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1. INTRODUCTION

In this note, we give a very simple proof of Rockafellar’s maximal mono-
tonicity theorem based on Ekeland’s variational principle. The paper is the
result of particular discussions and remarks of Prof. C. Zalinescu on the sim-
plified proofs of Rockafellar’s results: maximal monotonicity theorem and sur-
jectivity theorem. The proof for maximal monotonicity that we present here
comes from a note on the maximal monotonicity of the subdifferential operator
of the convex l.s.c. function Φ : C([0, T ];Rd)→]−∞,+∞]

Φ(x) =


∫ T

0
ϕ(x(t)dt, if ϕ (x) ∈ L1(0, T )

+∞, otherwise

given by Asiminoaei and Răşcanu in [1].
Remark that the first proof of maximal monotonicity theorem was given

by Rockafellar in [7]. Other different and simplified proofs are given by S.
Simons in [8] and M. Marques Alves and B. F. Svaiter in [6].

Let (X, ‖.‖) be a real Banach space and (X∗, ‖.‖∗) be its dual. For x∗ ∈ X∗
and x ∈ X we denote x∗ (x) (the value of x∗ in x) by 〈x, x∗〉 or 〈x∗, x〉 .
The space X× X∗ is also a Banach space with the norm ‖(x, x∗)‖X×X∗ =(
‖x‖2 + ‖x∗‖2∗

)1/2
.
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If A : X ⇒ X∗ is a point-to-set operator (from X to the family of subsets

of X∗), then Dom (A)
def
== {x ∈ X : A (x) 6= ∅} and R (A)

def
== {x∗ ∈ X∗ : ∃ x ∈

Dom (A) s.t. x∗ ∈ A (x)}. We say that A is proper if Dom (A) 6= ∅.
We shall use the notation (x, x∗) ∈ A for x ∈ Dom (A) and x∗ ∈ A (x) ;

this means that the operator A is identified with its graph

gr (A) = {(x, x∗) ∈ X× X∗ : x ∈ Dom (A) , x∗ ∈ A (x)}.

The operator A : X ⇒ X∗ is monotone (A ⊂ X× X∗ is a monotone set) if

〈x− y, x∗ − y∗〉 ≥ 0, ∀ (x, x∗) , (y, y∗) ∈ A.

A monotone operator (set) is maximal monotone if its graph is not properly
contained in the graph of any other monotone operator (set). Hence a mono-
tone operator is maximal monotone if and only if

inf {〈x− u, x∗ − u∗〉 : (u, u∗) ∈ A} ≥ 0 =⇒ (x, x∗) ∈ A.

Given a function ϕ : X→]−∞,+∞], we denote Dom (ϕ)
def
== {x ∈ X :

ϕ (x) < ∞}. We say that ϕ is proper if Dom (ϕ) 6= ∅. The subdifferential
∂ϕ : X ⇒ X∗ is defined by

(x, x∗) ∈ ∂ϕ if 〈y − x, x∗〉+ ϕ (x) ≤ ϕ (y) , ∀ y ∈ X.

Clearly if ϕ is proper and (x, x∗) ∈ ∂ϕ then ϕ (x) ∈ R, that is x ∈ Dom (ϕ) .

Remark that if ϕ : X→]−∞,+∞] is a proper convex l.s.c. function and
ψ : X→ R is a continuous convex function then ∂ (ϕ+ ψ) (x) = ∂ϕ (x)+∂ψ (x)
for all x ∈ Dom (∂ϕ) (this result is a consequence of the Theorem 2.8.7 from
[10]).

2. THE RESULTS

Theorem 1. Let X be a Banach space and ϕ : X →] − ∞,+∞] be a
proper convex lower semicontinuous function. Then ∂ϕ : X ⇒ X∗ is proper
maximal monotone operator.

Proof. Using the definition of ∂ϕ it is very easy to prove that ∂ϕ : X ⇒ X∗
is a monotone operator. Let us prove that ∂ϕ is a proper maximal monotone
operator.

Let (z, z∗) ∈ X× X∗ and λ > 0 be arbitrary fixed. Consider the function
Ψ : X→]−∞,+∞] be defined by

Ψ(x) =
1

2
‖x− z‖2 + λϕ(x)− λ 〈x, z∗〉 .
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Then Ψ is a proper convex lower semicontinuous function and Ψ is bounded
from below. From Ekeland principle [3] (see also [10, Th. 1.4.1], or [2], p. 29,
Th. 3.2), for every ε > 0 there exists xε ∈ X such that

Ψ(xε) ≤ inf {Ψ(x) : x ∈ X}+ ε2 and(1)

Ψ(xε) ≤ Ψ(x) + ε ‖x− xε‖X , for allx ∈ X.(2)

Remark that the sequence {xε : 0 < ε ≤ 1} is bounded, since lim
‖x‖→∞

Ψ(x) =

+∞. From (2) we deduce that

0 ∈ ∂Ψ(xε) + εUX∗ = JX(xε − z) + λ∂ϕ(xε)− λz∗ + εUX∗ ,

where UX∗ = {u∗ ∈ X∗ : ‖u∗‖X∗ ≤ 1} and JX : X ⇒ X∗ is the duality mapping,
that is

JX (x) =
{
x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2X∗

}
= ∂

(
1

2
‖·‖2

)
(x) .

So, there exist u∗ε ∈ UX∗ , y∗ε ∈ JX(xε− z) and x∗ε ∈ ∂ϕ(xε) (in particular ∂ϕ is
a proper point-to-set operator) such that

(3) λz∗ − λx∗ε = y∗ε + ε u∗ε .

It follows that ‖λz∗ − λx∗ε‖ ≤ ‖y∗ε‖+ ε = ‖xε − z‖+ ε.
Let now (z, z∗) ∈ X × X∗ such that 〈z − x, z∗ − x∗〉 ≥ 0 for all (x, x∗)

∈ ∂ϕ. Then

0 ≤ 〈z − xε, z∗ − x∗ε〉 = 〈z − xε, y∗ε〉+ ε 〈z − xε, u∗ε〉

≤ −‖xε − z‖2 + ε ‖xε − z‖ .

Hence ‖xε − z‖ ≤ ε and ‖x∗ε − z∗‖ ≤
2ε

λ
; in particular xε → z and x∗ε → z∗ as

ε→ 0. Passing to lim infε→0 in

〈x∗ε, y − xε〉+ ϕ(xε) ≤ ϕ(y), ∀ y ∈ X,

we obtain (z, z∗) ∈ ∂ϕ.

From this proof (the equality (3) corresponding to z = 0) we deduce a
Rockafellar’s type surjectivity result in general Banach spaces:

Corollary 2. If X is a Banach space and ϕ : X →] − ∞,+∞] is a
proper convex lower semicontinuous function then for all λ > 0,

R (JX + λ∂ϕ) = X∗.

If X is a reflexive Banach space, then

R (JX + λ∂ϕ) = X∗.
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Proof. From (3) with z = 0 we deduce that R (∂ϕ+ λJX) + εUX∗ = X∗.
Hence

R (JX + λ∂ϕ) =
⋂
ε>0

[R (JX + λ∂ϕ) + εUX∗ ] = X∗.

If X is a reflexive Banach space, then the boundedness of {xε : 0 < ε ≤ 1} yields
that there exists a subsequence εn → 0 such that xεn ⇀ x0 (weakly on X) and

Ψ(x0) ≤ lim inf
εn→0

Ψ(xεn) = inf {Ψ(x) : x ∈ X}.

Hence 0 ∈ ∂Ψ(x0) = JX(x0) + λ∂ϕ(x0)− λz∗ that is λz∗ ∈ JX(x0) + λ∂ϕ(x0).
Hence X∗ = λX∗ ⊂ R (JX + λ∂ϕ) ⊂ X∗.

Definition 3. Given a monotone operator A : X ⇒ X∗, the associated
Fitzpatrick function is defined as H = HA : X× X∗ → ]−∞,+∞],

(4)
H (x, x∗)

def
== 〈x, x∗〉 − inf {〈x− u, x∗ − u∗〉 : (u, u∗) ∈ A}
= sup {〈u, x∗〉+ 〈x, u∗〉 − 〈u, u∗〉 : (u, u∗) ∈ A}

Clearly H (x, x∗) = 〈x, x∗〉 , for all (x, x∗) ∈ A and

H = HA : X× X∗ → ]−∞,+∞] is a proper convex l.s.c. function.

Let (x∗, x) ∈ ∂H (u, u∗) . Then, from the definition of a subdifferential operator
this means that

〈(x∗, x) , (z, z∗)− (u, u∗)〉+H (u, u∗) ≤ H (z, z∗) , ∀ (z, z∗) ∈ X× X∗,
or, equivalently,

(5)

〈u− x, u∗ − x∗〉 − inf
(y,y∗)∈A

〈u− y, u∗ − y∗〉

≤ 〈z − x, z∗ − x∗〉 − inf
(y,y∗)∈A

〈z − y, z∗ − y∗〉 , ∀ (z, z∗) ∈ X× X∗.

Since the operator A is maximal monotone, then

inf
(y,y∗)∈A

〈u− y, u∗ − y∗〉 ≤ 0

and
inf

(y,y∗)∈A
〈z − y, z∗ − y∗〉 = 0, ∀ (z, z∗) ∈ A;

consequently, we have

(6) (x∗, x) ∈ ∂H (u, u∗) =⇒ 〈u− x, u∗ − x∗〉 ≤ inf
(z,z∗)∈A

〈z − x, z∗ − x∗〉 .

Also, by the monotonicity of A, from (5) follows

(x∗, x) ∈ A =⇒ (x∗, x) ∈ ∂H (x, x∗) .

Hence, if A : X ⇒ X∗ is a maximal monotone operator then HA characterizes
A as follows.
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Theorem 4 (Fitzpatrick). (see Fitzpatrick [4] and Simons-Zălinescu [9])
Let X be a Banach space, A : X ⇒ X∗ be a maximal monotone operator and H
its associated Fitzpatrick function. Then, for all (x, x∗) ∈ X× X∗

H(x, x∗) ≥ 〈x, x∗〉 .

Moreover, the following assertions are equivalent

(a) (x, x∗) ∈ A;

(b) H(x, x∗) = 〈x, x∗〉 ;

(c) ∃ (u, u∗) ∈ Dom (∂H) such that

(x∗, x) ∈ ∂H (u, u∗) and 〈u− x, u∗ − x∗〉 ≥ 0;

(d) (x∗, x) ∈ ∂H (x, x∗) .

Proof. It’s not difficult to show that (b)⇔ (a)⇒ (d)⇒ (c)⇒ (a).

Corollary 5. Let X be a Banach space and A : X ⇒ X∗ be a maximal
monotone operator. Then

0 ∈ R (JX +A) ⇐⇒ (0, 0) ∈ R
(
JX ⊗ J−1X + ∂HA

)
Proof. Since JX (−x) = −JX (x) , then we clearly have the following equiv-

alences: 0 ∈ R (JX +A) ⇐⇒ ∃ (x, x∗) ∈ A such that −x∗ ∈ JX (x) ⇐⇒
∃ (x, x∗) ∈ X× X∗ such that (0, 0) ∈ (−x∗,−x) + ∂H (x, x∗) and (−x∗,−x) ∈(
JX (x) , J−1X (x∗)

)
⇐⇒ (0, 0) ∈ R

(
JX ⊗ J−1X + ∂HA

)
.

Now from Corollary 2 we have for all λ > 0,

R (JX×X∗ + λ∂HA) = X∗ × X∗∗

When X is a reflexive Banach space JX×X∗ (x, x∗) = JX (x) ⊗ J−1X (x∗) and
therefore, by Corollary 2,

(7) R
(
JX ⊗ J−1X + λ∂HA

)
= X∗ × X

In this sequence of ideas we can rewrite simplifying the approach from [9]
of Simons and Zălinescu for the Rockafellar’s surjectivity result of maximal
monotone operators, as follows

Theorem 6 (Rockafellar). Let X be a reflexive Banach space. If A : X ⇒
X∗ is a maximal monotone operator, then R (JX + λA) = X∗, for all λ > 0.
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Proof. Let λ > 0 and z∗ ∈ X∗. Since A is maximal monotone if and
only Ã = λA − z∗ is maximal monotone, then to prove z∗ ∈ R (JX + λA) is
equivalent to prove 0 ∈ R (JX +A) . But by (7) and Corollary 5 the relation 0 ∈
R (JX +A) is equivalent to the true assertion (0, 0) ∈ R

(
JX ⊗ J−1X + ∂HA

)
=

X∗ × X.

Finally we note (see [5]) that in the case of a non-reflexive Banach space
X, there exists a maximal monotone operator A : X ⇒ X∗ and λ > 0 such that
R (JX + λA) ( X∗.
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[1] I. Asiminoaei and A. Răşcanu, Approximation and simulation of stochastic variational
inequalities - splitting up method. Numer. Funct. Anal. Optim. 18 (1997), 3-4, 251–282.

[2] V. Barbu, Mathematical Methods in Optimization of Differential Systems. Kluwer Aca-
demic Publishers, 1994.

[3] I. Ekeland, On the Variational Principle. J. Math. Anal. Appl., 47 (1974), 324–353.

[4] S. Fitzpatrick, Representing monotone operators by convex functions. In: Work-
shop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), Proc.
Centre Math. Anal. Austral. Nat. Univ., vol. 20, pp. 59–65. Austral. Nat. Univ., Can-
berra, 1988.

[5] J-P. Gossez, On the range of a coercive maximal monotone operator in a nonreflexive
Banach space. Proc. Amer. Math. Soc. 35 (1972), 88–92.

[6] M. Marques Alves and B. F. Svaiter, A new proof for maximal monotonicity of subdif-
ferential operators. IMPA preprint server, A526/2007.

[7] R. T. Rockafellar, On the Maximal Monotonicity of Subdifferential mappings. Pacific J.
Math. 33 (1970), 209–216.

[8] S. Simons, Minimax and monotonicity. Lecture Notes in Mathematics 1693, Springer–
Verlag, 1998.
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aurel.rascanu@gmail.com,

aurel.rascanu@uaic.ro


