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1. INTRODUCTION

The wave equation represents a mathematical model for the vibrations of
a perfectly flexible string. The stochastic wave equation models the vibrations
of a string perturbed by a random force. Traditionally, the random noise is
considered to be white in time, i.e. it behaves as a standard Brownian motion
with respect to its time variable. There exists a vast literature on stochastic
partial differential equations in general, and on the wave equation in particular
(see e.g. (see e.g. [14], [11], [8], [10], [12], [17], [18] and the references therein).
More recently, due to the development of the stochastic calculus with respect
to the fractional Brownian motion (fBm in the sequel) and related processes,
several authors considered the stochastic wave equation with fractional noise
(in time and/or in space), i. e. which behaves as a fBm both in time and space.
Among others, we mention the works [4], [9], [13], [15], [19], [22]. The model
considered in these references assume that the string is infinite, i.e. the spatial
variable belongs to the whole real line or to an interval with infinite Lebesgue
measure. As far as we know, the case of a finite string, i.e. when the spatial
variable belongs to a finite interval [0, L], with Dirichlet boundary conditions
at the endpoints of the interval has not been yet treated.
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Our purpose is to analyzed the vibrations of a finite string forced by a
random process that behaves as a fBm in time and which is white in space. We
will analyze the existence of the mild solution to the wave equation, its relation
with the weak solution and other properties of the solution, including the
pathwise regularity, the scaling properties or the behavior with respect to the
Hurst parameter. The main difference with respect to the case of the infinite
string is the fact the Green kernel associated to the wave equation is different,
it can be written as a trigonometric series. This makes the calculation different
and lead to a different behavior of the solution. In particular, the solution is not
anymore self-similar in time or stationary in space and its pathwise regularity
is not the same as for the infinite random string.

We organized the paper as follows. Section 2 contains some preliminaries
on the wave equation and on the calculus related to fBm. In Section 3 we
discuss the existence and various distributional and trajectorial properties of
the solution to (1) while in Section 4 we analyze the behavior of the solution
when the Hurst parameter approaches its critical values.

2. PRELIMINARIES

We consider the boundary-value problem

(1)


∂2u
∂t2

(t, x) = c2∆u(t, x) + ẆH(t, x), t ∈ [0, T ], x ∈ [0, L],

u(0, x) = 0, x ∈ [0, L],

∂u
∂t (0, x) = 0, x ∈ [0, L],
u(t, 0) = u(t, L) = 0, t ∈ [0, T ].

with c, L > 0. The constant L represents the length of the string while c
is related to the tension. The random perturbation WH is a fractional-white
Gaussian noise which is defined as a real valued centered Gaussian field WH =
{WH

t (A); t ∈ [0, T ], A ∈ Bb([0, L])}, over a given complete filtered probability
space (Ω,F , (Ft)t∈[0,T ],P), with covariance function given by

(2) E
(
WH
t (A)WH

s (B)
)

= RH(t, s)λ(A ∩B),∀A,B ∈ Bb([0, L]),

where RH is the covariance of the fractional Brownian motion

(3) RH(t, s) =
1

2

(
t2H + s2H − |t− s|2H

)
, s, t ∈ [0, T ]

We denoted by Bb(I) the class of bounded Borel subsets of I ⊂ R and by λ the
Lebesgue measure on R. We will assume throughout this work H ∈

(
1
2 , 1
)
.

We will consider the mild formulation for the solution to the wave equa-
tion (1). That is, the mild solution to (1) is defined as the Green kernel (or the
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fundamental solution) associated to the wave equation on (t, x) ∈ [0, T ]× [0, L]
integrated in the Wiener sense with respect to the centered Gaussian process
with covariance (23), i.e.

(4) u(t, x) =

∫ t

0

∫ L

0
Gt,x(s, y)WH(ds, dy) for every t ∈ [0, T ], x ∈ [0, L]

where the Green kernel Gt,x is given by, for 0 ≤ s ≤ t ≤ T and x, y ∈ [0, L]
(5)

Gt,x(s, y) =
∞∑
n=1

2

Lwn
sin(wn(t− s)) sin

(nπy
L

)
sin
(nπx
L

)
with wn =

nπc

L
.

We will say that the solution to (1) exists if the Wiener integral in the righ-hand
side of (4) is well-defined and

(6) sup
t∈[0,T ]

Eu(t, x)2 <∞.

In order to check the square integrability of (4), let us denote by P the
Hilbert space associated with the Gaussian field with covariance (23). The
inner product in the space P is given by (see e.g. [3])

〈f, g〉P = E

∫ T

0

∫ L

0
f(s, y)WH(ds, dy)

∫ T

0

∫ L

0
g(s, y)WH(ds, dy)(7)

= αH

∫ T

0

∫ T

0
dudv|u− v|2H−2

∫ L

0
dyf(u, y)g(v, y)

for any measurable functions f, g : [0, T ]× [0, L]→ R such that∫ T

0

∫ T

0
dudv|u− v|2H−2

∫ L

0
dy|f(u, y)g(v, y)| <∞.

We will also need to introduce the space of integrands with respect to the
fractional Brownian motion BH with Hurst parameter H ∈

(
1
2 , 1
)
. Denote by

H the Hilbert space associated with the fBm (see e.g. [16]) and recall that

(8) E

∫ T

0
f(u)dBH

u

∫ T

0
g(u)dBH

u = αH

∫ T

0

∫ T

0
f(u)g(u)|u−v|2H−2dudv := 〈f, g〉H

for any f, g ∈ |H| where |H| the space of measurable function f : [0, T ] → R
such that ∫ T

0

∫ T

0
|f(u)g(u)||u− v|2H−2dudv <∞.
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3. EXISTENCE AND BASIC PROPERTIES OF THE SOLUTION

We start by showing the existence of the solution to the wave equation
(1), i.e. we prove that the process (u(t, x), t ∈ [0, T ], x ∈ [0, L]) given by (4) is
well-defined and (6) holds true. Then we deduce other properties related to
the law of the solution to (1).

3.1. Existence of the solution

We will use the series representation of the Green kernel (5). Notice that
(see e.g. [17]) the Wiener integral (4) can be also written as

(9) u(t, x) =
∞∑
n=1

Tn(t) sin
(nπx
L

)
with

(10) Tn(t) =
2

Lwn

∫ t

0

∫ L

0
sin(wn(t− u)) sin

(nπy
L

)
WH(du, dy).

We will shart by giving some useful properties of the family (Tn, n ≥ 1).

Lemma 1. For every n ≥ 1, (Tn(t))t∈[0,T ] is a centered Gaussian process
and its covariance function satisfies

|ETn(t)Tn(s)| ≤ 2L

π2c2
RH(t, s)

1

n2
for every s, t ∈ [0, T ]

where RH is given by (3).

If n 6= m, then Tn(t) and Tm(s) are independent random variables, for
every s, t ∈ [0, T ].

Proof: For every s, t ∈ [0, T ], we have, with αH = H(2H − 1), by (7)

ETn(t)Tm(s) =

=
4

L2wnwm
αH

∫ t

0
du

∫ s

0
dv|u− v|2H−2 sin(wn(t− u)) sin(wm(s− v))

×
∫ L

0
dy sin

(nπy
L

)
sin
(mπy

L

)
and since ∫ L

0
dy sin

(nπy
L

)
sin
(mπy

L

)
=

{
0, if n 6= m
L
2 , if m = n

we get

(11) ETn(t)Tm(s) = 0 if n 6= m
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and for n = m, by (8),

ETn(t)Tn(s) =

=
4

L2w2
n

L

2
αH

∫ t

0
du

∫ s

0
dv|u− v|2H−2 sin(wn(t− u)) sin(wm(s− v))

=
2

Lwn
〈sin(wn(t− ·))1[0,t])(·), sin(wn(s− ·)1[0,s](·))〉H.

(12)

so

|E Tn(t)Tn(s)|

≤ 4

L2w2
n

L

2
αH

∣∣∣∣∫ t

0
du

∫ s

0
dv|u− v|2H−2 sin(wn(t− u)) sin(wm(s− v))

∣∣∣∣
≤ 4

L2w2
n

L

2
αH

∫ t

0
du

∫ s

0
dv|u− v|2H−2 =

2L

π2c2
RH(t, s)

1

n2
.

Relation (11) gives the independence of the Gaussian random variables Tm(t)
and Tn(s) for every n 6= m and for every s, t ∈ [0, T ].

An easy and useful consequence of the covariance expression of Tn is the
following.

Lemma 2. For every n ≥ 1, the process (Tn(t))t∈[0,T ] has the same finite
dimensional distributions as the process

(13)

( √
2√

Lwn

∫ t

0
sin(wn(t− u))dBH

u

)
,

with (BH
t )t∈[0,T ] a fractional Brownian motion with Hurst parameter.

Proof: Both processes are centered Gaussian processes with covariance
given by (12).

Let us show that the mild solution (9) is well-defined. By C we denote a
generic strictly positive constant that may change from line to line.

Proposition 1. For every H ∈
(
1
2 , 1
)
, the stochastic integral in (9) is

well-defined and it holds that

sup
t∈[0,T ],x∈[0,L]

Eu(t, x)2 <∞.

Proof: We have from Lemma 1 and (12), for every t ∈ [0, T ] and x ∈ [0, L]

Eu(t, x)2 =
∞∑
n=1

ETn(t)2
(

sin
(nπx
L

))2
≤ Ct2H

∞∑
n=1

1

n2

so
sup

t∈[0,T ],x∈[0,L]
Eu(t, x)2 ≤ C.
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Notice that the solution existence for every H ∈
(
1
2 , 1
)
. The same holds

in the case of the wave equation with fractional-white noise with space variable
in R (see e.g. [4]).

Remark 1. It is possible to give an alternative representation of the Green
kernel G (5) and implicitely of the solution (9) by calculating the sum of the
series in (5). Recall that the Green kernel G is given by (5). By applying the
trigonometric identities

sin(x) sin(y) =
1

2
(cos(x− y)− cos(x+ y)) and

sin(x) cos(y) =
1

2
(sin(x+ y)− sin(x− y))

we obtain

Gt,x(u, z) =−
∑
n≥1

1

2Lwn
sin
(nπ
L

(c(t− u) + z − x)
)

+
∑
n≥1

1

2Lwn
sin
(nπ
L

(c(t− u)− (z − x))
)

−
∑
n≥1

1

2Lwn
sin
(nπ
L

(c(t− u) + x+ z)
)

+
∑
n≥1

1

2Lwn
sin
(nπ
L

(c(t− u)− (z + x)
)

:=S1 + S2 + S3 + S4.

and by using the formula

(14) f(x) =
∑
n≥1

sin(nx)

n
=

{
π−x
2 if x ∈ (0, 2π)

f(x+ 2π), if x ∈ R

we can calculate the sum of the four series above. By assuming cT < L, we find
tht G is not zero only on the sets (x− z ≤ c(t− u) < x+ z)∩(x+ z ≤ L) (and
its value is L

2π ) and on the set (x− z ≤ c(t− u) < 2L− (x+ z))∩ (x+ z ≥ L)
(and its value is − L

2π ). This corresponds with the formula given in [10]. In this
work, we will not use this expression of the fundamental solution G.

3.2. Scaling property

The process (u(t, x), t ≥ 0) is not self-similar. On the other hand, it
verifies some scaling properties that depend on the parameter c in (1). In the
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following result (and only here), let us use the notation u(t, x) = uc(t, x) in
order to express the dependence on the parameter c. We will denote by ”≡(d)”
the equivalence of finite-dimensional distributions. We have:

Proposition 2. Fix x ∈ (0, L). For every a > 0, the process
(uc(at, x), t ≥ 0) has the same finite-dimensional distributions as the process(
aH+1uac(t, x), t ≥ 0

)
.

Proof: We can write, for every a > 0,

uc(at, x) =
∑
n≥1

2

nπc

∫ at

0

∫ L

0
sin
(nπc
L

(ta− u)
)

sin
(nπz
L

)
WH(du, dz)

× sin
(nπx
L

)
=
∑
n≥1

2

nπc

∫ t

0

∫ L

0
sin
(nπca

L
(t− u)

)
sin
(nπz
L

)
WH(d(au), dz)

× sin
(nπx
L

)
and by using the scaling property is time of the random noise WH ,

uc(at, x) ≡(d)
∑
n≥1

2

nπc
aH
∫ t

0

∫ L

0
sin
(nπca

L
(t− u)

)
sin
(nπz
L

)
WH(du, dz)

× sin
(nπx
L

)
= aH+1

∑
n≥1

2

nπca

∫ t

0

∫ L

0
sin
(nπca

L
(t− u)

)
sin
(nπz
L

)
WH(du, dz)

× sin
(nπx
L

)
= aH+1uac(t, x).

Recall that (see e.g. [22]), when x ∈ R, the process given by (4) is self-
similar in time and stationary in space. When we work on a finite interval in
space, these properties are not true. Instead, we have the scaling property from
Proposition 2, which say that, the dilation of time is similar, modulo scaling,
with a dilation of the tension of the string.

3.3. Behavior at nodal times

Let Tk = kπ
w1

= kL
c , k = 1, 2, ... be a sequence of times. These times are

usually called nodal times of vibrations.
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We have, for k ≥ 1 integer and for every x ∈ [0, L]

u(Tk, x) =
∑
n≥1

2

nπc

∫ Tk

0

∫ L

0
sin
(nπc
L

(Tk − u)
)

sin
(nπz
L

)
WH(du, dz)

× sin
(nπx
L

)
.

Since

(15) sin
(nπc
L

(Tk − u)
)

= sin (nkπ − wnu) = (−1)kn+1 sin(wnu)

we obtain

u(Tk, x) =
∑
n≥1

2

nπc

∫ Tk

0

∫ L

0
(−1)kn+1 sin (wnu) sin

(nπz
L

)
WH(du, dz)

× sin
(nπx
L

)
.

(16)

The increment of the solution between two nodal times satisfies the fol-
lowing interesting property. We denote by ”=(d)” the equality in distribution
of two random variables.

Proposition 3. Let Tk, Tl be two nodal times with k > l and assume
that k, l have the same parity. Then

u(Tk, x)− u(Tl, x) =(d) u(Tk − Tl, x).

Proof: For every k, l integers with k > l and with the same parity (both
are even or both are odd), we have from (16)

u(Tk, x)− u(Tl, x)

=
∑
n≥1

2

Lwn

∫ Tk

Tl

(−1)kn+1 sin(wuu) sin
(nπz
L

)
WH(du, dz)× sin

(nπx
L

)
+
∑
n≥1

2

Lwn

∫ Tl

0

(
(−1)kn+1 − (−1)ln+1

)
sin(wuu) sin

(nπz
L

)
WH(du, dz)

× sin
(nπx
L

)
=

2

Lwn
sin
(nπx
L

)∫ Tk

Tl

(−1)kn+1 sin(wuu) sin
(nπz
L

)
WH(du, dz)

because (−1)kn+1 − (−1)ln+1 = 0 when k and l have the same parity. Thus
u(Tk, x) − u(Tl, x) is a centered Gaussian random variable and, from (7) and
(15), its variance can be calculated as follows
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E (u(Tk, x)− u(Tl, x))2

=
∑
n≥1

4

L2w2
n

L

2

(
sin
(nπx
L

))2
αH

∫ Tk

Tl

∫ Tk

Tl

sin(wnu) sin(wnv)|u− v|2H−2dudv

=
∑
n≥1

4

Lw2
n

L

2

(
sin
(nπx
L

))2
αH

∫ Tk−Tl

0

∫ Tk−Tl

0
sin(wn(Tl − u))

× sin(wn(Tl − v))|u− v|2H−2dudv

=
∑
n≥1

4

Lw2
n

L

2

(
sin
(nπx
L

))2
αH

∫ Tk−Tl

0

∫ Tk−Tl

0
sin(wnu)

× sin(wnv)|u− v|2H−2dudv
= E (u(Tk − Tl, x))2 .

This suggests that the position of the point x on the random string at
time Tk is obtained by adding the position of the same point at times Tl and
Tk − Tl.

3.4. Relation with the weak solution

Another concept of solution to the boundary value problem (1) is the weak
solution. We will say that a stochastic process (u(t, x), t ∈ [0, T ], x ∈ [0, L]) is
a weak-solution to (1) if for every test function ϕ ∈ C∞ ([0, T ]× [0, L]) with
ϕ(T, x) = ∂ϕ

∂t (T, x) = 0 for every x ∈ [0, L] and ϕ(t, 0) = ϕ(t, L) = 0 for every
t ∈ [0, T ], we have

(17)

∫ T

0
dt

∫ L

0
dx u(t, x)

(
∂2ϕ

∂t2
− ∂2ϕ

∂x2

)
=

∫ T

0

∫ L

0
ϕ(s, y)WH(ds, dy).

We can show that our solution (4) also satisfies (1) in the weak sense.

Proposition 4. The mild solution (4) is also a weak solution for (1),

Proof: Let ϕ ∈ C∞ ([0, T ]× [0, L]) as above. Then∫ T

0
dt

∫ L

0
dxu(t, x)

(
∂2ϕ

∂t2
− ∂2ϕ

∂x2

)
=

∫ T

0

∫ L

0

(∫ T

u
dt

∫ L

0
dxGt,x(u, y)

(
∂2ϕ

∂t2
− ∂2ϕ

∂x2

))
WH(du, dy).
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By integrating twice by parts and using the assumptions on ϕ,∫ T

u
dt

∫ L

0
dxGt,x(u, y)

∂2ϕ

∂t2
= −

∫ T

u
dt

∫ L

0
dx
∂Gt,x(u, y)

∂t

∂ϕ

∂t
(t, x)

=

∫ L

0
dx
∂Gt,x(u, y)

∂t

∣∣∣
t=u

ϕ(u, y) +

∫ T

u
dt

∫ L

0
dx
∂2Gt,x(u, y)

∂t2
ϕ(t, x).

and ∫ T

u
dt

∫ L

0
dxGt,x(u, y)

∂2ϕ

∂x2
=

∫ T

u
dt

∫ L

0
dx
∂2Gt,x(u, y)

∂x2
ϕ(t, x).

We used the fact that G satisfies (1) when there is no noise. Notice that∫ L

0
dx
∂Gt,x(u, y)

∂t

∣∣∣
t=u

=
2

L

∑
n≥1

(∫ L

0
dx sin

(nπx
L

))
sin
(nπy
L

)
=

2

π

∑
n≥1

1

n
[1− (−1)n] sin

(nπy
L

)
we obtain the conclusion since by (14)∑

n≥1

1

n
sin
(nπz
L

)
=
π

2
− πz

2L

and for a similar formula for the sawtooth wave function (see e.g. [23])∑
n≥1

1

n
(−1)n sin

(nπz
L

)
= −πz

2L
.

4. BEHAVIOR OF THE INCREMENTS OF THE SOLUTION

In this part, we study the regularity of the sample paths of the solution
(9) with respect to its time and space variables.

4.1. The temporal increment

Let us fix the space variable x ∈ [0, L] and study the behavior of the
process (u(t, x), t ∈ [0, T ]). We will need the following auxiliary lemma from
[13]. Recall that H is the Hilbert space associated to the fractional Brownian
motion.
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Lemma 3. Let f(x) = cos(x) for x ∈ R. Then for every a, b ∈ R with
a < b we have

‖f1[a,b](·)‖2H ≤ 2αH

∫ b−a

0
dv cos(v)v2H−2(b− a− v).

We have the following result.

Proposition 5. Let x ∈ [0, L]. Then

E |u(t, x)− u(s, x)|2 ≤ C|t− s|2H−ε

for every ε ∈ (0, 2H) and for every 0 ≤ s ≤ t ≤ T .

Proof: Let s, t ∈ [0, T ] with s ≤ t. Recall that C denotes a generic
strictly positive constant (that may change from line to line). We have

E |u(t, x)− u(s, x)|2

= C
∑
n≥1

1

n2
sin2(

nπx

L
)

∫ t

s

∫ t

s
dudv sin(wn(t− u)) sin(wn(t− v))|u− v|2H−2

+C
∑
n≥1

1

n2

∫ s

0

∫ s

0
dudv|u− v|2H−2

× (sin(wn(t− u))− sin(wn(s− u))) (sin(wn(t− v))− sin(wn(s− v)))

:= C(T1 + T2).

We show that Ti ≤ C|t − s|2H for i = 1, 2. For T1, this is trivial since, by
majorizing the sinus function by 1,

T1 ≤
∑
n≥1

1

n2

∫ t

s

∫ t

s
dudv|u− v|2H−2 = C|t− s|2H

∑
n≥1

1

n2
= C|t− s|2H .

Let us focus on the term T2. Using the trigonometric identity

sin(x)− sin(y) = 2 sin

(
x− y

2

)
cos

(
x+ y

2

)
we can write

T2 ≤ C
∑
n≥1

1

n2
sin2

(
wn(t− s)

2

)
×
∫ s

0

∫ s

0
dudv cos

(
wn(t+ s− 2u)

2

)
cos

(
wn(t+ s− 2v)

2

)
|u− v|2H−2

= C
∑
n≥1

1

n2
sin2

(
wn(t− s)

2

)
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×
∫ t+s

2

t−s
2

∫ t+s
2

t−s
2

dudv cos(wnu) cos(wnv)|u− v|2H−2

= C
∑
n≥1

1

n2+2H
sin2

(
wn(t− s)

2

)∫ wn
t+s
2

wn
t−s
2

∫ wn
t+s
2

wn
t−s
2

dudv cos(u)

× cos(v)|u− v|2H−2

= C
∑
n≥1

1

n2+2H
sin2

(
wn(t− s)

2

)
‖ cos(·)1[wn

t−s
2
,wn

t+s
2

]‖
2
H

by using (8). Now, via Lemma 3,

T2 ≤ C
∑
n≥1

1

n2+2H
sin2

(
wn(t− s)

2

)∫ wns

0
cos(v)v2H−2(wns− v)dv

= Cs
∑
n≥1

1

n1+2H
sin2

(
wn(t− s)

2

)∫ wns

0
cos(v)v2H−2dv

−C
∑
n≥1

1

n2+2H
sin2

(
wn(t− s)

2

)∫ wns

0
cos(v)v2H−1dv.

Via an integration by parts∫ wns

0
cos(v)v2H−1dv = sin(wns)(wns)

2H−1 − (2H − 1)

∫ wns

0
sin(v)v2H−2dv

and this implies

T2 ≤ Cs
∑
n≥1

1

n1+2H
sin2

(
wn(t− s)

2

)∫ wns

0
v2H−2 cos(v)dv

−C
∑
n≥1

1

n2+2H
sin2

(
wn(t− s)

2

)
sin(wns)(wns)

2H−1

−C
∑
n≥1

1

n2+2H
sin2

(
wn(t− s)

2

)∫ wns

0
sin(v)v2H−2dv

:= T2,1 + T2,2 + T2,3.(18)

We will bound separately the three summands T2,1, T2,2 and T2,3. First, since
the integral

∫∞
0 v2H−2 cos(v)dv is convergent,

T2,1 ≤ C
∑
n≥1

1

n1+2H
sin2

(
wn(t− s)

2

) ∣∣∣∣∫ wns

0
v2H−2 cos(v)dv

∣∣∣∣
≤ C

∑
n≥1

1

n1+2H
sin2

(
wn(t− s)

2

)
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and writting, for every ε ∈ (0, 2H)

sin2

(
wn(t− s)

2

)
=

∣∣∣∣sin(wn(t− s)
2

)∣∣∣∣2H−ε ∣∣∣∣sin(wn(t− s)
2

)∣∣∣∣2−2H+ε

≤ C(n(t− s))2H−ε

we get

T2,1 ≤ C|t− s|2H−ε
∑
n≥1

1

n1+ε
≤ C|t− s|2H−ε.(19)

For T2,2, we have

T2,2 ≤ C
∑
n≥1

1

n3
sin2

(
wn(t− s)

2

)
≤ C|t− s|2H−ε

∑
n≥1

1

n3−2H+ε

≤ C|t− s|2H−ε.(20)

Finally, using the convergence of the integral
∫∞
0 v2H−2 sin(v)dv

T2,3 ≤ C
∑
n≥1

1

n2+2H
sin2

(
wn(t− s)

2

)
≤ C|t− s|2H−ε.(21)

By replacing (19), (20) and (21) in (18), we obtain the conclusion.

An immediate consequence is the following.

Corollary 1. For every x ∈ [0, L], the process (u(t, x), t ∈ [0, T ]) is
Hölder continuous of order δ, for every δ ∈ (0, H).

Proof: This follows from the above Proposition 5 and the Kolmogorov
continuity criterion.

4.2. Spatial increment

For the study of the spatial increment, we recall the following formula
(see e.g. [23]): for every x ∈ (0, π2 ),

(22)
∑
n≥1

sin2(nx)

n2
=
π

2
x− 1

2
x2.

The spatial regularity of the process (4) states as follows.

Proposition 6. For every t ∈ [0, T ] and for every x, y ∈ (0, L) with
|x− y| small enough,

E(u(t, x)− u(t, y))2 ≤ C|x− y|.
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Proof: First, for t ∈ [0, T ] and x, y ∈ (0, L),

u(t, x)− u(t, y) =
∑
n≥1

Tn(t)
(

sin
(nπx
L

)
− sin

(nπy
L

))
= 2

∑
n≥1

Tn(t) sin

(
nπ(x− y)

2L

)
cos

(
nπ(x+ y)

2L

)
and

E (u(t, x)− u(t, y))2 = 4
∑
n≥1

ETn(t)2 sin2

(
nπ(x− y)

2L

)
cos2

(
nπ(x+ y)

2L

)
≤ C

∑
n≥1

1

n2
sin2

(
nπ(x− y)

2L

)
.

By using the above formula (22), for x, y ∈ (0, L),

E (u(t, x)− u(t, y))2 ≤ C
(
π

2
(x− y)− 1

2
|x− y|2

)
≤ C|x− y|

when |x− y| is small enough.

The Hölder regularity in space is obtained via Proposition 6 and the
Kolmogorov criterion.

Corollary 2. For every t ∈ [0, T ], the process (u(t, x), x ∈ [0, L]) is
Hölder continuous of order δ, for every δ ∈

(
0, 12
)
.

Notice that the regularity of the solution (9), both in time and in space, is
different with respect to the case of the wave equation with fractional-colored
noise with space variable in the whole real line. Recall (see [13], see also [12]
for the white-noise case), that when x ∈ R, then the corresponding solution
is Hölder continuous of order δ ∈ (0, H2 ) in time and of order δ ∈ (0, H) in
space. In the case of the finite string, while some regularity is gained in time,
the solution seems to be less regular in space since H > 1

2 .

5. BEHAVIOR WITH RESPECT TO THE HURST PARAMETER

Now, we analyze the behavior of the solution to (1) with respect to the
Hurst parameter. Recall that H ∈

(
1
2 , 1
)

and the covariance of the solution is
not defined for H = 1

2 and H = 1 (see the covariance formula (12)). We will
see what happens when H converges to its extreme values, i.e. when H → 1

2
and H → 1. The behavior of several fractional processes with respect to the
Hurst parameter has been studied in [1], [2], [5] while the particular case of
solutions to SPDEs can be found in [20], [21].
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Recall that a space -time white noise is a real valued centered Gaussian
field
W = {Wt(A); t ∈ [0, T ], A ∈ Bb([0, L])}, over a given complete filtered proba-
bility space (Ω,F , (Ft)t∈[0,T ],P), with covariance function given by

(23) E (Wt(A)Ws(B)) = (t ∧ s)λ(A ∩B),∀A,B ∈ Bb([0, L]).

By C([0, T ]) we denote the set of continuous functions on [0, T ].

Proposition 7. Let (u(t, x), t ∈ [0, T ], x ∈ [0, L]) be given by (9). Then,
as H → 1

2 , for every x ∈ [0, L], the process (u(t, x), t ∈ [0, T ]) converges in the
the space C[0, T ] to the process (u0(t, x), t ∈ [0, T ]) defined by

(24) u0(t, x) =

∫ t

0

∫ L

0
Gt,x(s, y)W (ds, dy)

where W is a space-time white noise and G is given by (5).

As H → 1, for every x ∈ [0, L], the process (u(t, x), t ∈ [0, T ]) converges
in the space C[0, T ] to the process (u1(t, x), t ∈ [0, T ]) defined by

(25) u1(t, x) =
∑
n≥1

√
2√

Lwn

(∫ t

0
sin(wn(t− u))du

)
Zn

with (Zn)n≥1 independent standard normal random variables.

Proof: Recall that for every s, t ∈ [0, T ],

Eu(t, x)u(s, x) =
∑
n≥1

4

L2w2
n

L

2
H(2H − 1)

∫ t

0

∫ s

0
dudv sin(wn(t− u))

× sin(wn(s− v))|u− v|2H−2.
(26)

Let us look to the limit as H → 1
2 and H → 1 of the quantity

I(H) = H(2H − 1)

∫ t

0
du

∫ s

0
dv sin(wn(t− u)) sin(wn(s− v))|u− v|2H−2.

Assume s ≤ t. We can express I(H) as follows

I(H) = H(2H − 1)

∫ t

s
du

∫ s

0
dv sin(wn(t− u)) sin(wn(s− v))(u− v)2H−2

+H(2H − 1)

∫ s

0
du

∫ u

0
dv sin(wn(t− u)) sin(wn(s− v))(u− v)2H−2

+H(2H − 1)

∫ s

0
du

∫ s

u
dv sin(wn(t− u)) sin(wn(s− v))(v − u)2H−2

:= I1(H) + I2(H) + I3(H).
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Let us calculate first I1(H). By integrating by parts in the integral dv,

I1(H) = H

∫ t

s
du sin(wn(t− u))

[
− sin(wn(s− v))(u− v)2H−1

∣∣v=s
v=0

−
∫ s

0
wn cos(wn(s− v))(u− v)2H−1

]
= H

∫ t

s
du sin(wn(t− u))

[
sin(wns)u

2H−1

−
∫ s

0
dvwn cos(wn(s− v))(u− v)2H−1

]
.

We take the limit of the above quantity when H → 1
2 . Clearly

H sin(wn(t− u)) sin(wns)u
2H−1 →H→ 1

2

1

2
sin(wn(t− u)) sin(wns)

and

H sin(wn(t−u)) cos(wn(s−v))(u−v)2H−1 →H→ 1
2

1

2
sin(wn(t−u)) cos(wn(s−v)).

By applying the dominated convergence theorem,

I1(H)→H→ 1
2

1

2

∫ t

s
du sin(wn(t−u))

(
sin(wn(s)−

∫ s

0
dvwn cos(wn(s− u))

)
= 0.

For I2(H), we similarly get

I2(H) = H

∫ s

0
du sin(wn(t− u))

[
sin(wns)u

2H−1

−
∫ u

0
dv wn cos(wn(s− v))(u− v)2H−1

]
→H→ 1

2

1

2

∫ s

0
du sin(wn(t− u))

[
sin(wns) + sin(wn(s− v))

∣∣v=u
v=0

]
=

1

2

∫ s

0
du sin(wn(t− u)) sin(wn(s− u)).

Finally,

I3(H) = H

∫ s

0
du sin(wn(t− u))

∫ s

u
dv wn cos(wn(s− v))(v − u)2H−1

→ 1

2

∫ s

0
du sin(wn(t− u)) sin(wn(s− u)).

We obtained

(27) I(H)→H→ 1
2

∫ s

0
du sin(wn(t− u)) sin(wn(s− u)).
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From (27) and (26),

Eu(t, x)u(s, x) →H→ 1
2

∑
n≥1

4

L2w2
n

L

2

∫ s

0
du sin(wn(t− u)) sin(wn(s− u))

= Eu0(t, x)u0(s, x)

with u0 given by (24). This gives the convergence of finite-dimensional distri-
butions of u to those of u0, since both processes are Gaussian. The tightness
is obtained from Proposition 5 and the Billingsley criterion (see [6, Theorem
12.3] or [7]).

If H → 1, it is easy to see that

I(H)→
∫ t

0
sin(wn(t− u))du

∫ s

0
sin(wn(s− v))dv

and thus

Eu(t, x)u(s, x) →H→1

∑
n≥1

4

L2w2
n

2

L∫ t

0
sin(wn(t− u))du

∫ s

0
sin(wn(s− v))dv = Eu1(t, x)u1(s, x)

with u1 given by (25). So we have the convergence of finite dimensional distri-
butions of u to those of u1 and the tightness is obtained as above.

Let us remark that the above result shows that the solution (4) converges,
when H approaches its extreme values, to the solution to the wave equation
driven by the ”limit of the noise”. Indeed, when H → 1

2 , it is clear that the
fractional-white noise (2) converges to the white noise (23) while when H is
close to 1 the solution (4) as the same law as the process (13) and we use
that fact that (B1

t )t∈[0,T ] =(d) (tZ, t ∈ [0, 1]) with Z a standard normal random
variable.
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