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1. INTRODUCTION

Let us consider a stochastic evolution equation of the type

(1.1) dX(t) +A(t,X(t)) dt = B(t,X(t)) dW (t), X(0) = X0,

in the so-called variational setting, i.e. where A is a random time-dependent
nonlinear maximal monotone operator from a reflexive Banach space V to its
dual V ′, with V densely and continuously embedded in a Hilbert space H.
Moreover, W is a cylindrical Wiener process (possibly defined on a further
separable Hilbert space), and B is a random time-dependent map with values
in a suitable space of Hilbert-Schmidt operators. Precise assumptions on the
data of the problem are given in §2 below.

This class of equations was introduced and studied by Pardoux in [11],
extending to the stochastic setting the classical well-posedness results by Lions
(see, e.g., [6]) for equations without noise. More precisely, in [11] the opera-
tor A is time-dependent but non-random and the pair (A,B) needs to satisfy
coercivity and boundedness assumptions, complemented by a local Lipschitz
continuity condition on B. The general case where A can be random was con-
sidered by Krylov and Rozovskĭı in [5], who also showed that the local Lipschitz
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continuity on B is not needed (see also [7, 12] for comprehensive treatments
and recent developments). Under coercivity and boundedness assumptions on
A and a Lipschitz continuity assumption on B (a set of hypotheses to which
we shall refer to as disjoint assumptions), Pardoux [11, Chapter 3, §1] proved
well-posedness of (1.1) by a clever, but at the same time natural extension of
the deterministic theory, employing an infinite-dimensional argument based on
Picard iterations in suitable spaces of processes. As a second step, assuming
that the pair (A,B) satisfies a joint coercivity and boundedness assumption
and that B is locally Lipschitz continuous, well-posedness for (1.1) is proved by
a different method, i.e. by finite-dimensional approximations of Galerkin type
(see [11, Chapter 3, §3]). As mentioned above, the joint assumption is shown
to imply well-posedness without any local Lipschitz continuity condition in B
in [5], again using finite-dimensional approximations.

Our goal is to show that existence of solutions under the general joint
assumptions on (A,B), as in [5], can be obtained relying only on infinite-
dimensional arguments, i.e. in the same spirit of the approach adopted in the
first part of [11]. Moreover, since the existence proof in [5] relies on quite
advanced results for finite-dimensional stochastic differential equations, the
alternative proof provided here could also be seen as a simpler proof. The main
idea is, roughly speaking, to regularize the operator B through the resolvent
of the operator A. The corresponding regularized problem is then shown to
satisfy the stronger disjoint hypotheses, so that it can be solved, as in [11,
Chapter 3, § 1], using infinite-dimensional techniques only. Uniform estimates
on the solutions to the regularized equations are then established, which allow
to pass to the limit obtaining a solution to the original problem.

Even though the use of Yosida approximations is a standard tool in the
field of nonlinear deterministic and stochastic equations (see, e.g., [1, 2, 3, 8]
for just a few examples among an enormous literature), it seems that the type
of approximation introduced here is not found elsewhere. Let us also mention
that another approach to stochastic equations in variational form, namely by
reduction to the deterministic case, is developed in [1, §4.4], where, however,
only the case of additive noise is considered. Moreover, well-posedness for
certain classes of stochastic equations with multi-valued nonlinear drift term
is obtained in [8] using the results in [5, 11] as starting point. The main
point in [8] is to regularize the multi-valued drift coefficient by its Yosida
approximation, thus obtaining a family of well-posed equations with single-
valued drift satisfying the assumptions of the classical variational framework,
and to show that the corresponding approximate solutions converge, under
appropriate assumptions, among which the Lipschitz continuity of the diffusion
coefficient, to a process solving the original equation.
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2. SETTING AND MAIN RESULTS

Throughout the paper, (Ω,F , (Ft)t∈[0,T ],P) stands for a filtered proba-
bility space satisfying the so-called usual conditions, where T > 0 is a fixed
final time, on which all random elements will be defined. Equality of processes
is always meant in the sense of indistinguishability, unless otherwise stated.
Moreover, U is a separable Hilbert space and W is a cylindrical Wiener pro-
cess on it; H is a separable Hilbert space identified with its dual, and V is a
separable reflexive Banach space continuously and densely embedded in H, so
that, denoting the (topological) dual of V by V ′, V ↪→ H ↪→ V ′ is a Gelfand
triple. The scalar product and norm of H will be denoted by 〈·, ·〉 and ‖·‖,
respectively, while the norms of all other Banach spaces will be indicated by
subscripts. Since the duality form between V and V ′ agrees with the scalar
product of H in the usual sense, we shall denote the former by 〈·, ·〉 as well. If
E1 and E2 are Hilbert spaces, the space of Hilbert-Schmidt operators from E1

to E2 will be denoted by L 2(E1;E2).

The following assumptions will be in force throughout the paper.

(I) The operator A : Ω × [0, T ] × V → V ′ is progressively measurable and
hemicontinuous, i.e., for every x ∈ V the V ′-valued process A(·, ·, x) is
progressively measurable and the map

R 3 r 7−→ 〈A(ω, t, x+ ry), z〉

is continuous for every ω ∈ Ω, t ∈ [0, T ], and x, y, z ∈ V .

(II) The operator B : Ω× [0, T ]×V → L 2(U ;H) is progressively measurable,
i.e., for every x ∈ V the L 2(U ;H)-valued process B(·, ·, x) is progres-
sively measurable.

(III) There exist constants c1 > 0, c2 > 0, p ∈ ]1,+∞[ and an adapted process
f ∈ L1(Ω× (0, T )) such that〈

A(ω, t, x)−A(ω, t, y), x− y
〉
− 1

2

∥∥B(ω, t, x)−B(ω, t, y)
∥∥2

L 2(U ;H)

> −c2‖x− y‖2,〈
A(ω, t, x), x

〉
− 1

2

∥∥B(ω, t, x)
∥∥2

L 2(U ;H)
> c1‖x‖pV − c2‖x‖2 − f(ω, t)

for every x, y ∈ V , t ∈ [0, T ] and ω ∈ Ω.

(IV) There exist a constant C > 0 and an adapted process g ∈ L1(Ω× (0, T ))
such that, setting q := p/(p− 1),∥∥A(ω, t, x)

∥∥q
V ′ 6 C‖x‖pV + g(ω, t)
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for every x ∈ V , t ∈ [0, T ] and ω ∈ Ω.

(V) X0 ∈ L2(Ω,F0;H).

We can give now the definition of strong solution for the equation.

Definition 2.1. A strong solution to (1.1) is a V -valued progressively mea-
surable process X such that

X ∈ L0(Ω;C([0, T ];H)) ∩ L0(Ω;Lp(0, T ;V )),

B(·, ·, X) ∈ L0(Ω;L2(0, T ; L 2(U ;H))),

and

X +

∫ ·
0
A(s,X(s)) ds = X0 +

∫ ·
0
B(s,X(s)) dW (s),

as an identity in the sense of indistinguishable V ′-valued processes.

The classical well-posedness result [5, 11] for equation (1.1) is as follows.

Theorem 2.2. There exists a unique strong solution X to (1.1). More-
over,

X ∈ L2(Ω;C([0, T ];H)) ∩ Lp(Ω;Lp(0, T ;V ))
and the solution map

L2(Ω,F0;H) −→ C([0, T ];L2(Ω;H))

X0 7−→ X

is Lipschitz continuous.

As discussed above, in the next section we show that Theorem 2.2 can be
proved relying only on infinite-dimensional arguments.

Remark 2.3. The proof of uniqueness of strong solution crucially relies on
an Itô formula for the square of the H-norm. In [11] such formula is obtained
under the assumption that an operator C : V → V ′ exists satisfying monotonic-
ity, coercivity and boundedness conditions (see [11, p. 57]). These conditions
coincide with those assumed here on A(ω, t) for all (ω, t) ∈ Ω × [0, T ], hence
are automatically verified. In general, the formula remains valid, without any
connection to a specific stochastic equation, if the duality map J : V → V ′ is
single-valued, which is the case if, e.g., V ′ is a strictly convex Banach space.
Such an assumption is always satisfied in all applications to SPDEs we know of.
On the other hand, the Itô formula in [5] does not require any “geometric” as-
sumption on the Banach space V , but its proof is rather involved and relies on
finite-dimensional projections. A simple proof of Itô’s formula for the square of
the H-norm in the variational setting, which relies just on infinite-dimensional
arguments, is available, to the best of our knowledge, only in the case where
V is a Hilbert space (see [4], as well as [9]).
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3. PROOF OF THEOREM 2.2

With ω ∈ Ω and t ∈ [0, T ] arbitrary but fixed, assumptions (I) and (III)
imply that Ã := A(ω, t, ·) + c2I : V → V ′ is maximal monotone. Let us show
that the part of Ã in H, denoted by ÃH , is maximal monotone (as an operator
in H) with domain D(Ã) := {x ∈ V : A(ω, t, x) ∈ H}. It suffices to show that,
for any y ∈ H, the equation

x+ Ãx = y

admits a solution x ∈ D(Ã). Since Ã is coercive on V by assumption (III), it
follows by maximal monotonicity that the equation admits a (unique) solution
x ∈ V . This obviously implies Ãx ∈ H, i.e. x ∈ D(Ã). We have hence shown
that ÃH is a maximal monotone operator on H.

For every λ > 0 we define the resolvent operator

Jλ : Ω× [0, T ]×H −→ V

of Ã setting, for every x ∈ H, t ∈ [0, T ] and ω ∈ Ω,

Jλ(ω, t, x) + λÃ(ω, t, Jλ(ω, t, x)) = x.

The maximal monotonicity of ÃH implies that, for every (ω, t) ∈ Ω × [0, T ],
Jλ(ω, t, ·) is a contraction and converges pointwise to the identity map of H as
λ→ 0.

Moreover, we define the Yosida approximation of Ã as the map

Ãλ : Ω× [0, T ]×H −→ H,

(ω, t, x) 7−→ Ã(ω, t, Jλ(ω, t, x)).

It follows by the contraction property of Jλ that, for every (ω, t) ∈ Ω× [0, T ],
Ãλ(ω, t, ·) is Lipschitz continuous with Lipschitz constant bounded by 1/λ.

3.1. Regularized equation

Let us introduce the family of operators indexed by λ > 0

Bλ : Ω× [0, T ]×H −→ L 2(U ;H)

(ω, t, x) 7−→ B(ω, t, Jλ(ω, t, x)).

Since A, hence also Jλ, and B are progressively measurable, Bλ is progressively
measurable as well for every λ > 0. Moreover, Bλ is Lipschitz continuous in
its third argument, uniformly with respect to the other ones: in fact, thanks
to assumption (III), one has
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1

2

∥∥Bλ(ω, t, x)−Bλ(ω, t, y)
∥∥2

L 2(U ;H)

=
1

2

∥∥B(ω, t, Jλ(ω, t, x))−B(ω, t, Jλ(ω, t, y))
∥∥2

L 2(U ;H)

6
〈
A(ω, t, Jλ(ω, t, x))−A(ω, t, Jλ(ω, t, y)), Jλ(ω, t, x)− Jλ(ω, t, y)

〉
+ c2‖Jλ(ω, t, x)− Jλ(ω, t, y)‖2

=
〈
Ãλ(ω, t, x)− Ãλ(ω, t, y), x− y

〉
6

1

λ
‖x− y‖2

for every ω ∈ Ω, t ∈ [0, T ], and x, y ∈ H.

Therefore, since Ãλ is also a Lipschitz continuous operator on H, well-
posedness results for stochastic differential equations on Hilbert spaces (see,
e.g., [10, §34]) yields the existence (and uniqueness) of a predictable process
Xλ ∈ L2(Ω;C([0, T ];H)) such that

(3.1) Xλ+

∫ ·
0
Ãλ(s,Xλ(s)) ds = X0+c2

∫ ·
0
Xλ(s) ds+

∫ ·
0
Bλ(s,Xλ(s)) dW (s).

3.2. A priori estimates

We are going to prove estimates on the family of solutions (Xλ) to the
regularized equations obtained above that are uniform with respect to λ.

The integration by parts formula for Hilbert space valued semimartingales
yields

1

2
‖Xλ‖2 +

∫ ·
0

〈
Ãλ(s,Xλ(s)), Xλ(s)

〉
ds− 1

2

∫ ·
0

∥∥Bλ(s,Xλ(s))
∥∥2

L 2(U ;H)
ds

=
1

2
‖X0‖2 + c2

∫ ·
0
‖Xλ(s)‖2 ds+

∫ ·
0
Xλ(s)Bλ(s,Xλ(s)) dW (s),

where, in the stochastic integral, Xλ is treated as a process taking values in
the dual of H.

From now on we shall occasionally suppress the explicit indication of the
dependence on ω and t for processes and operators for notational simplicity.
Note that, by definition of Yosida approximation,〈

Ãλx, x
〉

=
〈
ÃJλx, x

〉
=
〈
ÃJλx, Jλx

〉
+
〈
ÃJλx, x− Jλx

〉
=
〈
ÃJλx, Jλx

〉
+ λ

∥∥Ãλx∥∥2(3.2)

for every x ∈ H. Therefore, denoting the norm of L 2(U ;H) by ‖·‖2 for brevity,
one has, thanks to assumption (III),
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〈
Ãλx, x

〉
− 1

2

∥∥Bλ(x)
∥∥2

2
=
〈
ÃJλx, Jλx

〉
− 1

2

∥∥B(Jλx)
∥∥2

2
+ λ

∥∥Ãλx∥∥2

> c1

∥∥Jλx∥∥pV + λ
∥∥Ãλx∥∥2 − f,

which in turn yields

1

2
‖Xλ‖2 + c1

∫ ·
0

∥∥JλXλ(s)
∥∥p
V
ds+ λ

∫ ·
0

∥∥ÃλXλ(s)
∥∥2
ds

6
1

2
‖X0‖2 +

∫ ·
0
f(s) ds+ c2

∫ ·
0
‖Xλ(s)‖2 ds

+

∫ ·
0
Xλ(s)Bλ(Xλ(s)) dW (s),

where the stochastic integral on the right-hand side is a martingale because
Bλ is Lipschitz continuous. In particular, taking expectation on both sides,

1

2
E‖Xλ(t)‖2 + c1 E

∫ t

0

∥∥JλXλ(s)
∥∥p
V
ds+ λE

∫ t

0

∥∥ÃλXλ(s)
∥∥2
ds

6
1

2
E‖X0‖2 + E

∫ t

0
f(s) ds+ c2 E

∫ t

0
‖Xλ(s)‖2 ds

(3.3)

for all t ∈ [0, T ]. This implies that, for any interval [0, T0] ⊆ [0, T ],

sup
t6T0

E‖Xλ(t)‖2 6 E‖X0‖2 + 2E
∫ T

0
f(s) ds+ 2c2 E

∫ T0

0

(
sup
r6s

E‖Xλ(r)‖2
)
ds,

so that, by Gronwall’s inequality, (Xλ) is bounded in C([0, T ];L2(Ω;H)). From
this and (3.3) it immediately follows that (λ1/2ÃλXλ) is bounded in
L2(Ω;L2(0, T ;H)) and that (JλXλ) is bounded in Lp(Ω;Lp(0, T ;V )).
The latter implies, thanks to assumption (IV), that (ÃλXλ) is bounded in
Lq(Ω;Lq(0, T ;V ′)). Moreover, since, by assumption (III),

1

2

∥∥Bλ(x)
∥∥2

2
=

1

2

∥∥B(Jλx)
∥∥2

2
6
〈
ÃJλx, Jλx

〉
+ f =

〈
Ãλx, Jλx

〉
+ f,

Hölder’s inequality yields

E
∫ T

0

∥∥Bλ(Xλ(s))
∥∥2

2
ds 6 E

∫ T

0

∥∥ÃλXλ

∥∥
V ′

∥∥JλXλ

∥∥
V

+
∥∥f∥∥

L1(Ω×[0,T ])

6
∥∥ÃλXλ

∥∥
Lq(Ω;Lq(0,T ;V ′))

∥∥JλXλ

∥∥
Lp(Ω;Lp(0,T ;V ))

+
∥∥f∥∥

L1(Ω×[0,T ])
,

thus proving that (Bλ(Xλ)) is bounded in L2(Ω;L2(0, T ; L 2(U ;H))).
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3.3. Construction of a solution and its uniqueness

The boundedness of various families of processes indexed by λ obtained
above imply, by well-known compactness properties in weak and weak* topolo-
gies, that there exist measurable and adapted processes

X ∈ L∞(0, T ;L2(Ω;H)),

X̄ ∈ Lp(Ω;Lp(0, T ;V )),

Y ∈ Lq(Ω;Lq(0, T ;V ′)),

G ∈ L2(Ω;L2(0, T ; L 2(U ;H)))

such that

Xλ −→ X weakly* in L∞(0, T ;L2(Ω;H)),

JλXλ −→ X̄ weakly in Lp(Ω;Lp(0, T ;V )),

λÃλXλ −→ 0 in L2(Ω;L2(0, T ;H)),

ÃλXλ −→ Y weakly in Lq(Ω;Lq(0, T ;V ′)),

Bλ(·, Xλ) −→ G weakly in L2(Ω;L2(0, T ; L 2(U ;H))).

Since, by definition of Yosida approximation, Xλ−JλXλ = λÃλXλ, the bound-
edness of (λ1/2ÃλXλ) in L2(Ω;L2(0, T ;H)) implies that

Xλ − JλXλ −→ 0 in L2(Ω;L2(0, T ;H)),

hence X and X̄ are equal P⊗ Leb-a.e. in Ω× [0, T ] and belong to

L∞(0, T ;L2(Ω;H)) ∩ Lp(Ω;Lp(0, T ;V )).

Recalling that the linear operator

Lr(Ω;L1(0, T ;E)) −→ Lr(Ω;C([0, T ];E))

w 7−→
∫ ·

0
w(s) ds

is continuous for any r ∈ [1,∞[ and any Banach space E, hence also weakly
continuous, it follows from the above convergence results that∫ ·

0
Xλ(s) ds −→

∫ ·
0
X(s) ds weakly in Lp(Ω;C([0, T ];V )),∫ ·

0
ÃλXλ(s) ds −→

∫ ·
0
Y (s) ds weakly in Lq(Ω;C([0, T ];V ′)).

Similarly, since the stochastic integral operator
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L2(Ω;L2(0, T ; L 2(U ;H)) −→ L2(Ω;C([0, T ];H))

C 7−→
∫ ·

0
C(s) dW (s)

is linear and continuous, hence weakly continuous, one gets that∫ ·
0
Bλ(s,Xλ(s)) dW (s) −→

∫ ·
0
G(s) dW (s) weakly in L2(Ω;C([0, T ];H)).

This implies, taking the weak limit in the space Lq(Ω;C([0, T ];V ′)) as λ → 0
in equation (3.1),

(3.4) X +

∫ ·
0
Y (s) ds = X0 + c2

∫ ·
0
X(s) ds+

∫ ·
0
G(s) dW (s) in V ′.

We are going to show, using an adaptation of a classical argument from the
theory of maximal monotone operators (cf. [5] as well as [7, § 4.2]), that Y =
A(·, X) + c2X and G = B(X). Itô’s formula for the square of the H-norm
applied to (3.1) yields

1

2

∥∥e−c2·Xλ

∥∥2
+

∫ ·
0
e−2c2s

〈
ÃλXλ(s)), Xλ(s)

〉
ds

− 1

2

∫ ·
0
e−c2s

∥∥Bλ(Xλ(s))
∥∥2

L 2(U ;H)
ds

=
1

2
‖X0‖2 +

∫ ·
0
e−c2sXλ(s)Bλ(Xλ(s)) dW (s).

Since the stochastic integral on the right-hand side is a martingale, as seen
above, one has, applying inequality (3.2) and taking expectations on both
sides,

1

2
E
∥∥e−c2·Xλ

∥∥2 − 1

2
E‖X0‖2

6 E
∫ ·

0
e−2c2s

(
−
〈
ÃJλXλ(s), JλXλ(s)

〉
+

1

2

∥∥B(JλXλ(s))
∥∥2

L 2(U ;H)

)
ds.

Let ϕ ∈ L2(Ω;C([0, T ];H)) ∩ Lp(Ω;Lp(0, T ;V )).

Thanks to assumptions (III)–(IV), one has that Ãϕ ∈ Lq(Ω;Lq(0, T ;V ′))
and B(ϕ) ∈ L2(Ω;L2(0, T ; L 2(U ;H))), so that the term within parentheses
on right-hand side can be rewritten as

−
〈
ÃJλXλ − Ãϕ, JλXλ − ϕ

〉
+

1

2

∥∥B(JλXλ)−B(ϕ)
∥∥2

L 2(U ;H)

−
〈
Ãϕ, JλXλ

〉
−
〈
ÃJλXλ − Ãϕ, ϕ

〉
− 1

2

∥∥B(ϕ)
∥∥2

L 2(U ;H)
+
〈
B(JλXλ), B(ϕ)

〉
L 2(U ;H)

,
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where the sum of the two terms in the first row is negative by assumption
(III). One is thus left with

1

2
E
∥∥e−c2·Xλ

∥∥2 − 1

2
E‖X0‖2

6 E
∫ ·

0
e−2c2s

(
−
〈
Ãϕ(s), JλXλ(s)

〉
−
〈
ÃJλXλ(s)− Ãϕ(s), ϕ(s)

〉
− 1

2

∥∥B(ϕ(s))
∥∥2

L 2(U ;H)
+
〈
B(JλXλ(s)), B(ϕ(s))

〉
L 2(U ;H)

)
ds,

from which it follows that, for every nonnegative ψ ∈ L∞(0, T ),

1

2
E
∫ T

0
ψ(t)

(
e−2c2t‖Xλ(t)‖2 − ‖X0‖2

)
dt

6 E
∫ T

0
ψ(t)

(∫ t

0
e−2c2s

(
−
〈
Ãϕ(s), JλXλ(s)

〉
−
〈
ÃJλXλ(s)−Ãϕ(s), ϕ(s)

〉
− 1

2

∥∥B(ϕ(s))
∥∥2

L 2(U ;H)
+
〈
B(JλXλ(s)), B(ϕ(s))

〉
L 2(U ;H)

)
ds

)
dt.

By the weak lower semicontinuity of the norm in L2(Ω;L2(0, T ;H)), one has

E
∫ T

0
ψ(t)

(
e−2c2t‖X(t)‖2 − ‖X0‖2

)
dt

6 lim inf
λ→0

E
∫ T

0
ψ(t)

(
e−2c2t‖Xλ(t)‖2 − ‖X0‖2

)
dt.

Moreover, since B(ϕ) ∈ L2(Ω;L2(0, T ; L 2(U ;H))), the weak convergence re-
sults proved above yield

lim
λ→0

E
∫ T

0
ψ(t)

(∫ t

0
e−2c2s

(
−
〈
Ãϕ(s), JλXλ(s)

〉
−
〈
ÃJλXλ(s)− Ãϕ(s), ϕ(s)

〉
− 1

2

∥∥B(ϕ(s))
∥∥2

L 2(U ;H)
+
〈
B(JλXλ(s)), B(ϕ(s))

〉
L 2(U ;H)

)
ds

)
dt

= E
∫ T

0
ψ(t)

(∫ t

0
e−2c2s

(
−
〈
Ã(ϕ(s)), X(s)

〉
−
〈
Y (s)− Ã(ϕ(s)), ϕ(s)

〉
− 1

2

∥∥B(ϕ(s))
∥∥2

L 2(U ;H)
+
〈
G(s), B(ϕ(s))

〉
L 2(U ;H)

)
ds

)
dt.

We then deduce that

1

2
E
∫ T

0
ψ(t)

(
e−2c2t‖X(t)‖2 − ‖X0‖2

)
dt

6 E
∫ T

0
ψ(t)

(∫ t

0
e−2c2s

(
−
〈
Ãϕ(s), X(s)

〉
−
〈
Y (s)− Ãϕ(s), ϕ(s)

〉
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− 1

2

∥∥B(ϕ(s))
∥∥2

L 2(U ;H)
+
〈
G(s), B(ϕ(s))

〉
L 2(U ;H)

)
ds

)
dt.

Itô’s formula (see [5] or [7, §4]) applied to the limit equation (3.4) implies that
there exists a modification of X, denoted by the same symbol for simplicity,
such that X ∈ L2(Ω;C([0, T ];H)) and

1

2
e−2c2·‖X‖2 +

∫ ·
0
e−2c2s

〈
Y (s), X(s)

〉
ds− 1

2

∫ ·
0
e−2c2s

∥∥G(s)
∥∥2

L 2(U ;H)
ds

=
1

2
‖X0‖2 +

∫ ·
0
e−2c2sX(s)G(s) dW (s).

Substituting this identity on the left-hand side of the last inequality and rear-
ranging the terms yields

E
∫ T

0
ψ(t)

∫ t

0
e−2c2s

(〈
Y (s)− Ãϕ(s), ϕ(s)−X(s)

〉
+

1

2

∥∥G(s)−B(ϕ(s))
∥∥2

L 2(U ;H)

)
ds dt 6 0.

Choosing ϕ = X immediately yields G = B(X), hence also, in particular,

E
∫ T

0
ψ(t)

∫ t

0
e−2c2s

〈
Y (s)− Ãϕ(s), ϕ(s)−X(s)

〉
ds dt 6 0.

Let δ ∈ R+, v ∈ V , and ϕ̄ ∈ L∞(Ω× [0, T ]). Choosing ϕ = X+δϕ̄v and taking
the limit as δ → 0 yields

E
∫ T

0
ψ(t)

∫ t

0
e−2c2sϕ̄(s)

〈
Y (s)− Ãϕ(s), v

〉
ds dt 6 0.

By a classical localisation argument, recalling that ψ and ϕ̄ have been chosen
arbitrarily, one has 〈

Y − Ãϕ, v
〉
6 0 ∀v ∈ V

a.e. in Ω× [0, T ]. Since v has also been chosen arbitrarily in V , it follows that〈
Y − Ãϕ,X − ϕ

〉
> 0

a.e. in Ω × [0, T ]. Since Ã is maximal monotone, this implies that Y = ÃX
a.e. in Ω× [0, T ]. We have thus shown that X is a strong solution to equation
(1.1).

In order to prove the Lipschitz continuous dependence of the solution
with respect to the initial datum (from which uniqueness follows), let X1, X2

be strong solutions to (1.1), in the sense of Theorem 2.2, with initial data X1
0

and X2
0 , respectively. Itô formula (as in [5] or [7]) yields
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1

2

∥∥(X1 −X2)
∥∥2

H

+

∫ ·
0

(〈
AX1 −AX2, X1 −X2

〉
− 1

2

∥∥B(X1)−B(X2)
∥∥2

L 2(U ;H)

)
(s) ds

=
1

2

∥∥X1
0 −X2

0

∥∥2
+

∫ ·
0

(
(X1 −X2)(B(X1)−B(X2))

)
(s) dW (s),

where the stochastic integral on the right-hand side is a martingale because
X1, X2 ∈ L2(Ω;C([0, T ];H)) and B(X1), B(X2) ∈ L2(Ω;L2(0, T ; L 2(U ;H))).
Therefore, taking expectations on both sides and using assumption (III),

E
∥∥(X1−X2)(t)

∥∥2
6 E

∥∥X1
0−X2

0

∥∥2
+2c2

∫ t

0
E
∥∥(X1−X2)(s)

∥∥2
ds ∀t ∈ [0, T ],

from which the conclusion follows thanks to Gronwall’s inequality. The proof
of Theorem 2.2 is thus complete.
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