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Abstract. We obtain new sufficient conditions for nonuniqueness of probability
solutions to stationary Kolmogorov equations. We also study associated second
order elliptic equations for the densities of different solutions with respect to
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In this paper we consider the elliptic equation

(1) div(%∇v)− 〈a,∇v〉 = 0

with respect to the function v ∈ C∞(Rd) with [v2 + |∇v|2]% ∈ L1(Rd), where
%, ai ∈ C∞(Rd) are given functions such that

%(x) > 0,

∫
Rd

%(x) dx = 1, div a =

d∑
i=1

∂xia
i = 0.

We do not assume any boundedness or additional integrability of % and ai on
all of Rd, and there are no restrictions on the behaviour of these functions at
infinity. In particular, the function % can tend to zero at infinity in arbitrary
way. It is well-known that every generalized solution v is a smooth function.
In addition, constants obviously satisfy this equation. It is of interest to find
necessary and sufficient conditions for the existence of a nonconstant solution
integrable with weight %. This problem is addressed in our paper. In particular,
we obtain a criterion for the existence of a nonconstant solution belonging to
the weighted Sobolev space with respect to the measure µ = % dx.

Equation (1) arises naturally in the study of the Kolmogorov equation

(2) ∆%− div(b%) = 0
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with respect to %. We shall see below that if this equation has two different pos-
itive solutions, then their ratio satisfies equation (1) with the field a indicated
below.

We assume throughout that bi ∈ C∞(Rd). An important role in the the-
ory of diffusion processes is played by probability densities % satisfying equation
(2). The corresponding probability measure µ = % dx is a stationary measure
of some random process for which the generator of the transition semigroup
coincides on C∞0 (Rd) with the operator ∆ + 〈b,∇〉 (see [5, Chapter 5], [8]). In
general, such a process can explode in finite time. The key questions in the
theory of Kolmogorov equations are the existence and uniqueness of probability
solutions, that is, solutions which are probability densities. A typical existence
and uniqueness condition is the known Hasminskii condition:

〈b(x), x〉 → −∞ as |x| → ∞.

Generalizations of this condition and other sufficient conditions for existence
and uniqueness are presented in detail in [5, Chapters 2, 4, 5]. If a proba-
bility solution µ = % dx to equation (2) exists, then in order to guarantee its
uniqueness in place of the Hasminskii condition it suffices to have a function
V ∈ C2(Rd) such that

lim
|x|→∞

V (x) = +∞, ∆V (x) + 〈b(x),∇V (x)〉 ≤ CV (x)

for some constant C > 0. Then any nonnegative solution v ∈ L1(µ) to (1) is
constant. If |∇V | ≤ CV and the opposite estimate ∆V (x) + 〈b(x),∇V (x)〉 ≥
−CV (x) holds, then in L1(µ) there are no nonconstant solutions to (1). To
exclude nonconstant nonnegative solutions in L1(µ) is also sufficient to require
that either |b(x)|/(1 + |x|) or a/% = b−∇%/% is in L1(µ). In particular, this is
true if a/% is bounded.

As shown in the papers [6], [7], [13] and in the book [5, Chapter 4],
without additional conditions a probability solution to equation (2) can be
nonunique. Moreover, the simplex of probability solutions can be infinite-
dimensional. The method of obtaining sufficient conditions for uniqueness and
constructing examples of nonuniqueness proposed in [13] is based on renorming
solutions when one probability solution % to equation (2) is fixed and any other
solution is represented as the product v ·%, so that one has to study densities v
of other solutions with respect to this fixed solution %. The function v satisfies
equation (1) with the vector field

a = b%−∇%.

Thus, if equation (1) has only constant solutions in the class of nonnegative
functions integrable with respect to the measure µ = % dx, then % is a unique
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probability solution to the Kolmogorov equation (2), and if equation (1) has
a nonconstant nonnegative solution v integrable with respect to the measure
µ = % dx, then % and const v% are two different probability solutions to equation
(2) with b related to a by the formula

b =
a

%
− ∇%

%
.

The key role in the study of equation (1) is played by the bilinear form

(3) [f, g] =

∫
Rd

〈a,∇f〉g dx.

Since div a = 0, by the integration by parts formula for all functions f, g ∈
C∞0 (Rd) the equality [f, g] = −[g, f ] is true, that is, the form (3) is skew-
symmetric on the space C∞0 (Rd). The importance of this form in the prob-
lems related to uniqueness of solutions to elliptic equations was first noted by
V.V. Zhikov in his well-known paper [14], where he studied the equation

div(∇v − av) = f, div a = 0,

on a bounded domain. He proved that, in the case of an unbounded vector
field a, a solution to the Dirichlet problem with zero boundary condition is in
general nonunique, moreover, a sufficient condition for nonuniqueness is the
existence of a function ϕ such that [ϕ,ϕ] < 0, where [f, g] is defined as in (3),
but the integral is taken over the bounded domain (not over the whole space Rd
as in our case). In the paper [13], with the aid of the form [f, g] sufficient
conditions for the existence of a nonconstant bounded solution to equation
(1) were given. Moreover, sufficient conditions for the existence of infinitely
many linearly independent nonconstant bounded solutions to equation (1) were
obtained, which enables one to construct examples of stationary Kolmogorov
equations with infinite-dimensional simplices of probability solutions. It should
be noted that the theorem on existence of infinitely many linearly independent
solutions in the paper [13] and in the book [5] is formulated with an inaccuracy
(reproduced also in [4] and [12]), which consists in omitting some assumption
used in the proof (although for constructing examples correct considerations
are used in the cited works), which we discuss in detail at the end of this
paper. The conditions for existence of nonconstant solutions or the conditions
under which there are no nonconstant solutions presented in the cited works
are only sufficient, but no criterion (i.e., a necessary and sufficient condition)
for the existence of nonconstant solutions was obtained there. In the present
paper we give the first criterion of this sort for the weighted Sobolev space
W 2,1(µ), where µ = % dx, under the assumption that the measure µ satisfies
the Poincaré inequality. Moreover, we give a criterion for the space of solutions
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to be infinite-dimensional, obtain some generalizations of conditions from [13]
and correct the formulations from [13] and [5] mentioned above.

Throughout µ = % dx and W 2,1(µ) denotes the weighted Sobolev space
obtained by completing C∞0 (Rd) with respect to the norm

‖u‖W 2,1(µ) = ‖u‖L2(µ) + ‖∇u‖L2(µ).

Note that W 2,1(µ) is a Hilbert space. Since % is a smooth and strictly positive
function, every function u ∈W 2,1(µ) locally belongs to the usual Sobolev space,
i.e., u ∈ W 2,1

loc (Rd). Under our assumptions about % the class W 2,1(µ) consists

of all u ∈W 2,1
loc (Rd) such that u, |∇u| ∈ L2(µ).

We say that a function ϕ ∈W 1,1
loc (Rd) satisfies condition (H) if there exists

a number C(ϕ) > 0 such that for every function ψ ∈ C∞0 (Rd) there holds the
estimate

(H) [ϕ,ψ] =

∫
Rd

〈a,∇ϕ〉ψ dx ≤ C‖∇ψ‖L2(µ).

In this case the mapping ψ 7→ [ϕ,ψ] extends to a continuous linear functional on
the space W 2,1(µ) satisfying the same bound and denoted by the same symbol.
However, the extension is not always given by the same integral formula, since
the function 〈a,∇ϕ〉ψ need not be integrable for ψ with noncompact support.
We observe that constants belong to the kernel of this functional due to the
bound above (but again, the integral above need not exist for ψ = 1). Thus,
there holds the equality [ϕ, 1] = 0. Since a is a smooth vector field, it is
clear that, for any function ψ ∈W 2,1(µ) vanishing outside some ball, the value
[ϕ,ψ], which is understood precisely as the value of the corresponding extended
functional, can be calculated by formula (3).

Lemma 1. Suppose that v is a nonconstant solution of equation (1) in
the space W 2,1(µ). Then v satisfies condition (H), [v, 1] = 0 and

[v, v] = −
∫
Rd

|∇v|2 dµ < 0.

Proof. Let ψ ∈ C∞0 (Rd). Multiplying the equation by ψ and integrating
by parts, we obtain

(4)

∫
Rd

〈a,∇v〉ψ dx = −
∫
Rd

〈∇v,∇ψ〉% dx.

The right-hand side of this equality is estimated from above by the quantity
‖v‖W 2,1(µ)‖∇ψ‖L2(µ). Therefore, the function v satisfies condition (H). It has
already been noted above that [v, 1] = 0. We now observe that

(5) [v, v] = −
∫
Rd

|∇v|2% dx.
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This follows from (4) by approximating v by smooth compactly supported
functions ψ and using the continuity of the functional ψ 7→ [v, ψ]. Since the
function v is not a constant, the right-hand side is strictly negative.

We recall that a probability measure σ on Rd satisfies the Poincaré in-
equality if there exists a number Cσ > 0 such that for every function f ∈
C∞0 (Rd) there holds the inequality∫

Rd

(
f −

∫
Rd

f dσ
)2
dσ ≤ Cσ

∫
Rd

|∇f |2 dσ.

Note that every probability measure of the form σ = e−V dx, where V is a
convex function, satisfies the Poincaré inequality (see, for example, [2] and
[1]).

The next assertion gives a criterion for the existence of a nonconstant
solution of equation (1) in the class W 2,1(µ).

Theorem 2. Suppose that µ = % dx satisfies the Poincaré inequality.
Equation (1) has a nonconstant solution in W 2,1(µ) if and only if there exists
a function ϕ ∈W 2,1(µ) such that ϕ satisfies condition (H) and [ϕ,ϕ] < 0.

Proof. It follows from the lemma that this condition is necessary. We now
show that it is sufficient. Suppose that there is a function ϕ with the stated
properties. Let Bn be the ball of radius n centered at zero. Set

f = −div(%∇ϕ) + 〈a,∇ϕ〉 = −div(%∇ϕ− ϕa).

According to [9, Theorem 8.3] there exists a function un ∈W 2,1
0 (Bn) such that

(6) div(%∇un)− 〈a,∇un〉 = f.

We observe that∫
Bn

|∇un|2% dx = −
∫
Bn

〈a,∇un〉un dx−
∫
Bn

〈∇ϕ,∇un〉% dx−
∫
Bn

〈a,∇ϕ〉un dx.

The identity div a = 0 and the integration by parts formula yield the equality∫
Bn

〈a,∇un〉un dx = 0.

In addition, there holds the estimate

−
∫
Bn

〈∇ϕ,∇un〉% dx ≤
1

2

∫
Bn

|∇ϕ|2% dx+
1

2

∫
Bn

|∇un|2% dx.

Therefore, the function un satisfies the inequality∫
Bn

|∇un|2% dx ≤
∫
Bn

|∇ϕ|2% dx− 2

∫
Bn

〈a,∇ϕ〉un dx.
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Extending the function un by zero outside of Bn we can assume that un ∈
W 2,1(µ). Then ∫

Bn

〈a,∇ϕ〉un dx =

∫
Rd

〈a,∇ϕ〉un dx = [ϕ, un],

where [ϕ, un] denotes the value of the corresponding functional on the function
un. We have ∫

Rd

|∇un|2% dx ≤
∫
Rd

|∇ϕ|2% dx− 2[ϕ, un].

Both parts of this inequality do not change if we add constants to un. Replacing
the function un by

un −
∫
Rd

un% dx,

we can assume that ∫
Rd

un% dx = 0.

Note that now un belongs to W 2,1(µ), but not to W 2,1
0 (Bn). However, on the

ball Bn the function un is still a solution of equation (6). By asumption µ
satisfies the Poincaré inequality. We denote the corresponding constant by Cµ.
Then ∫

Rd

u2
n% dx ≤ Cµ

∫
Rd

|∇un|2% dx.

Therefore, we have the following estimate on the norm ‖un‖W 2,1(µ):

‖un‖2W 2,1(µ) ≤ 2(Cµ + 1)‖ϕ‖W 2,1(µ) − 4(Cµ + 1)[ϕ, un].

Since by property (H) there holds the inequality

−[ϕ, un] ≤ C‖un‖W 2,1(µ),

we obtain

−4(Cµ + 1)[ϕ, un] ≤ 8(Cµ + 1)2C2 +
1

2
‖un‖2W 2,1(µ)

and there holds the estimate

‖un‖2W 2,1(µ) ≤ 4(Cµ + 1)‖ϕ‖W 2,1(µ) + 16(Cµ + 1)2C2.

Passing to a subsequence, we can assume that the sequence {un} converges
weakly in W 2,1(µ) to some function u. It is clear that u satisfies the equation

div(%∇u)− 〈a,∇u〉 = f.

Since ψ 7→ [ϕ,ψ] is a continuous linear functional, the sequence of numbers
[ϕ, un] converges to [ϕ, u]. In addition,∫

Rd

|∇u|2% dx ≤ lim inf
n→∞

∫
Rd

|∇un|2% dx.
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Therefore, the function u satisfies the inequality∫
Rd

|∇u|2% dx ≤
∫
Rd

|∇ϕ|2% dx− 2[ϕ, u].

We observe that if u = −ϕ + const, then 0 ≤ [ϕ,ϕ], which contradicts the
hypothesis of the theorem. Thus, the function v = u+ϕ is not a constant and
satisfies equation (1).

Corollary 3. Suppose in addition to the hypotheses of Theorem 2 that
ϕ ∈ L∞(Rd). Then there exists a bounded nonconstant solution v ∈ W 2,1(µ)
of equation (1).

Proof. Let |ϕ| ≤M , where M is a constant. We observe that the function
vn = un + ϕ + M on the ball Bn is a solution to the Dirichlet problem for
equation (1), moreover, min{vn, 0} ∈W 2,1

0 (Bn), that is, vn ≥ 0 on ∂Bn. By the
maximum principle (see [9, Theorem 8.1]) we have vn ≥ 0, hence un ≥ −2M .
Similarly we show that un ≤ 2M . Subtracting from un the constant∫

un% dx,

we obtain a new function not exceeding 3M in absolute value. Therefore, the
limit function u satisfies the estimate |u| ≤ 3M . It remains to observe that
the solution v constructed in Theorem 2 equals u+ ϕ and hence is a bounded
function.

Remark 4. If we have a bounded nonconstant solution v of equation (1),
then by adding a sufficiently large constant we can assume that v is a positive
function. In this case there exists a number c > 0 such that the function cv%
is a probability solution to the Kolmogorov equation (2) with b = a/%−∇%/%
different from %.

Remark 5. Suppose that the measure µ = % dx satisfies the Poincaré
inequality. If a function ϕ ∈W 1,1

loc (Rd) is such that

〈a,∇ϕ〉%−1/2 ∈ L2(Rd),
∫
Rd

〈a,∇ϕ〉 dx = 0,

then ϕ satisfies condition (H).
Indeed, for every function ψ ∈ C∞0 (Rd) there holds the equality∫

〈a,∇ϕ〉ψ dx =

∫
〈a,∇ϕ〉

(
ψ −

∫
ψ% dx

)
dx,

where the right-hand side is bounded by

C
(∫
|〈a,∇ϕ〉|2%−1 dx

)1/2(∫
|∇ψ|2% dx

)1/2
.
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Remark 6. The condition [ϕ,ϕ] < 0 agrees with the classical conditions
on low order terms of the elliptic equation with a degenerate principal part.
Suppose that we investigate equation (2) on a bounded domain Ω with smooth
boundary in place of the whole space Rd and that %, ai are smooth functions
on the closure Ω of this domain. Suppose that % is strictly positive in the
interior of Ω and vanishes along with its first order derivatives on ∂Ω. It is
known (see [11, Chapter 1]) that in this case the boundary condition in the
Dirichlet problem can be posed only on the part of the boundary where the
vector field a has a negative projection on the outer normal ν, i.e., 〈a, ν〉 < 0.
Our condition [ϕ,ϕ] < 0 can be written in the following form:∫

Ω
〈a,∇ϕ〉ϕdx =

1

2

∫
∂Ω
〈a, ν〉ϕ2 dS < 0.

This inequality implies the existence of a part of the boundary ∂Ω of positive
surface measure on which 〈a, ν〉 < 0. Note that the theory of degenerate elliptic
equations can be used directly for constructing examples of nonuniqueness of
probability solutions of the Kolmogorov equation (see [10]).

Let us give an example of application of Theorem 2.

Example 7. Let

d = 2, a(x, y) ≡ (0,−1), %(x, y) = (2π)−1e−(x2+y2)/2.

Let us find a function ϕ satisfying the condition of Theorem 2. We are looking
for ϕ of the form ϕ(x, y) = G(y)H(x). Then 〈a,∇ϕ〉 = −G′(y)H(x). Let
H, g ∈ C∞0 (R), where the function g is a probability density and

G(y) =

∫ y

−∞
g(s) ds.

The function 〈a,∇ϕ〉 has compact support, hence

〈a,∇ϕ〉%−1/2 ∈ L2(Rd).

Suppose now that ∫
H(x) dx = 0,

∫
H(x)2 dx > 0.

Then ∫ ∫
〈a,∇ϕ〉 dx dy =

∫ ∫
G′(y)H(x) dx dy = 0.

According to Remark 5 the function ϕ satisfies condition (H). Let us show that
[ϕ,ϕ] < 0. Indeed,

[ϕ,ϕ] = −
∫ ∫

G′(y)G(y)H(x)2 dx dy = −
∫
H(x)2 dx < 0.
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Thus, all conditions of Theorem 2 are fulfilled, so the corresponding equation
(1) has a nonconstant solution in W 2,1(µ). Moreover, since the obtained func-
tion ϕ is bounded, by Corollary 3 there exists a positive bounded solution of
equation (1) in W 2,1(µ).

Let us consider the subspace S%,a ⊂ W 2,1(µ) of all solutions of equa-
tion (1) in W 2,1(µ). It is readily seen that S%,a is a closed subspace.

Lemma 8. For all u, v ∈ S%,a there holds the equality

(7) [u, v] = −
∫
〈∇u,∇v〉% dx.

Moreover, if the space S%,a is infinite-dimensional, then there exists a sequence
of functions uk ∈ S%,a such that [uk, um] = 0 if k 6= m and [uk, uk] = −1.

Proof. Equality (7) follows from (4) similarly to (5) (and also follows
from (5)). Let us take a sequence of functions vk ∈ S%,a such that they are
linearly independent along with the function 1. Let us apply to the functions vk
the usual Gram–Schmidt orthogonalization with respect to the skew-symmetric
bilinear form [u, v]. We observe that there are no constants c1, . . . , cn such that

[vn+1 − (c1v1 + · · ·+ cnvn), vn+1 − (c1v1 + · · ·+ cnvn)] = 0.

Indeed, otherwise the function vn+1 − (c1v1 + · · · + cnvn) is constant, which
contradicts the linear idependence of the functions vk and 1.

The next assertion gives a criterion for the space of solutions S%,a to be
infinite-dimensional.

Theorem 9. Suppose that the measure µ = % dx satisfies the Poincaré
inequality. The space S%,a is infinite-dimensional if and only if there exists a
sequence of functions ϕk ∈ W 2,1(µ) such that each ϕk satisfies condition (H),
[ϕk, ϕm] = 0 for different k and m and [ϕk, ϕk] = −1.

Proof. It follows from the previous lemma that the stated conditions are
necessary. Let us prove that they are sufficient. For every natural number N
we construct N linearly independent solutions. We repeat the reasoning from
the proof of Theorem 2. Let 1 ≤ k ≤ N and

fk = −div(%∇ϕk) + 〈a,∇ϕk〉.

Let Bn be the ball of radius n centered at zero. Let us consider the function
uk,n ∈W 2,1

0 (Bn) satisfying on Bn the equation

div(%∇uk,n) + 〈a,∇uk,n〉 = fk.
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We extend uk,n by zero outside of Bn and subtract a constant in order to make
the integral of uk,n% over Rd zero. So now uk,n is a constant outside of Bn.
As in the proof of Theorem 2, for every k the sequence of functions uk,n is
bounded in the norm of W 2,1(µ). We pick a sequence {nj} such that for every
k ≤ N the sequence uk,nj

will converge weakly to some function uk in W 2,1(µ).
The functions vk = uk + ϕk are nonconstant solutions to equation (1). Let us
verify that these functions are linearly independent. Suppose that

c1v1 + · · ·+ cNvN = 0.

Let us consider the functions wn = c1u1,n+ · · ·+ cNuN,n. By our construction,

for some constant λn the function w̃n = wn + λn belongs to W 2,1
0 (Bn) and

satisfies the equation

div(%∇w̃n)+〈a,∇w̃n〉 = f, f = −div(%∇ϕ)+〈a,∇ϕ〉, ϕ = c1ϕ1+· · ·+cNϕN .

Therefore, there holds the inequality∫
|∇w̃n|2% dx ≤

∫
|∇ϕ|2% dx− 2c1[ϕ1, w̃n]− · · · − 2cN [ϕN , w̃n].

Since both sides of this inequality do not change when adding a constant to
w̃n, the last inequality is true for wn in place of w̃n. Therefore, a subsequence
of functions wnj converges weakly to the function w = c1u1 + · · · + cNuN ,
moreover, for w there holds the estimate∫

|∇w|2% dx ≤
∫
|∇ϕ|2% dx− 2c1[ϕ1, w]− · · · − 2cN [ϕN , w].

Since c1v1 + · · ·+ cNvN = 0, we obtain w = −ϕ and

0 ≤ c1[ϕ1, ϕ] + · · ·+ cN [ϕN , ϕ] = −c2
1 − · · · − c2

N ,

which is only possible if c1 = c2 = · · · = cN = 0.

Example 10. Let

d = 2, a(x, y) ≡ (0,−1), %(x, y) = (2π)−1e−(x2+y2)/2.

Let us find functions ϕk satisfying the conditions of Theorem 9. We are
looking for functions of the form ϕk(x, y) = G(y)Hk(x). Then 〈a,∇ϕk〉 =
−G′(y)Hk(x). Let Hk, g ∈ C∞0 (R), where the function g is a probability den-
sity and

G(y) =

∫ y

−∞
g(s) ds.

Suppose that∫
Hk(x) dx = 0,

∫
Hk(x)2 dx = 1,

∫
Hk(x)Hm(x) dx = 0, k 6= m.
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Then the functions ϕk satisfy condition (H), [ϕk, ϕk] = −1 and for k 6= m we
have

[ϕk, ϕm] = −
∫ ∫

G′(y)G(y)Hk(x)Hm(x) dx dy = −
∫
Hk(x)Hm(x) dx = 0.

Thus, all conditions of Theorem 9 are fulfilled, hence the corresponding equa-
tion (1) has an infinite-dimensional space of solutions in W 2,1(µ). Since the
functions ϕk are bounded, there are infinitely many linearly independent pos-
itive bounded solutions (see Corollary 3), which in turn means that the corre-
sponding Kolmogorov equation has an infinite-dimensional simplex of proba-
bility solutions.

In Theorems 2 and 9 we assume that the function % satisfies the Poincaré
inequality, but this is difficult to verify in the general case. In addition, in spite
of Remark 5, condition (H) is also difficult to verify in the general case. For
this reason we prove two additional assertions about existence of nonconstant
solutions and existence of infinitely many linearly independent solutions to
equation (2). Our next assertion generalizes Theorem 2 from [13] (see also [5,
Theorem 4.2.2]). Below the form [f, g] is defined by formula (3).

Theorem 11. Suppose that there exists a function ϕ ∈ C2(Rd) such that

ϕ ∈ L∞(Rd), 〈a,∇ϕ〉 ∈ L1(Rd), |∇ϕ|2% ∈ L1(Rd), [ϕ, 1] = 0, [ϕ,ϕ] < 0.

Then there is a nonconstant positive bounded solution v ∈W 2,1(µ) of equation
(1).

Proof. Note that [ϕ, 1] and [ϕ,ϕ] are defined as usual integrals under our
assumptions (we have ϕ ∈W 2,1(µ), but we do not assume that ϕ satisfies con-
dition (H) and do not consider now any extensions of our bilinear form). The
main steps of the proof are similar to the reasoning from the proof of Theorem
2, but there is some difference in constructing convergent subsequences and
justification of limits. Let vn be the solution to the Dirichlet problem

div(%∇vn)− 〈a,∇vn〉 = 0, vn|∂Bn = ϕ,

on the ball Bn of radius n centered at zero. By the maximum principle

|vn| ≤ sup
x
|ϕ(x)| =: M.

Using a priori estimates for solutions to elliptic equations (see [9, Theorem
8.13]) and the diagonal procedure, we can pick a subsequence {vnk

} that con-
verges to some function v uniformly on every ball such that its first and second
derivatives also converge uniformly on balls to the respective derivatives of the
function v. It is clear that v satisfies equation (1). Set

unk
= vnk

− ϕ.
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The function unk
satisfies the equation

div(%∇unk
)− 〈a,∇unk

〉 = −div(%∇ϕ) + 〈a,∇ϕ〉

and vanishes on ∂Bnk
. Multiplying the last equality by unk

and integrating by
parts, we obtain∫

Bnk

|∇unk
|2% dx = −

∫
Bnk

〈∇unk
,∇ϕ〉 dx−

∫
Bnk

〈a,∇ϕ〉unk
dx,

where we also use the equality∫
Bnk

〈a,∇unk
〉unk

dx = 0.

Since
2|〈∇unk

,∇ϕ〉| ≤ |∇unk
|2 + |∇ϕ|2,

we obtain∫
Bnk

|∇unk
|2% dx ≤

∫
Bnk

|∇ϕ|2% dx− 2

∫
Bnk

〈a,∇ϕ〉unk
dx.

Letting k →∞, we arrive at the estimate∫
Rd

|∇v −∇ϕ|2% dx ≤
∫
Rd

|∇ϕ|2% dx− 2

∫
Rd

〈a,∇ϕ〉(v − ϕ) dx.

Suppose that the function v is constant. Since∫
Rd

〈a,∇ϕ〉 dx = 0,

we have

0 ≤
∫
Rd

〈a,∇ϕ〉ϕdx.

This contradicts the condition [ϕ,ϕ] < 0. Thus, v is a nonconstant bounded
solution of class W 2,1(µ), which can be made positive by adding a sufficiently
large constant.

Note that in this theorem, unlike [13, Theorem 2] and [5, Theorem 4.2.2],
we do not assume that the first and second derivatives of the function ϕ are
bounded.

The next assertion is a corrected version of [13, Theorem 3] and [5, The-
orem 4.2.7]).

Theorem 12. Suppose that there exist functions ϕ1, . . . , ϕN satisfying
the conditions of Theorem 11. If the quadratic form

Q(c) =

N∑
i,j=1

[ϕi, ϕj ]cicj , c = (c1, . . . , cN ) ∈ RN
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is negative definite, then there exist N linearly independent nonconstant bounded
positive solutions of equation (1) in W 2,1(µ).

Proof. We use a reasoning similar to the one from the proof of Theorem
9. Repeating the steps of constructing solutions in the proof of Theorem 11, for
every k ≤ N we consider the functions vk,n that are solutions to the Dirichlet
problems

div(%∇vk,n)− 〈a,∇vk,n〉 = 0, vk,n|∂Bn = ϕk,
on the balls Bn of radius n centered at zero. Pick an increasing sequence of
numbers nj such that for every k the functions vk,nj

will converge to some
function vk uniformly on every ball and their first and second derivatives will
also converge uniformly on balls. As in Theorem 11, one can show that vk are
nonconstant bounded solutions of equation (1) in W 2,1(µ). Let us show that
the functions 1, v1, . . . , vN are linearly independent. Suppose that

(8) c0 + c1v1 + · · ·+ cNvN = 0.

The function wnj = c1v1,nj + · · ·+ cNvN,nj solves the Dirichlet problem on the
ball Bnj for equation (1) with the boundary condition ϕ = c1ϕ1 + · · ·+ cNϕN .
Moreover, the functions wnj converge to the function w = c1v1 + · · · + cNvN
uniformly on every ball and their first and second derivatives also converge
uniformly on balls, because the functions vk,nj

converge to vk for every k.
Repeating the reasonong from the proof of Theorem 11, we conclude that the
function w satisfies the inequality∫

Rd

|∇w −∇ϕ|2% dx ≤
∫
Rd

|∇ϕ|2% dx− 2

∫
Rd

〈a,∇ϕ〉(w − ϕ) dx.

By our assumption (8) the function w equals the constant −c0 and

0 ≤ [ϕ,ϕ] =
[ N∑
i=1

ciϕi,

N∑
i=1

ciϕi

]
= Q(c).

Therefore, c1 = · · · = cN = 0 and c0 = 0.

Remark 13. In [13, Theorem 3] and [5, Theorem 4.2.7] the following is
asserted: if functions ϕ1, . . . , ϕN+1 ∈ C2

b (Rd) satisfy the conditions

〈a,∇ϕj〉 ∈ L1(Rd), [ϕj , 1] = 0, [ϕj , ϕj ] < 0,

v1, . . . , vN+1 are solutions of equation (1) constructed by the functions ϕ1, . . . ,
ϕN+1 according to the algortithm from [13, Theorem 2 ] and [5, Theorem
4.2.2], respectively (this is precisely the algortithm from Theorem 11 above)
and, in addition, the functions 1, v1, . . . , vN are linearly independent, then for
the linear idependence of the functions 1, v1, . . . , vN , vN+1 it suffices that

[ϕN+1 − (c1ϕ1 + · · ·+ cNϕN ), ϕN+1 − (c1ϕ1 + · · ·+ cNϕN )] < 0
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for all c1, . . . , cN ∈ R (which is equivalent to the negative definitness of the
quadration form Q above). This formulation allows vk to be an arbitrary
solution of equation (1) constructed by the functions ϕk, but in principle there
might be many such solutions (although we have no such examples), since
they are obtained by picking a subsequence in the sequence of solutions to
boundary value problems on balls. Nevertheless, in the paper [13] as well as
in the book [5], in the proofs of the corresponding assertion we considered not
arbitrary solutions vk, but constructed adaptively, i.e., by picking an increasing
sequence of numbers nj such that for every k ≤ N+1 the solutions vk,nj

to the
Dirichlet problems on the balls Bnj with the boundary condition ϕk converge
to vk. These adapted solutions should be also used in the formulation of the
theorem. Hence, after making the indicated changes in the formulations, the
proofs in the cited works do not need any changes.

Remark 14. It remains an open question whether the space of solutions
to equation (1) can have a finite dimension greater than one. It is shown in the
recent paper [3] that in the case d = 2 the existence of a nonconstant sufficiently
regular solution implies the existence of infinitely many linearly independent
solutions. However, the condition d = 2 is substantially used in the proof, in
particular, it is used there that every smooth divergence free vector field on R2

has the form (∂yH,−∂xH) for some smooth function H.
Another open question is whether the Kolmogorov equation (2) must

have a probability solution if there is a nonzero signed solution in the class of
bounded measures.
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