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In this short note we study homogenization of symmetric d-dimensional Lévy
processes. Homogenization of one-dimensional pure jump Markov processes has
been investigated by Tanaka et al. in [5]; their motivation was the work by
Benssousan et al. [1] on the homogenization of diffusion processes in R?, see also
[2] and [11]. We investigate a similar problem for a class of symmetric pure-
jump Lévy processes on R? and we identify - using Mosco convergence - the
limit process.
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A symmetric Lévy process (X;)i>0 is a stochastic process in R¢ with
stationary and independent increments, cadlag paths and symmetric laws X; ~
—X;. We can characterize the (finite-dimensional distributions of the) process
by its characteristic function Ee*¢X?) ¢ € R?, ¢t > 0, which is of the form
exp(—t1(€)); due to the symmetry of X, the characteristic exponent 1) is
real-valued. It is given by the Lévy—Khintchine formula

0 wO=5E50+ [ (1 cos(em)van), g
¥ € R4 is the positive semidefinite diffusion matriz and v(dh) is the Léuvy
measure, that is a Radon measure on R%\ {0} such that fh;ﬁo (LA|R|?) v(dh) is
finite. It is clear from (1) that we have v(dh) = v(—dh). Throughout this paper
we assume that ¥ = 0 and that v(dh) has a (necessarily symmetric) locally
bounded density on R?\ {0} w.r.t. Lebesgue measure; in abuse of notation we
write v(dh) = v(h) dh.

Let Q = (0,1)¢ be the open unit cube in R? and a : R* — R a function
in P (R?) for some 1 < p < co. We assume that a(z) = a(—z) for z € R?
and a is Q-periodic in the sense that

(2)  a(h+ke;))=a(h)>0 forallkeZ,i=1,2,...,d and a.a. h € Q;
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as usual, e; denotes the ith unit vector of R%. By @ we denote the mean value
of a,

(3) 7= /Q a(h) dh.

We assume that ag(h) := a (6~'h) satisfies

(4) / (LA |h[*)as(h)v(h)dh < oo for all & > 0,
h#0
(5) §1>115 /h|21 as(h)v(h)dh < oo.

For each § > 0 we consider the following quadratic form on L?(RR%) defined
for Lipschitz continuous functions with compact support u,v € C(l)lp (R

6) &)= / / (u() — u(y)) (ulz) — u(y))asly — D)y — ) dy dz.

RIxR4

From the assumptions (2) and (4), we easily see that (£°, C(l)ip(IRd)) is a closable
symmetric form in L?(RY) which is translation invariant, see [4]. Its closure
(€%, F°) is a translation invariant regular symmetric Dirichlet form in L?(RY),
and the associated Markov process is a symmetric Lévy process. If we use (1)
and some elementary Fourier analysis, we obtain the following characterization
of the Dirichlet form (£°, F%) based on the characteristic exponent 5, cf. [6,
Example 4.7.28] and [4, Example 1.4.1],

o) = [ AT s(6)de
F={uerm: [ [P <o),
a(¢) = (2m)~ Jra e~"&2)y(x) da denotes the Fourier transform and
™) 66)= [ (1= cose masthwiyan, € < R
Condition (4) ensures that as(h)v(h) is the density of a Lévy measure. If
v(h) is the density of a Lévy measure and if a is a bounded, nonnegative (and

1-periodic) function, then (4) clearly holds. The following example illustrates
that for unbounded functions a the situation is different.

Ezample 1. a) Let 0 < 8 < 2 and pick § such that 0 < § < 1A (2 — ).
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Define functions ag on [0,1/2] and «; on [0, 1] by

0, =0,
iy ’ 1 Ozo(l‘), 0<z< %a
ap(z) =<¢27° 0<z<7, and ai(z):=
4 ap(l—2), I<z<l
P, t<e<d S

Denote by a : R — R the 1l-periodic extension of a; to the real line. It
is obvious that a € L{ (R) for all 1 < p < 1/6. Define a further function
b=>b(x) on R by b(z) := a(x —1/2) for x € R and set

b(h)

v( ):W, h # 0.

Clearly, v(h) = v(—h); let us show that a(h)v(h) is the density of a Lévy
measure, i.e. fhﬂ) (1 A R*)a(h)v(h)dh < co.
Since a and v are even functions, we see

0

1 (o.]
/ (1 AR a(h)v(h)dh = 2/ h%a(h)v(h) dh + 22/ a(h)v(h) dh.
h£0 = 7t
For the first term we get

1 1
j/ hQaUUV(h)dh::L/.h?anbUUh_l_ﬁdh
0 0

1/4 1/2
= 45/ h' 0B dn + 45/ hP(1/2 — h)~°dh
0 1/4
3/4 1
+ 45/ hP(h—1/2)7° dh + 45/ h=P(1 —h)~°dh
1/2 3/4
=:¢(d) < 0.

The integrals under the sum appearing in the second term can be estimated
using the periodicity of a and b; for all £ > 1 we have

0+1 1
/ ampmmh:/cwﬂwwm+@m+@*%dh
l 0
1
_/ a(h)b(h)(h +0)~1=P dh
0

<P /1 a(h)b(h) dh.
0

As in the previous calculation, and noting that 0 < § < 1, we again see that

1 1/4 1/2
/ a(h)b(h) dh = 45/ h=0dh + 45/ (1/2—nh)~°dh
0 0 1/4
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3/4 1
+45/ (h—1/2)5dh+45/ (1—h)"%dh < .
1/2 3/4

Thus, ¢ := fol a(h)b(h) dh < oo, and

/ (L AR a(h)v(h)dh < 2¢(5) + cifl’ﬁ < o0.
h#0 =1

On the other hand, we also find that

/ (LA RB*)ayjo(h)v(h) dh = / (L A B?)a(2h)b(h)|h|"1 P dh
h=£0 h=£0

1/2
> / h2a(2h)b(h)h 1" dh
3/8

1/2
= / A1 —2h)7%(1/2 — h) % dh
3/8

1/2
= 25/ h1=A(1 — 2h)~2 dh,
3/8

and this integral blows up if 0 < # < 3/2and 1/2 <6 < 1A (2—-p). Ina
similar way we can show that

/ (L AR as(h)v(h)dh = oo
h#£0

for infinitely many § > 0.

b) Let a = a(z) on R be as in the previous part. Set v(h) = |h|~1=7 for h # 0.
Then we can show that this pair (a,r) satisfies the conditions (2)—(4).

We will now discuss the limit of (£, %) as § | 0. To this end, we take
a sequence of positive numbers {4, }nen such that §, | 0 as n — oo. The
following result is a standard result from homogenization theory. Usually it is
stated in terms of LP convergence (rather than LI = convergence), see e.g. [3,
Theorem 2.6].

LEMMA 2. Suppose that (2) and (4) hold. The family {as, }nen converges
to the constant a := fQ a(h) dh weakly in L} (RY), 1 < p < oo, i.e. for any
compact set K of R?,

(8) lim g(x)as, (x)dx = a/ g(x)dz, g€ LI(K),
where p and q are conjugate 1/p+1/q = 1.

We will need the following corollary of Lemma 2.
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COROLLARY 3. Assume that (2)—(4) hold and let {6n}nen be a mono-
tonically decreasing sequence of positive numbers such that 6, — 0 as n — oo.
For any compact set K C R% x R?, let g, € LI(K) be a sequence of functions
which converges in L1 to some g € LY(K). Then the following limit exists

(9) Jim //K gn(z,y)as, (v —y)dedy = a//K g9(z,y) dz dy.

Proof. Note that

‘//Qn(%y)aén(a@ —y)dady —E//g(%y) dxdy‘

K K

= ‘//(g"(x’y) —9(x,9))as, () dxdy‘ + ‘//g(x,y)(%,(x—y) —a) dxdy’
® K

< U |gn (2, y)—g(2,y)|" dz dy] % U/aan (z—y)P d dy] i
K K

where we use

z)(as, (z)—a) dz

H(z) = /Rd 1x(y+ 2,99y +2y)dy, zeR%

Since K is a compact subset of R? x R%, H has compact support, hence H €

lOC(IRd) Because of Lemma 2, the second term tends to 0; the first term also
tends to 0 since g, — ¢ in L7, and supy.5-1 [ [ as(x — y)P dzdy is finite. We
prove this only for d = 1, the arguments for d > 1 just have heavier notation.
Without loss of generality we may assume that K = Lx L for L = [-N,N] C R
and N € IN. Now take k := |2N/J§] + 1 € N, the smallest integer which is
bigger or equal 2N/§. We have

// as(z —y pda:dy—/ / y)P dzdy
-/, (/_ZZ e )
< [ ([ meren)a

2N
= 2N/ as(z)Pdz =:2N -1

where
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k—1
< 5/ a(z)Pdz

—k
k-1 o1
=9 Z / a(z)P dz.
=kt
Because of the periodicity of a, we find that

1
1<5Z/ z+€pdz—2k5/ sz<2(2N+1)/ a(z)Pdz. O
0

Recall that a sequence of closed forms {(£", F™)}new defined on L?(R%)
is called Mosco-convergent to a form (€, F), if the following two conditions are
satisfied. As usual, we extend £" and £ to the whole space L?(R%) by setting
E™(u,u) = oo, resp. E(u,u) = oo, if u ¢ F", resp. u ¢ F.

(M1) For all u € L?(R%) and all sequences (up)nen C L2(RY) such that
up — u (weak convergence in L?) we have iminf £ (uy,, u,) > € (u, u).
n—oo

(M2) For every u € F there exist elements u,, € F", n € N, such that u, — u
(strong convergence in L?) and limsup £" (up, up) < E(u,u).
n—oo

Note that (M1) entails that we have lim, o0 " (U, upn) = E(u, u) in (M2).

We can now state the main result of our paper. Together with Remark 5,
it can be seen as the Dirichlet form apporach to the problem discussed in [5] and
[11, 8]. The paper [7] has, using completely different techniques, similar results
for stable-like operators and forms, which include also some non-symmetric and
non-translation invariant settings.

THEOREM 4. Assume that (2)—(5) hold for the functions a and v, and
let v be locally bounded as a function defined on R\ {0}. Let {6, }nen be
a monotonically decreasing sequence of positive numbers such that §, — 0 as
n — oo. For eachn € IN we consider the Dirichlet forms (E™, F™) := (£, Fon)
defined in (6). The Dirichlet forms (€™, F™) converge to (£,F) in the sense of
Mosco. The limit (£, F) is the closure of (&, Chp(]Rd)) which is given by

(u,v) := a// y)) (v(x) — v(y))u(y —xz)dydax.
RxR

Proof. We will check the conditions (M1) and (M2) of Mosco con-
vergence. For (M1) we take any u € L%*(R?) and any sequence {u,} C
L*(RY) such that u, — u as n — oo. Without loss, we may assume that
lim inf,, o0 £ (Un, uy) < 00.
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We will use the Friedrichs mollifier. This is a family of convolution oper-
ators

Je[u](z) = /Rd u(zx —y)p(y)dy, =€ R?, € >0,

given by the kernels {p}c~o for a C>®-kernel p : R — [0, 00) satisfying

0<pa) = p(=o). [ pl)de =1 suppl] = {r € R o] <1}
and  pc(z) := p(x/e), fore>0 and x e R%
We then have

E™ (Un, Un)

//;ﬁy un () = un(y)) a5, (y — 2)v(y — x) dy da

- [ (/] ﬂ(un(x) ~0al) a5, 0~ Dy ~ 0)dye) p(2)ds
- [ (/] (e = 2) =y = 2)as, (g = 2ty ) dy 2) p2)

and using the Fubini theorem and Jensen’s inequality yields, for any compact
set K so that K € R x R?\ {(z,z) : € R},

E™ (U, up,)
- //#y </Rd (un(x — 2) — un(y — Z))zpe(z) dz) as, (y — 2)v(y — 2) dy dz

=[] ( /R (e = 2) = uny = 2))pe(2) dz)2a5n<y ~ 2)uly - o) dyd
// Jun] (@) = Jelun) (1) s, (y — 2)p(y — 7) dy da-

Note that sup,,cqy ||un| L2 < oo because of the weak convergence u,, — u. Using
again weak convergence u, — wu, we conclude that w, . = Jc|u,| converges
pointwise to u, := J[u]. Using the local boundedness of v on R\ {0} and the
fact that K is a compact set satisfying K ¢ R? x R?\ {(z,z) : = € R?}, we

see that (un(z) — un’e(y))%(y — x) converges in LY(K) to
2
(ue(x) — ue(y)) v(y —z) asn— oo.
From (9) we get

lim inf £ (uy,, uy,) > Uminf E™ (up ¢, Un,e)
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n—oo

:a//K(ue(x) () vly — z) dy da.

Since K € R? x R4\ {(z,z) : € R?} is an arbitrary compact set, we can
approximate R? x R4\ {(z,z) : € R?} by such sets. Using monotone con-
vergence and the fact that the left hand side is independent of K, we arrive
at

> liminf / /K (tme(z) — tin e (1)) 205, (y — 2)0(y — 7) dy da

sup &(ue,ue) = sup sup // ue(x) — ue( ))QV(y —z)dydx
0<e<1 0<e<1 K compact
KCRAXRAN{(z,z):x€R}
(10) < liminf E™ (up, up,) < 0.
n— o0

Theorem 2.4 in [9] now shows that u. € F N C>®(R?) for each € € (0,1). Since
Je is an L2-contraction operator for each € > 0, we see that the family {uc}eso,
ue = Je[u], is bounded w.r.t. £1(e,¢) := E(e,0) + (o,¢)z2 by (10). The Banach—
Alaoglu theorem guarantees that there is an £1-weakly convergent subsequence
Ue(ny, €(n) J 0, and a function v so that u.,) converges £1-weakly to v € F.
Using the Banach—Saks theorem shows that the Cesaro means %Zzzl Ue(ny,
of a further subsequence converge & -strongly, hence in L?(R%), to v. As u,
converges to u in L?(RY), we can identify the limit as v = v. In particular,
u € F and
lmgf E™(Up, up) > E(u,u).

In order to see (M2), we use the regularity of the Dirichlet form (£, F); there-
fore, it is enough to consider u € C(l)ip(IRd). Set up, =u € C'(l)ip(IRd) for each n,
and L :=suppu and G := L+ B1(0). Because of the symmetry of the form we
have

E™(u,u) = gng(ua u) + QSgXGC(Ua u)
where, using the fact that L = suppu C G,

E8 () = / /G (ule) — uw)as, (g~ 2)vly — a) dydl,

EB e, 0) = / /L was, (g = )wly — a) dyd.

Using Corollary 3 we see that

Jm &) =a [ (uta) — ) viy - a) dyd.

For the other part we get

i) = [ | [ @ea ) ds] vimas, () an
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§e+/}@{lg%@my@+hnn v(h)as, (h) dh

for any € > 0 and some suitable R = R,; note that ¢ and R can be chosen
independently of n. This is due to our assumption (5) and the fact that the
expression in the square brackets is a continuous bounded function in h. Now
we can use Lemma 2 for the limit n — oo; if we then let R — oo and € — 0,
we get

lim sup EGy ge (u, u) < a// z)1ge(xz + h)v(h)dx dh
]Rd><L

o = //Lfo w?(z) v(z —y) dy de.

Combining all of the above calculations, it follows that

lim sup £" (up,, up) = limsup (é'gxg(u, w) + 280y ge(u, u))

n—oo n—o0

<a [ (o) - uw) vy o) dyda

+2a // (u(z) — u(y))2y(y —z)dydx
LxGe
= E(u,u),
finishing the proof. [

Remark 5. Suppose that the function a on R satisfies (2)—(4), and v is
given by v(z) = |z|717%, = € R\ {0}, for some 0 < a < 2. Then the following
quadratic form defines a translation invariant regular symmetric Dirichlet form
on L*(R):

E(u,v) = // (u(z) — u(y)) (u(z) — u(y))CL(xPJr)a dedy, w,ve€ C’E)ip(IR).

|
TFY

Let X = ()~((7f))t~ o_be the symmetric Lévy process on R associated with the
Dirichlet form (£, F) on L?(R). For any n € N, set

XM @) = e, X (%), t>0.

Then X ™ = (X (t));>¢ is also a symmetric Lévy process and we denote for
each n € IN by (€ (n) F (”)) the corresponding Dirichlet form. The semigroup

{Tt(n)}t>0 generated by (£, F() is given by
T f (@) = B [/(X (1) | X(0) = ]

= Boye, [HenX(6:°0)] = (Tzorf(en)) ('0), @ € R,
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Since the Dirichlet form (£, F()) can be obtained by

EM (u,v) = lim E (u— Tt(n)u, v)

0 t L
it follows for ¢ > 0 that
%(u — Tt(n)u, v) 2 = 1/1& [u(z) — Tt(n)u(a;)]v(a;) dz
= 1/1& [u(ey, - eglm) - (Tegatu(en.)) (eglaz)]v(a}) dz
— %3 [ )~ (Falenn)) O] lenten dg
n R

where we use the notation ¢ = €, 'z and s = ¢,%t. Letting s — 0, hence t — 0,
yields

1 (n)
%%;(U_Tt “7”)L2

1 @ 5 €ne), v(en.))
o [ / ) = ulens)) (0(en) = oens)) (2 dadly

ale M (x T
“f / (u(x)—u(y>)(v(x)_v(y))ui<—l+g>) e dy
7Y |z — y|

a 6_1 €T —
-/ / u(y)) (v(a) = v() L =) g g,

|z —y|ite
=& ")(u v).

Since Mosco convergence entails the convergence of the semigroups, hence the
finite-dimensional distributions of the processes, we may combine the above
calculation with Theorem 4 to get the following result: The processes X as-
sociated with (£, F™) - these are obtained by scaling t — €,°t and x — €,z
from the process X given by (g, .73) - converge, in the sense of finite-dimensional
distributions, to the process X associated with (€,F).
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