a subsequence
(qn) of (Kfn) which is uniformly convergent on C(p).

Let δ > 0, a := inf w0(C(p)) and b := supw0(C(p)). There exists k ∈ N
such that, for all m,n ≥ k,

qm < qn + (δ/b)a on C(p),

where C(qm) ⊂ C(p), and therefore qm ≤ qn+(δ/b)w0 ≤ qn+δ on X, by (1.3).
So the sequence (qn) is uniformly convergent.

Given g ∈ Bb(X), let us denote the operator f 7→ fg on Bb(X) by Mg.
Clearly, for all g ∈ B+b (X) and p ∈ P(X), the potential kernel for Kpg is KpMg.

Corollary 4.2. Suppose (B) and let p ∈ P(X). Then there exists
a function ϕ0 ∈ C(X), 0 < ϕ0 ≤ 1, such that the potential kernel of Kpϕ0

is a compact operator on (Bb(X), ‖ · ‖∞).

Proof. Let us choose ϕn ∈ C(X) with compact support, 0 ≤ ϕn ≤ 1,
such that

⋃
n∈N{ϕn > 0} = X. For every n ∈ N, pn := Kpϕn ∈ P(X) with

C(pn) ⊂ supp(ϕn), and hence Kpn is a compact operator on (Bb(X), ‖ · ‖∞),
by Proposition 4.1. Let 0 < αn ≤ 2−n, n ∈ N, such that αnpn ≤ 2−n. Then
ϕ0 :=

∑∞
n=1 αnϕn ∈ C(X), 0 < ϕ0 ≤ 1, p0 := Kpϕ0 =

∑∞
n=1 αnpn ∈ Pb(X)

and Kp0 =
∑∞

n=1 αnKpn is a compact operator on (Bb(X), ‖ · ‖∞).

Let us fix an exhaustion of X by relatively compact open sets Un, n ∈ N.

Theorem 4.3. 1. Assuming (B) the following are equivalent for every
p ∈ P(X):

(a) Kp is a compact operator on (Bb(X), ‖ · ‖∞) (and Kp(Bb(X)) ⊂ Cb(X)).

(b) limn→∞ ‖Kp1X\Un
‖∞ = 0.

(c) limn→∞ ‖1X\Un
Kp1X\Un

‖∞ = 0.

2. Suppose that there exists a strictly positive s0 ∈ W ∩ C0(X), and let
p ∈ P(X). Then Kp is a compact operator on Bb(X) if and only if p ∈ C0(X).

Proof. 1. We note that qn := Kp1X\Un
∈ P(X) and qn ↓ 0 pointwise as

n→∞, hence qn ↓ 0 locally uniformly on X.
(a)⇒ (b): If Kp is a compact operator on Bb(X), there is a uniformly

convergent subsequence of (qn). Thus (b) holds.
(b)⇒ (c): Trivial.
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(c)⇒(b): Let ε > 0 and n ∈ N such that 1X\Un
qn < ε. There exists

m ≥ n such that qm < ε on Un. Since qm ≤ qn, we see that qm < ε on X.

(b)⇒(a): For every n ∈ N, pn := Kp1Un ∈ P(X) and C(pn) ⊂ Un. Hence
Kpn is a compact operator on Bb(X), by Proposition 4.1, and Kpn(Bb(X)) is
contained in Cb(X). Since

Kp = KpM1Un
+KpM1X\Un

, n ∈ N,

where KpM1Un
= Kpn and ‖KpM1X\Un

‖∞ = ‖Kp1X\Un
‖∞, we obtain that Kp

is a compact operator on Bb(X) and Kp(Bb(X)) ⊂ Cb(X).

2. If p ∈ C0(X), then (c) holds, since 1X\Un
Kp1X\Un

≤ 1X\Un
p, and

hence Kp is a compact operator on Bb(X).

Finally, assume conversely that Kp is a compact operator on Bb(X). Then
(b) holds, by (1). Further for every n ∈ N, there is an ≥ 0 such that pn :=
Kp1Un ≤ anp0 on Un and hence on X, by (1.3). So (pn) is a sequence in C0(X).
Having (b) we see that p ∈ C0(X).

Remark 4.4. Using Remark 1.4 we may apply Theorem 4.3 to general
balayage spaces, that is, without assuming that 1 ∈ W. Indeed, let p ∈ P(X),

s ∈ W ∩ C(X), s > 0, and W̃ := (1/s)W. Then p̃ := p/s is a continuous real

potential with respect to the balayage space (X, W̃) and the corresponding
potential kernel K̃p̃ is given by

K̃p̃f = (1/s)Kpf, f ∈ B+(X).

Then compactness of K̃p̃ on (Bb(X), ‖ · ‖∞) implies compactness of Kp on the
space of all s-bounded functions equipped with the norm

‖f‖ := inf{a ≥ 0: |f | ≤ as}.

In the following let U be an open set in X. We recall from the preceding
section that taking WU := ∗H+(U)|U we obtain a balayage space (U,WU ). By
[1, V.1.1], we know, in addition, that q −HUq ∈ P(U) for every q ∈ P(X).

Moreover, we recall that U is called regular if limx→zHUq(x) = q(z) for
all q ∈ P(X) and z ∈ ∂U or, equivalently, if for an (every) associated Hunt
process (see Remark 1.3) τU = 0 P z-almost surely for every z ∈ ∂U .

Corollary 4.5. Let U be relatively compact. Then the following hold:

(a) If q ∈ P(X) and p := q − HUq, then Kp = Kq − HUKq, and Kp is
a compact operator on Bb(U).

(b) If U is regular and p ∈ P(U), then Kp is a compact operator on Bb(U) if
and only if p ∈ C0(U), and then Kp(Bb(U)) ⊂ C0(U).
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Proof. (a) Obviously, Kp = Kq−HUKq. Let (Vn) be an exhaustion of U .
We have qn := Kq1U\Vn ↓ 0, where qn ∈ C(X), and hence qn ↓ 0 uniformly

on U as n → ∞. Since Kp1U\Vn ≤ qn for every n ∈ N, we obtain that
limn→∞ ‖Kp1U\Vn‖∞ = 0. Choosing any w ∈ W ∩ C(X), w > 0, we have
w0 := w|U ∈ WU ∩ Cb(U). Thus (B) holds, and Kp is a compact operator
on Bb(U), by Theorem 4.3.

(b) Taking a strict potential q0 ∈ P(X), the function p0 := q0 − HUq0
is contained in Pb(U) ∩ C0(U) and p0 > 0. By Theorem 4.3, the proof is
finished.
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