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Let Ck be the convolution capacity with respect to a radial kernel k in Rn. Let S ,T ⊂ Rn.
Under a mild condition on k, we show that a weak inequality

Ck(S ∩ B) ≥ κCk(T ∩ B) for all balls B with κ ∈ (0, 1) independent of B

actually implies a stronger inequality

Ck(S ∩Ω) ≥ Ck(T ∩Ω) for all bounded open sets Ω.

This generalizes the Faraday cage principle for Newtonian capacity proved by Choquet.
Our technique also gives the dichotomy of the lower Riesz capacity density of general
order.
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1. INTRODUCTION

In analysis we often encounter situations where an a priori uniform weak es-
timate actually yield a stronger estimate. In 1975, Choquet [6] found such a phe-
nomenon for Newtonian capacity C2 in R3.

Theorem A. Let S ,T ⊂ R3. If there exists a constant κ ∈ (0, 1) such that

C2(S ∩ Q) ≥ κC2(T ∩ Q) for all cubes Q in R3,

then
C2(S ∩Ω) ≥ C2(T ∩Ω) for all bounded open sets Ω.

For the reminiscence to a physical experiment, he called this observation “des
cages de Faraday grillagées” or the grounded Faraday cage. The main purpose of
this note is to show a similar result for a general convolution capacity. Our method
has an application to the dichotomy of the lower Riesz capacity density of general
order.
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Let µ be a nonnegative Radon measure on Rn, n ≥ 2, i.e., µ is a Borel measure
such that µ(K) < ∞ for every compact set K. The support of µ is denoted by supp µ.
Let ‖µ‖ be the total mass of µ. We say that µ is a finite Radon measure if ‖µ‖ < ∞.
Obviously, a Radon measure with compact support is finite. Throughout this paper
we let k(t) be a positive nonincreasing continuous function for t > 0 such that

lim
t↓0

k(t) = ∞, lim
t↑∞

k(t) = 0,
∫

0
k(t)tn−1dt < ∞.

With a slight abuse of notation, we also write k(x) = k(|x|) for x ∈ Rn. By assumption
k(x) is locally integrable in Rn. We define the convolution capacity Ck with respect to
k as

(1.1) Ck(E) = sup{‖µ‖ : supp µ ⊂ E, k ∗ µ ≤ 1 in Rn}.

The capacity has the dual definition

(1.2) inf{‖µ‖ : k ∗ µ ≥ 1 on E},

which is equal to Ck(E) for analytic sets E (see [7]). By B(x, r) we denote the open
ball with center at x and radius r.

Theorem 1.1. Assume that the kernel k satisfies

(1.3) lim
η↑1

(
sup

0<t<t0

k(ηt)
k(t)

)
= 1

for some 0 < t0 ≤ ∞. Suppose S ,T ⊂ Rn. If there exist 1 ≤ τ < ∞, r0 > 0 and
0 < κ < 1 such that

(1.4) Ck(S ∩ B(x, τr)) ≥ κCk(T ∩ B(x, r)) for all r ∈ (0, r0] and x ∈ Rn,

then, we actually obtain a stronger inequality

(1.5) Ck(S ∩Ω) ≥ Ck(T ∩Ω) for all bounded open sets Ω.

By Q(x, r) we denote the open cube with center x and sides of length 2r parallel
to the coordinate axes in Rn, i.e., Q(x, r) = {y = (y1, . . . , yn) : |xi − yi| < r for i =

1, . . . , n}. Observe that

B(x, r) ⊂ Q(x, r) ⊂ B(x, r
√

n).

Hence (1.4) is equivalent to

Ck(S ∩ Q(x, τr)) ≥ κCk(T ∩ Q(x, r)) for all cubes Q(x, r) with 0 < r ≤ r0,

where τ, r0 and κ are different constants. Thus Theorem 1.1 extends Theorem A.
Following Choquet, let us call the implication (1.4) =⇒ (1.5) the Faraday cage
principle.
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Typical examples of radial kernels k are the Riesz kernel Iα(x) = γα|x|α−n with
normalizing constant γα = Γ((n − α)/2)/(πn/22αΓ(α/2)) for 0 < α < n and the Bessel
kernel Gα for 0 < α ≤ n. These kernels enjoy

Iα = (−∆)−α/2 and Gα = (I − ∆)−α/2 in the distribution sense,

and
lim
|x|→0

Gα(x)
Iα(x)

= 1 for 0 < α < n, Gα(x) = O(e−c|x|) as |x| → ∞

with some c > 0. See [1, pp.8–13] for these accounts. The capacities CIα(E) and
CGα(E) are referred to as the Riesz capacity and the Bessel capacity, respectively. We
write Cα(E) for CIα(E). If α = 2 < n, then C2(E) is the Newtonian capacity of E up
to a multiplicative constant. By definition Iα(ηt)/Iα(t) = ηα−n so that k = Iα satisfies
(1.3) with t0 = ∞. It is easy to see that the Bessel kernel Gα(t) satisfies (1.3) with
finite t0. We cannot take t0 = ∞ for the Bessel kernel, since the Bessel kernel decays
exponentially fast at infinity.

Corollary 1.2. The Faraday cage principle holds both for the Riesz capacity
of order α with 0 < α < n, and for the Bessel capacity of order α with 0 < α ≤ n.

Remark 1.3. The Faraday cage principle was proved for Bessel (α, p)-capacity
with 1 < p < ∞ and 0 < αp ≤ n with the aid of nonlinear fine topology ([1, Theorem
11.4.2]). For a general kernel k, however, we have no fine topology theory. Theorem
1.1 suggests that the Faraday cage principle may still hold for Lp-capacity of a general
kernel.

Theorem 1.1 has a strong relation to the dichotomy of capacity density exploited
in [2], [3] and [4]. Let ϕ be an outer measure such that 0 < ϕ(U) < ∞ for every
bounded open set U. For E ⊂ Rn and r > 0 we define

D(ϕ, E, r) = inf
x∈Rn

ϕ(E ∩ B(x, r))
ϕ(B(x, r))

.

More generally, for a bounded open set Ω, define

DΩ(ϕ, E, r) = inf
x∈Rn

ϕ(E ∩Ω(x, r))
ϕ(Ω(x, r))

,

where Ω(x, r) = x + rΩ = {x + ry : y ∈ Ω}. This notation is consistent with B(x, r) and
Q(x, r). With the aid of the idea of the proof of Theorem 1.1, we show the following
dichotomy of the lower Riesz capacity density.

Theorem 1.4. Let 0 < α < n and let Ω be a bounded open set. Then we have the
dichotomy for the lower density of the Riesz capacity Cα, i.e., limr→∞DΩ(Cα, E, r)
is either 0 or 1; the first case occurs if and only if DΩ(Cα, E, r) is identically equal
to 0 for all r > 0. The dichotomy is independent of Ω, i.e., limr→∞DΩ(Cα, E, r) =

limr→∞D(Cα, E, r).
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Remark 1.5. The case α = 2 < n is classical. In case 0 < α < 2, the previous
paper [2] gave the same result under the additional assumption that Ω satisfies the in-
terior corkscrew condition. Bogdan’s probabilistic estimates for α-harmonic measure
([5]) played an important role. In case 2 < α < n, however, α-harmonic measure is
unavailable. The lack of Frostman’s maximum principle (see Remark 2.4) is a seri-
ous problem. The proof of Theorem 1.4 is completely different from [2]. This paper
employs the capacity definition (1.1), whereas [2] does (1.2). The present method
enables us to dispense with the interior corkscrew condition on Ω.

Our proof of Theorem 1.4 depends on the homogeneity of the Riesz kernel, i.e.,
Iα(rx) = rα−nIα(x). The Bessel kernel is inhomogeneous and integrable overRn. From
this fact we see that the Bessel capacity density has no dichotomy. More generally we
have the following proposition. See [3, Example 7.2] for variational capacity in the
metric measure setting.

Proposition 1.6. If the convolution kernel k is integrable over Rn, then the ca-
pacity density with respect to Ck has no dichotomy, i.e., for every bounded open set
Ω, there exists a Borel set E ⊂ Rn such that

(1.6) 0 < lim inf
r→∞

DΩ(Ck, E, r) ≤ lim sup
r→∞

DΩ(Ck, E, r) < 1.

2. PROOF OF THEOREM 1.1

Let µ and ν be Radon measures. We write ν ≤ µ if µ = ν+λ with another Radon
measure λ. The restriction of µ on a Borel set A is defined by

µ|A(E) = µ(E ∩ A) for Borel sets E.

Obviously, µ|A ≤ µ. We recall some basic properties of convolution potentials.

Lemma 2.1. Let µ and ν be Radon measures such that ν ≤ µ and k ∗ µ < ∞ in
Rn. Let E be a Borel set. If (k ∗ µ)|E is continuous, then so is (k ∗ ν)|E . In particular, if
k ∗ µ is continuous in Rn, then so is k ∗ ν.

Proof. Write
(k ∗ ν)|E = (k ∗ µ)|E − (k ∗ (µ − ν))|E .

Since k ∗ ν and k ∗ (µ − ν) are lower semicontinuous in Rn, it follows that (k ∗ ν)|E is
lower semicontinuous and that (k ∗ µ)|E − (k ∗ (µ − ν))|E is upper semicontinuous, as
(k ∗ µ)|E is continuous by assumption. Hence (k ∗ ν)|E is continuous. �

Our proof of Theorem 1.1 is based on the following

Lemma 2.2 (Continuity Principle [8, Theorem 1.7]). Let µ be a Radon measure
with compact support. If (k ∗ µ)|supp µ is continuous, then k ∗ µ is continuous in Rn.
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Landkof gives a proof of the continuity principle only for the Riesz kernel; it
can be easily generalized with the aid of the boundedness principle or weak maximum
principle.

Lemma 2.3 (Boundedness Principle [1, Theorem 2.6.2]). There exists an abso-
lute constant M0 depending only on the dimension n such that if µ is a Radon measure,
then

k ∗ µ ≤ M0 sup
supp µ

k ∗ µ in Rn.

Remark 2.4. If k is the Riesz kernel Iα with 0 < α ≤ 2 and α < n, then M0 in
Lemma 2.3 can be taken as 1. This is known as Frostman’s maximum principle.

Let us give more specific lemmas. For a Radon measure µ we denote the restric-
tion of µ on B(x, r) by µx,r, i.e., µx,r(E) = µ(E ∩ B(x, r)) for Borel sets E.

Lemma 2.5. Let µ be a Radon measure with compact support. If k ∗ µ is contin-
uous and k ∗ µ ≤ 1 in Rn, then for each η > 0, there exists r > 0 such that k ∗ µx,r ≤ η

in Rn uniformly for x ∈ Rn.

Proof. We may assume that supp µ ⊂ B(0,M/2) for some M > 2. Let η > 0.
By making M large, we may assume that k ∗ µ(y) ≤ η for |y| ≥ M by the standing
assumption limt↑∞ k(t) = 0. It is sufficient to find 0 < r < 1 such that k ∗ µx,r(y) ≤ η
for |x| ≤ M and |y| ≤ M. Let kt(x) = min{k(x), t}. Then kt is continuous in Rn, and so
is kt ∗ µ. By the monotone convergence theorem kt ∗ µ(y) ↑ k ∗ µ(y) for each y ∈ Rn;
and by Dini’s theorem the convergence is uniform for |y| ≤ M. Hence we can choose
t > 0 such that (k − kt) ∗ µ(y) ≤ η/2 for |y| ≤ M. We have

(2.1) k ∗ µx,r(y) = kt ∗ µx,r(y) + (k − kt) ∗ µx,r(y) ≤ tµ(B(x, r)) + η/2 for |y| ≤ M.

Observe that x 7→ µ(B(x, r)) is an upper semicontinuous function for each r > 0. Note
that µ is non-atomic, i.e., µ({x}) = 0 for every x ∈ Rn by k ∗ µ ≤ 1 and by the standing
assumption limt↓0 k(t) = ∞. Hence, for every x fixed, µ(B(x, r)) ↓ 0 as r decreases to
0. By using a slightly generalized version of Dini’s theorem (continuity is replaced
by upper semicontinuity), the convergence is uniform for |x| ≤ M, so that there exists
0 < r < 1 such that µ(B(x, r)) ≤ η/(2t) for |x| ≤ M. Plugging in this inequality to
(2.1), we obtain k ∗ µx,r(y) ≤ η for |x| ≤ M and |y| ≤ M, as required. �

Lemma 2.6. Let µ be a finite Radon measure such that k ∗ µ < ∞ in Rn. Then,
for each ε > 0, there exists a compact subset K of supp µ such that µ(K) > ‖µ‖ − ε
and k ∗ (µ|K) is continuous in Rn.

Proof. By taking the restriction of µ on a compact set, we may assume that µ
has a compact support. By Lusin’s theorem we find a compact subset K of supp µ
such that (k ∗ µ)|K is continuous and µ(K) > ‖µ‖ − ε. By Lemma 2.1 (k ∗ (µ|K))|K is
continuous, and hence k ∗ (µ|K) is continuous in Rn by Lemma 2.2. �
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Lemma 2.7. Assume that k satisfies (1.3). Let 0 < R < ∞ and ε > 0. Then
there exists M1 > 1 depending only on R, ε, k and n with the following property: if
M ≥ M1, 0 < r < R/M and µ and ν are Radon measures supported in B(x, r) with the
same total mass ‖µ‖ = ‖ν‖ > 0, then

k ∗ ν ≤ (1 + ε)k ∗ µ in B(x,R) \ B(x,Mr).

Proof. First we claim that (1.3) can be replaced by

lim
η↑1

(
sup

0<t≤t1

k(ηt)
k(t)

)
= 1

with any finite positive number t1. In fact, let t0 < t1 < ∞. Observe that the continuous
function k(ηt)/k(t) of t ∈ [t0, t1] decreases to 1 pointwise as η ↑ 1. The convergence
is uniform by Dini’s theorem, so that the claim follows. The claim yields M1 > 1
depending only on R, ε and k such that

(2.2)
k(t − t/M1)
k(t + t/M1)

≤ 1 + ε for 0 < t ≤ R.

Now let M ≥ M1, 0 < r < R/M and x ∈ Rn. Suppose µ and ν are Radon measures
supported in B(x, r) with the same total mass ‖µ‖ = ‖ν‖ > 0. Take y ∈ B(x,R) \
B(x,Mr). We find z1, z2 ∈ B(x, r) such that

|y − z1| = inf
z∈B(x,r)

|y − z| ≤ sup
z∈B(x,r)

|y − z| = |y − z2|.

Let t = |y − x|. Then M1r ≤ Mr ≤ t < R, so that
k ∗ ν(y)
k ∗ µ(y)

≤
k(|y − z1|) ‖ν‖
k(|y − z2|) ‖µ‖

=
k(t − r)
k(t + r)

≤
k(t − t/M1)
k(t + t/M1)

.

Hence the required inequality follows from (2.2). �

Proof of Theorem 1.1. Take an arbitrary bounded open set Ω , ∅. By transla-
tion we may assume that 0 ∈ Ω. Choose R > 4 diam(Ω) such that k(R/4) ≤ 1/Ck(Ω).
Then

(2.3) k ∗ ν ≤ 1 in Rn \ B(0,R/2),

whenever supp ν ⊂ Ω, and ‖ν‖ ≤ Ck(Ω).
Now, let us prove (1.5). Without loss of generality we may assume that Ck(T ∩

Ω) > 0. Let 0 < ε < Ck(T ∩ Ω). By definition we find a finite Radon measure ξ
supported in T ∩ Ω such that ‖ξ‖ ≥ Ck(T ∩ Ω) − ε/2 and k ∗ ξ ≤ 1 in Rn. Lemma 2.6
yields a compact subset K of T ∩Ω such that µ = ξ|K satisfies

Ck(T ∩Ω) − ε < ‖µ‖ ≤ Ck(T ∩Ω),

k ∗ µ ≤ 1 in Rn,
(2.4)

and k ∗ µ is continuous in Rn.
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Figure 1: K ⊂
⋃N

i=1 B(xi, r/2) ⊂
⋃N

i=1 τBi ⊂ Ω.

Let M1 > 1 be as in Lemma 2.7. Choose M ≥ M1 such that

(2.5)
(4
√

n(1 + Mτ))n

Mn+1κ
≤ ε.

For simplicity let η = 1/Mn+1. By Lemma 2.5 we can choose r > 0 so small that

0 < r < min
{
r0,

R
Mτ

,
dist(Ωc,K)

2τ

}
,

k ∗ µx,r ≤ η in Rn for every x ∈ Rn,
(2.6)

where r0 > 0 is as in Theorem 1.1.
Let d = r/(2

√
n) and cover Rn by {B(z, r/2)}z∈(dZ)n . By compactness we find

finitely many points x1, . . . , xN ∈ (dZ)n such that K ⊂
⋃N

i=1 B(xi, r/2). See Figure 1.
Define Radon measures µ1, . . . , µN by µ1(E) = µ(E ∩ B(x1, r/2)) and, for 2 ≤ j ≤ N,

µ j(E) = µ
(
E ∩ B(x j, r/2) \

j−1⋃
i=1

B(xi, r/2)
)

for Borel sets E.

Then µ =
∑N

i=1 µi and supp µi ⊂ K ∩ B(xi, r/2) ⊂ K ∩ B(xi, r) for each 1 ≤ i ≤ N.
Without loss of generality we may assume that µi , 0, and hence K ∩ B(xi, r) , ∅
for every i. For simplicity write Bi = B(xi, r) and τBi = B(xi, τr). Observe from (2.6)
that τBi ⊂ Ω, and that k ∗ µi ≤ η in Rn. Hence Ck(K ∩ Bi) ≥ ‖µi‖/η by definition.
Therefore (1.4) yields

Ck(S ∩ τBi) ≥ κCk(T ∩ Bi) ≥
κ

η
‖µi‖ > 0.

By definition we find a Radon measure λi supported in S ∩ τBi such that

k ∗ λi ≤ 1 in Rn,

‖λi‖ ≥ Ck(S ∩ τBi) −
κ

2η
‖µi‖ ≥

κ

2η
‖µi‖.

(2.7)
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Let
νi =

‖µi‖

‖λi‖
λi.

Then ‖νi‖ = ‖µi‖ and supp νi ⊂ S ∩ τBi ⊂ Ω. Moreover, by (2.7),

(2.8) k ∗ νi =
‖µi‖

‖λi‖
k ∗ λi ≤

2η
κ

in Rn.

Let ν =
∑N

i=1 νi. It follows from (2.4) that ‖ν‖ = ‖µ‖ ≤ Ck(T ∩ Ω) ≤ Ck(Ω), and that
supp ν ⊂ S ∩Ω.

Let us estimate the upper bound of k ∗ ν in Rn. Since k ∗ ν ≤ 1 in Rn \ B(0,R/2)
by (2.3), it is sufficient to estimate k ∗ ν(x) for x ∈ B(0,R/2). For each k ∗ νi we have

k ∗ νi ≤ (1 + ε)k ∗ µi in B(xi,R) \ B(xi,Mτr)

by (2.6) and Lemma 2.7 with τr in place of r. Since 0 ∈ Ω and B(xi, r) ⊂ Ω, we have
|xi| ≤ diam(Ω) < R/4, so that B(xi,R) ⊃ B(0,R − |xi|) ⊃ B(0,R/2). Hence

(2.9) k ∗ νi ≤ (1 + ε)k ∗ µi in B(0,R/2) \ B(xi,Mτr).

We claim that the multiplicity of {B(xi,Mτr)} is bounded by

(2.10)
((1 + Mτ)r)n

(r/(4
√

n))n
= (4
√

n(1 + Mτ))n.

In fact, if y ∈ B(xi,Mτr), then |y − xi| < Mτr, so that B(y, (1 + Mτ)r) ⊃ B(xi, r) ⊃
B(xi, d/2) with d = r/(2

√
n). Observe that {B(z, d/2)}z∈(dZ)n are mutually disjoint, and

so are {B(xi, d/2)}Ni=1. Hence we have∑
i:y∈B(xi,Mτr)

|B(xi, d/2)| ≤ |B(y, (1 + Mτ)r)|,

so that the multiplicity of {B(xi,Mτr)} is bounded by (2.10).
Now let x ∈ B(0,R/2). Combining (2.4), (2.5), (2.8), (2.9), and (2.10) alto-

gether, we obtain

k ∗ ν(x) =
∑

i:x∈B(xi,Mτr)

k ∗ νi(x) +
∑

i:x<B(xi,Mτr)

k ∗ νi(x)

≤ (4
√

n(1 + Mτ))n 2η
κ

+ (1 + ε)
∑

i:x<MτBi

k ∗ µi(x)

≤ 2ε + (1 + ε)k ∗ µ(x) ≤ 1 + 3ε.

This, together with (2.3), implies that k ∗ ν ≤ 1 + 3ε in Rn. Since supp ν ⊂ S ∩Ω, we
have

Ck(S ∩Ω) ≥
‖ν‖

1 + 3ε
=
‖µ‖

1 + 3ε
≥

Ck(T ∩Ω) − ε
1 + 3ε

by definition and by (2.4). Since ε > 0 is arbitrary, we obtain the required inequality.
�
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3. PROOF OF THEOREM 1.4

Throughout this section we let 0 < α < n. The homogeneity of the Riesz kernel
plays a crucial role. We present two easy lemmas. For the completeness we provide
their proofs.

Lemma 3.1. Let x ∈ Rn and R > 0. Suppose µ is a Radon measure supported in
E. Define the Radon measure µ̃ by

(3.1) µ̃(A) = Rn−αµ( 1
R (−x + A)) for A ⊂ Rn.

Then µ̃ is supported in E(x,R) and

Iαµ(y) = Iαµ̃(ỹ) for every y ∈ Rn with ỹ = x + Ry.

Proof. We see that µ̃ is supported in E(x,R) = x+RE since 1
R (−x+(x+RE)) = E.

Let ỹ = x + Ry and z̃ = x + Rz. Then (3.1) yields

Iαµ̃(ỹ) =

∫
E(x,R)

|ỹ − z̃|α−ndµ̃(z̃)

=

∫
E
|x + Ry − (x + Rz)|α−nRn−αdµ(z)

=

∫
E
|y − z|α−ndµ(z) = Iαµ(y),

as required. �

This lemma readily gives the following homogeneity of the Riesz capacity.

Lemma 3.2. Let x ∈ Rn and R > 0. Then Cα(E(x,R)) = Rn−αCα(E) for every
Borel set E ⊂ Rn.

Proof. Let µ be a Radon measure supported in E such that Iα ∗ µ ≤ 1 in Rn.
Define the Radon measure µ̃ by (3.1). Lemma 3.1 yields that µ̃ is supported in
E(x,R) = x + RE and Iα ∗ µ̃ ≤ 1 in Rn. Hence Cα(E(x,R)) ≥ ‖µ̃‖ = Rn−α‖µ‖ by defi-
nition. Taking the supremum with respect to µ, we obtain Cα(E(x,R)) ≥ Rn−αCα(E).
Exchanging the roles of E and E(x,R), we obtain the opposite inequality. �

We see thatDΩ(Cα, E, r) andD(Cα, E, r) are comparable.

Lemma 3.3. Let Ω be a bounded open set. Then there exist constants a1, a2 > 0
and A ≥ 1 depending only on Ω, α and n such that

A−1D(Cα, E, a1r) ≤ DΩ(Cα, E, r) ≤ AD(Cα, E, a2r)

for every E ⊂ Rn and r > 0.
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Proof. By translation we may assume that 0 ∈ Ω. Let a1 = dist(0, ∂Ω) and
a2 = diam(Ω). Then B(x, a1r) ⊂ Ω(x, r) ⊂ B(x, a2r), and so

(3.2) rn−αCα(B(0, a1)) ≤ Cα(Ω(x, r)) ≤ rn−αCα(B(0, a2)).

Hence
Cα(E ∩Ω(x, r))

Cα(Ω(x, r))
≤

Cα(E ∩ B(x, a2r))
Cα(B(x, a1r))

=
(a2

a1

)n−αCα(E ∩ B(x, a2r))
Cα(B(x, a2r))

.

Similarly,
Cα(E ∩Ω(x, r))

Cα(Ω(x, r))
≥

Cα(E ∩ B(x, a1r))
Cα(B(x, a2r))

=
(a1

a2

)n−αCα(E ∩ B(x, a1r))
Cα(B(x, a1r))

.

Taking the infima of the above inequalities with respect to x ∈ Rn, we obtain the
required estimates with A = (a2/a1)n−α. �

Proof of Theorem 1.4. For the first assertion of the theorem, it is sufficient to
show that ifDΩ(Cα, E, r) > 0 for some r > 0, then limr→∞DΩ(Cα, E, r) = 1. In view
of Lemma 3.3, it suffices to show that if there exist ρ > 0 and κ > 0 such that

(3.3) Cα(E ∩ B(x, ρ)) ≥ κCα(B(x, ρ)) for every x ∈ Rn,

then limR→∞DΩ(Cα, E,R) = 1. This also implies that the dichotomy is independent
of a bounded open set Ω. Hereafter, we assume that (3.3) holds. Without loss of
generality we may assume that 0 ∈ Ω.

Let ε > 0 and choose M > 1 such that( M − 1
M + 1

)α−n
≤ 1 + ε,(3.4)

(4
√

n(1 + M))n

Mn+1κ
≤ ε.(3.5)

Let η = 1/Mn+1. We find a compact set K ⊂ Ω and a measure µ supported in K such
that ‖µ‖ ≥ Cα(Ω) − ε and Iα ∗ µ ≤ 1 in Rn. By Lemma 2.6 we may assume that Iα ∗ µ
is continuous in Rn. So, Lemma 2.5 yields r > 0 such that Iα ∗µw,r ≤ η in Rn for every
w ∈ Rn. Let

(3.6) R > max
{ρ

r
,

2ρ
dist(K, ∂Ω)

}
and define the measure µ̃ as in (3.1) from µ with x ∈ Rn and this R. Lemma 3.1 shows
that µ̃ is supported in K(x,R), and that

(3.7) Iα ∗ µ̃ ≤ 1 in Rn.

By (3.6) we have ρ ≤ Rr, so that by Lemma 3.1

(3.8) Iα ∗ µ̃w̃,ρ(ỹ) ≤ Iα ∗ µ̃w̃,Rr(ỹ) = Iα ∗ µw,r(y) ≤ η for every y,w ∈ Rn,

where ỹ = x + Ry and w̃ = x + Rw.
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Ω(x,R)

K(x,R)

ρ/2

zi

d

Figure 2: K(x,R) ⊂
⋃N

i=1 B(zi, ρ/2) ⊂
⋃N

i=1 B̃i ⊂ Ω(x,R).

We observe from Lemma 3.2 and (3.2) with R in place of r that

(3.9) ‖µ̃‖ = Rn−α‖µ‖ ≥ Cα(Ω(x,R)) − εRn−α ≥ Cα(Ω(x,R))
(
1 −

ε

Cα(B(0, a1))

)
.

Let d = ρ/(2
√

n) and cover Rn by {B(z, ρ/2)}z∈(dZ)n . By compactness we find
finitely many points z1, . . . , zN ∈ (dZ)n such that K(x,R) ⊂

⋃N
i=1 B(zi, ρ/2). See Figure

2. Define Radon measures µ̃1, . . . , µ̃N by µ̃1(A) = µ̃(A∩B(z1, ρ/2)) and, for 2 ≤ j ≤ N,

µ̃ j(A) = µ̃
(
A ∩ B(z j, ρ/2) \

j−1⋃
i=1

B(zi, ρ/2)
)

for Borel sets A.

Then µ̃ =
∑N

i=1 µ̃i and supp µ̃i ⊂ B(zi, ρ/2) ⊂ B(zi, ρ) for each 1 ≤ i ≤ N. Without loss
of generality we may assume that µ̃i , 0 for every i. For simplicity write B̃i = B(zi, ρ).

Observe from (3.8) that Iα ∗ µ̃i ≤ η in Rn. Hence Cα(B̃i) ≥ ‖µ̃i‖/η by definition.
Therefore (3.3) yields

Cα(E ∩ B̃i) ≥ κCα(B̃i) ≥
κ

η
‖µ̃i‖.

By definition we find a Radon measure λ̃i such that supp λ̃i ⊂ E ∩ B̃i and

Iα ∗ λ̃i ≤ 1 in Rn,

‖λ̃i‖ ≥ Cα(E ∩ B̃i) −
κ

2η
‖µ̃i‖ ≥

κ

2η
‖µ̃i‖.

(3.10)

Let
ν̃i =

‖µ̃i‖

‖λ̃i‖
λ̃i.

Then ‖ν̃i‖ = ‖µ̃i‖ > 0 and supp ν̃i ⊂ E ∩ B̃i. Observe that dist(K(x,R), ∂Ω(x,R)) =

R dist(K, ∂Ω). Since B̃i ∩K(x,R) , ∅, it follows from (3.6) that supp ν̃i ⊂ E ∩Ω(x,R).
Moreover, (3.10) gives

(3.11) Iα ∗ ν̃i =
‖µ̃i‖

‖λ̃i‖
Iα ∗ λ̃i ≤

2η
κ

in Rn.
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Let ν̃ =
∑N

i=1 ν̃i. Observe that ‖ν̃‖ = ‖µ̃‖, and that supp ν̃ ⊂ E ∩Ω(x,R).
Let us estimate the upper bound of Iα ∗ ν̃ in Rn. If y ∈ Rn \ B(zi,Mρ), then

Iα ∗ ν̃i(y)
Iα ∗ µ̃i(y)

≤
(|y − zi| − ρ)α−n ‖ν̃i‖

(|y − zi| + ρ)α−n ‖µ̃i‖
=

(1 − ρ/|y − zi|

1 + ρ/|y − zi|

)α−n
≤

(1 − 1/M
1 + 1/M

)α−n
≤ 1 + ε

by (3.4). Hence

(3.12) Iα ∗ ν̃i ≤ (1 + ε)Iα ∗ µ̃i in Rn \ B(zi,Mρ).

In the same way as in the proof of Theorem 1.1, we see that the multiplicity of
{B(zi,Mρ)} is bounded by

(3.13)
((1 + M)ρ)n

(ρ/(4
√

n))n
= (4
√

n(1 + M))n.

Now let y ∈ Rn. Combining (3.5), (3.7), (3.11), (3.12) and (3.13) altogether, we
obtain

Iα ∗ ν̃(y) =
∑

i:y∈B(zi,Mρ)

Iα ∗ ν̃i(y) +
∑

i:x<B(zi,Mρ)

Iα ∗ ν̃i(y)

≤ (4
√

n(1 + M))n 2η
κ

+ (1 + ε)
∑

i:y<MB̃i

Iα ∗ µ̃i(y)

≤ 2ε + (1 + ε)Iα ∗ µ̃(y) ≤ 1 + 3ε.

Hence (3.9) yields

Cα(E ∩Ω(x,R)) ≥
‖ν̃‖

1 + 3ε
=
‖µ̃‖

1 + 3ε
≥

1 − ε/Cα(B(0, a1)
1 + 3ε

Cα(Ω(x,R)).

Thus, if R satisfies (3.6), then

DΩ(Cα, E,R) ≥
1 − ε/Cα(B(0, a1))

1 + 3ε
.

Since ε > 0 is arbitrary, we have lim infR→∞DΩ(Cα, E,R) ≥ 1, as required. �

4. PROOF OF PROPOSITION 1.6

The construction of E is essentially the same as in [3, Example 7.2].

Proof of Proposition 1.6. Suppose ‖k‖1 < ∞. Then ‖k ∗ χE‖∞ ≤ ‖k‖1 < ∞, and
by definition

(4.1) Ck(E) ≥
|E|
‖k‖1

for every Borel set E,

where |E| stands for the Lebesgue measure of E. On the other hand, if r ≥ 1, then

k ∗ χB(x,2r) ≥

∫
|y|≤1

k(y)dy > 0 on B(x, r),
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so that the dual definition of capacity yields that

(4.2) Ck(B(x, r)) ≤
‖χB(x,2r)‖1∫
|y|≤1 k(y)dy

= A1|B(x, r)|

with A1 depending only on k and n. Let M > 10 and E =
⋃

z∈(MZ)n B(z, 1). If r > 10M,
then the number of small balls B(z, 1) intersecting B(x, r) is bounded by A2(r/M)n and
the measure density |E ∩ B(x, r)|/|B(x, r)| is bounded from below by A2M−n with A2
depending only on n.

First consider the case Ω = B(0, 1). By (4.1), (4.2) and the subadditivity of Ck

we have

A−1M−n ≤
|E ∩ B(x, r)|/‖k‖1

A1|B(x, r)|
≤

Ck(E ∩ B(x, r))
Ck(B(x, r))

≤
A2(r/M)nCk(B(0, 1))
|B(x, r)|/‖k‖1

≤ AM−n

with A > 1 depending only on k and n. Hence, if M is large, then

0 < lim inf
r→∞

D(Ck, E, r) ≤ lim sup
r→∞

D(Ck, E, r) < 1.

Now let Ω be a general bounded open set. In view of Lemma 3.3, we obtain (1.6) by
making M large. �
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