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This paper surveys some recent progress in [8] for the study of homogenization of
symmetric jump processes in a one-parameter stationary ergodic environment.
We further present some additional homogenization results under assumptions
that are variants of [8], and identify the limiting effective Dirichlet forms explic-
itly. The jumping kernels of Dirichlet forms are of α-stable-like with 0 < α < 2,
and the associated coefficients as well as the coefficients of symmetrizing mea-
sures are allowed to be degenerate and unbounded.
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1. INTRODUCTION

1.1. Background

Consider the behavior of particles in inhomogeneous media. Due to the
inhomogeneity, their short time behavior may depend on the location of the
particles, whereas their long time behavior often tend to be homogeneous due
to the averaging effects. Such an averaging process is called homogenization.
The aim of homogenization theory is to provide the macroscopic rigorous char-
acterizations of the microscopically heterogeneous media. It has been a very
active research area in mathematics for a long time, and a vast literature exists
on this topic, see e.g. [1, 4, 21, 23, 34].

The local inhomogeneity of the media can be naturally modelled by ran-
dom structures of the media, and the problems of stochastic homogenization
have been widely studied. The first rigorous result for second order elliptic
operators in divergence forms with stochastically homogeneous random coef-
ficients was independently obtained by Kozlov [24] and by Papanicolaou and
Varadhan [25]. The crucial points of their approaches are the construction of
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the so-called corrector field, which is the solution of certain associated elliptic
equations, and the proof of sub-linear growth of the corrector. After these two
works, a lot of homogenization problems were investigated for various elliptic
and parabolic differential equations.

Because there are various communities in mathematics, the goals in the
study of homogenization problems are bit different. In probability commu-
nity, the typical goal is to establish the invariance principle, namely to show
(εXt/ε2)t>0 converges to a constant time change of Brownian motion as ε→ 0,
where (Xt)t>0 is the random process in the random media. Whereas in PDE
community, the goal is to prove that the suitably scaled solution of the resol-
vent equation on the random media converges to the solution of the resolvent
equation on the homogeneous media – we will explain it more precisely in Sec-
tion 1.2, after Lemma 1.2. It is well-known that the convergence of stochastic
processes is equivalent to the tightness of the processes and the convergence
of finite dimensional distributions. In the symmetric framework, the latter
is (more or less) equivalent to the (pointwise) convergence of the resolvent,
so the invariance principle is stronger than the convergence of the resolvents.
We note that, PDE community treats homogenization problems under much
more general framework; indeed there are vast literatures in PDE that con-
sider homogenization for operators where there is no corresponding stochastic
processes (for instance homogenization for fully non-linear PDEs).

In order to clarify the problem, let us give one recent result on the
quenched invariant principle for random divergence forms by Chiarini and
Deuschel [7]. Consider a second order elliptic differential operator Lω of diver-
gence form with random coefficients:

Lωu(x) = div(aω(x)∇u(x)), x ∈ Rd,

where aω(·) is a symmetric d-dimensional matrix with ω ∈ Ω being a realization
of the random environment. Assume that aω(x) = aτxω(0), where τx is the shift
of the environment (see Section 1.2 for details). Suppose the following hold:

(i) There exist λ,Λ : Ω→ [0,∞] with x 7→ λ(τxω)−1 +Λ(τxω) ∈ L∞loc(Rd; dx)
for a.e. ω ∈ Ω such that

λ(ω)|ξ|2 6 (aω(0)ξ, ξ) 6 Λ(ω)|ξ|2 for all ξ ∈ Rd and a.e. ω ∈ Ω.

(ii) There exist p, q ∈ [1,∞] satisfying 1/p+ 1/q < 2/d such that

E
[
λ−q + Λp

]
<∞.

Theorem 1.1. ([7, Theorem 1.1]) Assume (i) and (ii) above, and let
(Xω

t )t>0 be the diffusion process whose generator is Lω. Then, for a.e. ω ∈ Ω,
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the law of the process (εXω
t/ε2)t>0 on C([0,∞),Rd) converges weakly as ε→ 0 to

Brownian motion with the covariance matrix equal to D = (dij)16i,j6d, where

dij = lim
t→∞

1

t
Eω0

[
Xi,ω
t Xj,ω

t

]
1 6 i, j 6 d,

which exist and are deterministic constants. Here Xω
t = (Xi,ω

t , · · · , Xd,ω
t ).

Moreover, D is a positive definite matrix.

The moment condition (ii) plays an important role in the quenched invari-
ance principle. The quenched invariance principle for nearest neighbor random
walk on random conductance model is established in [5] under the moment
condition with p = q = 1 when d = 1, 2. It is conjectured that the optimal mo-
ment condition for the quenched invariance principle for symmetric diffusions
in stationary ergodic environments to hold is p = q = 1; see [2] for the recent
study subject to the periodic environment. Note that for the homogenization
in the PDE literature, based on the two-scale convergence method in [36], the
convergence of resolvent under L2-norm may be established under the moment
condition p > 1 and q > 1, see [17, 29] for related results in the discrete setting.

The study of homogenization for non-local operators can be traced back
to the paper [20], where homogenization for one-dimensional pure jump pro-
cesses with periodic coefficients was considered by using the probabilistic ap-
proach. See [35] for a multi-dimensional generalization with diffusion terms
involved. For further developments on homogenization of non-local operators
with periodic coefficients, the reader may refer to [15, 16, 30] for probabilistic
approaches, and [26, 32, 31] for analytical approaches (even in the setting of
nonlinear integro-differential equations). See [11, 17, 18, 22, 27] and the refer-
ences therein for recent development on homogenization of non-local operators
with random coefficients. In a recent preprint [8], we studied homogenization
problem for symmetric non-local operators with random coefficients and gave
a characterization of the homogenized limiting operators. In this paper, we
survey the results obtained in [8], and present some additional homogenization
results for non-local operators with random coefficients under conditions that
are variants of those in [8]. In a recent paper [22], Kassmann, Piatnitski and
Zhizhina investigated homogenization of a class of symmetric stable-like pro-
cesses in ergodic environment whose jumping kernels are of product form. In
that paper, homogenization problem of symmetric stable-like processes in two-
parameter ergodic environment was also studied. In [22], random coefficients
of the jumping kernel are assumed to be uniformly elliptic and bounded. In
fact, all known results concerning stochastic homogenization of jump processes
in one-parameter ergodic environment requires that the coefficients are of very
special forms (such as the product form). The contribution of [8] is to study
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homogenization problem for symmetric non-local operators in one-parameter
ergodic environment systematically under more general settings. In particular,
the corresponding random coefficients can be degenerate and unbounded. We
will survey the main results of [8] in Section 2. We will also present homoge-
nization results under some variant settings of [8]. In Subsection 1.2, we will
describe the precise setting, and in Subsection 1.3 we will give main theorems
of this paper.

1.2. Setting

Throughout the paper, we let d > 1, 0 < α < 2, and (Ω,F,P) be the
probability space that describes the random environment. Let {τx}x∈Rd be a
measurable group of transformations on (Ω,F,P) with τ0 = id and τx ◦ τx =
τx+y for every x, y ∈ Rd. τxω := τx(ω) is the environment ω ∈ Ω ‘seen from’
the point x ∈ Rd. We assume that {τx}x∈Rd is stationary and ergodic; namely,

(i) P(τxA) = P(A) for all A ∈ F and x ∈ Rd;

(ii) if A ∈ F and τxA = A for all x ∈ Rd, then P(A) ∈ {0, 1};

(iii) the function (x, ω) 7→ τxω is B(Rd)× F-measurable.

Consider a random variable µ : Ω → [0,∞) such that for every ω ∈ Ω
µ(τxω) > 0 for a.e. x ∈ Rd, and E[µ] = 1, and a random function κ : Rd ×
Rd × Ω→ [0,∞) that satisfies
(1.1)
κ(x, y;ω) = κ(y, x;ω), κ(x+z, y+z;ω) = κ(x, y; τzω) for x, y, z ∈ Rd, ω ∈ Ω

and

(1.2) x 7→
∫

(1 ∧ |z|2)
κ(x, x+ z;ω)

|z|d+α
dz ∈ L1

loc(R
d; dx) for P-a.e. ω ∈ Ω.

We write µω(dx) := µ(τxω) dx, which has full support on Rd. Let Γ be an
infinite cone in Rd having non-empty interior that is symmetric with respect
to the origin; namely, Γ is a non-empty open subset of Rd so that rx ∈ Γ for
every x ∈ Γ and r ∈ R.

We now define a regular symmetric Dirichlet form (Eω,Fw) on L2(Rd;µω(dx))
for each ω ∈ Ω as follows. For α ∈ (0, 2), define

Eω(f, g) :=
1

2

∫∫
Rd×Rd\∆

(f(x)− f(y))(g(x)− g(y))
κ(x, y;ω)

|x− y|d+α
1{y−x∈Γ} dx dy,
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where ∆ := {(x, x) ∈ Rd} is the diagonal of Rd × Rd, and Fω the closure of
C∞c (Rd) with respect to the norm Eω1 (·, ·)1/2, where

(1.3) Eω1 (f, f) := Eω(f, f) +

∫
Rd
f(x)2 µω(dx).

It holds that under (1.2), Eω(f, f) <∞ for all f ∈ C∞c (Rd). Clearly, (Eω,Fw)
is a regular symmetric Dirichlet form on L2(Rd;µω(dx)). Hence there are a
Borel subset Nω ⊂ Rd having zero Eω-capacity, and a symmetric Hunt process
Xω :=

{
Xω
t , t > 0;Px, x ∈ Rd \Nω

}
on Rd \Nω; see for instance [19, Chapter

7]. We note that Xω is a time change of the Hunt process corresponding to the
Dirichlet form (Eω,Fω) on L2(Rd; dx). When Γ = Rd and κ(x, y;ω) is bounded
from above and below by positive constants, this Hunt process is a symmetric
α-stable-like process studied in [12].

For any ε > 0, define Xε,ω = {Xε,ω
t ; t > 0} := {εXω

t/εα ; t > 0}. We have
the following.

Lemma 1.2. ([8, Lemma 1.1]) For any ε > 0, the scaled process Xε,ω has
a symmetrizing measure µε,ω(dx) = µ(τx/εω) dx, and the associated regular

Dirichlet form (Eε,ω,Fε,ω) on L2(Rd;µε,ω(dx)) is given by
(1.4)

Eε,ω(f, g) =
1

2

∫∫
Rd×Rd\∆

(f(x)−f(y))(g(x)−g(y))
κ(x/ε, y/ε;ω)

|x− y|d+α
1{x−y∈Γ} dx dy,

and Fε,ω is the closure of C∞c (Rd) with respect to the norm E
ε,ω
1 (·, ·)1/2, where

the E1-norm is defined on L2(Rd;µε,ω(dx)) similarly to (1.3).

Denote by (Lω,Dom(Lw)) (resp. (Lε,ω,Dom(Lε,ω))) the L2-generator of
the Dirichlet form (Eω,Fω) on L2(Rd;µω) (resp. (Eε,ω,Fε,ω) on L2(Rd;µε,ω)).
That is, for f ∈ Dom(Lw),

Lωf(x) = lim
δ→0

1

µ(τxω)

∫
{y∈Rd:|y−x|>δ}

(f(y)− f(x))
κ(x, y;ω)

|y − x|d+α
1{y−x∈Γ}dy,

and for f ∈ Dom(Lε,ω),

Lε,ωf(x) = lim
δ→0

1

µ(τx/εω)

∫
{y∈Rd:|y−x|>δ}

(f(y)−f(x))
κ(x/ε, y/ε;ω)

|y − x|d+α
1{y−x∈Γ}dy.

It is easy to see that for each ε > 0, g(·) ∈ Dom(Lε,ω) if and only of g(ε)(·) :=
g(ε·) ∈ Dom(Lω), and

Lε,ωg(x) = ε−αLωg(ε)(x/ε).

For any λ > 0 and f ∈ Cc(Rd), let uε,ωf be the solution to the following
resolvent equation

(λ− Lε,ω)uε,ωf = f
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in L2(Rd;µε,ω(dx)). We like to investigate under what circumstances, there
is a subset Ω0 ⊂ Ω of full probability so that for every ω ∈ Ω and for every
f ∈ Cc(Rd),

lim
ε→0
‖uε,ωf − uf‖L2(Rd;µε,ω(dx)) = 0,

where uf is the solution of

(λ− L)uf = f.

Here L is the L2-generator of certain regular symmetric Dirichlet form (E,F)
on L2(Rd; dx) whose jumping kernel is non-random but can be degenerate.
This is a standard framework in homogenization problems in the community
of PDE; see for instance [28, 34] for backgrounds and [3, 6, 22] for recent study
on homogenization problems related to non-local operators.

Let K(z) be a non-negative bounded and symmetric measurable function
on Rd. Define a regular Dirichlet form (EK ,FK) on L2(Rd; dx) by

EK(f, g) =
1

2

∫∫
Rd×Rd\∆

(f(x)− f(y))(g(x)− g(y))
K(x− y)

|x− y|d+α
1{x−y∈Γ} dx dy,

(1.5)

and FK is the closure of C∞c (Rd) with respect to the norm EK1 (·, ·)1/2, where
the E1-norm is defined on L2(Rd; dx) similarly to (1.3). The limiting Dirichlet
form (E,F) for the homogenization problems considered in this paper is of this
type. We emphasize that the symmetric cone Γ in (1.4) and (1.5) can be a
proper subset of Rd in this paper.

1.3. Main theorems

Unlike elliptic differential operators, we have a variable (y − x)/ε by
shifting operators τx/ε and τy/ε in the coefficient

κ(x/ε, y/ε;ω) = κ(0, (y − x)/ε; τx/εω) = κ(0, (x− y)/ε; τy/εω)

of the scaled process Xε which corresponds to the long range property of the
jumping kernel (see (1.4)). This prevents us to directly applying the ergodic
theorem to deduce the almost sure convergence as indicated below. We need
to impose some reasonable conditions on κ(x, y;ω).

Our main theorems in this paper are variants of [8, Theorem 1.3]. We
assume the following conditions on the coefficients κ(x, y;ω).

(C1) For every ω ∈ Ω and x, y ∈ Rd,

(1.6) κ(x, y;ω) = ν(y − x; τxω) + ν(x− y; τyω),
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where ν : Rd × Ω 7→ [0,∞) satisfies that for a.s. ω ∈ Ω,

lim
ε→0

∫
Rd×Rd

h(x, z)
(
ν
(
z/ε; τx/εω

)
− ν̄(z; τx/εω)

)
dz dx = 0

for every h ∈ C∞c (R2d).

(1.7)

Here, ν̄(x;ω) is a non-negative measurable function on Rd×Ω so that for any
z ∈ Rd,

(1.8) E[ν̄(z; ·)] > C1, E[ν̄(z; ·)γ ] 6 C2

for some constants C1, C2 > 0 and γ > 1.

(C2) There are a constant p > 1 and non-negative random variables Λ1 6 Λ2

on (Ω,F,P) such that

(1.9) E
[
Λ−1

1 + Λp2
]
<∞,

and for a.s. ω ∈ Ω,

Λ1(τxω) + Λ1(τyω) 6 κ(x, y;ω) 6 Λ2(τxω) + Λ2(τyω)

for every x, y ∈ Rd.
(1.10)

We have four remarks concerning the above condition.

Remark 1.3. (i) It is easy to see that any κ(x, y;ω) of form (1.6), which
satisfies (1.7) with some non-negative ν̄ : Rd × Ω → [0,+∞), enjoys the
property (1.1) and that for a.s. ω ∈ Ω,

(1.11) lim
ε→0

∫
Rd×Rd

h(x, z)
(
κ
(
0, z/ε; τx/εω

)
− κ̄ε

(
z; τx/εω

))
dz dx = 0

for every h ∈ C∞c (R2d), where κ̄ε(z, ω) := ν̄(z;ω) + ν̄(−z; τz/εω).

On the other hand, any κ(x, y;ω), satisfying (1.1) and (1.11) with κ̄ε
being some non-negative ν̄ : Rd×Ω→ [0,+∞) (independent of ε), admits
a representation of the form (1.6) so that (1.7) is satisfied. This is because
κ(x, y;ω) = κ(0, y−x; τxω) and so by the symmetry of κ(x, y;ω) in (x, y)
we have

κ(x, y;ω) = 1
2(κ(x, y;ω)+κ(y, x;ω)) = 1

2(κ(0, y−x; τxω)+κ(0, x−y; τyω)).

Hence we can write κ(x, y;ω) as

κ(x, y;ω) = ν(y − x; τxω) + ν(x− y; τyω),

where

ν(x;ω) := κ(0, x;ω)/2.
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(ii) Schwab [33] studied the stochastic homogenization for some fully non-
linear integro-differential equations associated with (non-symmetric) α-
stable-like operators, where the coefficient k(x, z;ω) satisfies for any ω ∈
Ω, x, z ∈ Rd and ε > 0,

(a) k(x, z;ω) = k(x,−z;ω);

(b) k(x, z/ε;ω) = k(x, z;ω).

See [33, (1.14) and (1.13)]. Clearly, (1.7) is more general than (b)
above. (To see this, we take ν(z; τxω) = k(x, z;ω), and then ν̄(z; τxω) =
ν(z; τxω).) From the viewpoint of assumption (a), (C1) can be viewed as
a symmetrized version of [33]. See [32] for related works on the periodic
homogenization.

(iii) (C2) is just (A2) in [8]. Under (C2), by using (the continuous version
of) the Birkhoff ergodic theorem (see [21, Theorem 7.2] or [8, Proposition
2.1]) and the Hölder inequality, one can verify that (1.7) implies that for
a.s. ω ∈ Ω, the function

(x, z) 7→ ν
(
z/ε; τx/εω

)
− ν̄(z; τx/εω)

weakly converges to 0 in L1
loc(R

2d; dx dz) as ε→ 0; that is, for a.s. ω ∈ Ω,

lim
ε→0

∫
Rd×Rd

h(x, z)
(
ν
(
z/ε; τx/εω

)
− ν̄(z; τx/εω)

)
dz dx = 0

for every h ∈ Bc(R2d); see the proof of [8, Lemma 3.1] or that of Propo-
sition 3.2 below.

(iv) In our setting we always assume that (1.2) holds true. In fact, (1.2) is a
consequence of (C2). Indeed, suppose (C2) holds. Then by the Fubini
theorem, for any R > 1,

E

[∫
B(0,R)

∫
Rd

(1 ∧ |z|2)
κ(x, x+ z;ω)

|z|d+α
dz dx

]

6
∫
B(0,R)

∫
Rd

(1 ∧ |z|2)
E[Λ2(τxω)] + E[Λ2(τx+zω)]

|z|d+α
dz dx

6 2E[Λ2]

∫
B(0,R)

∫
Rd

1 ∧ |z|2

|z|d+α
dz dx <∞.

In particular, we have P-a.s.,∫
B(0,R)

∫
Rd

(1 ∧ |z|2)
κ(x, x+ z;ω)

|z|d+α
dz dx <∞

for every R > 0.
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For ε > 0, let U ε,ωλ be the λ-order resolvent of the Dirichlet form (Eε,ω,Fε,ω)
given by (1.4). Our first main theorem is the following.

Theorem 1.4. Suppose that (C1) and (C2) hold and that E[µp] for
some p > 1. Then there is Ω0 ⊂ Ω of full probability so that for every ω ∈ Ω0,
f ∈ Cc(Rd) and λ > 0,

U ε,ωλ f converges to UKλ f locally in L1(Rd; dx) as ε→ 0,

and

(1.12) lim
ε→0
‖U ε,ωλ f − UKλ f‖L2(Rd;µε,ω) = 0,

where UKλ is the λ-order resolvent of the symmetric Dirichlet form (EK ,FK)
on L2(Rd; dx) given by (1.5) with

K(z) = E[ν̄(z; ·)] + E[ν̄(−z; ·)].

Clearly, by taking the smaller one, we can assume p > 1 in the condition
E[µp] < ∞ is the same as the p > 1 in (C2). We note that since for any
g ∈ C1

c (Rd),

Eε,ω(U ε,ωλ f, g) + λ〈U ε,ωλ f, g〉L2(Rd;µε,ω(dx)) = 〈f, g〉L2(Rd;µε,ω(dx)),

EK(UKλ f, g) + λ〈UKλ f, g〉L2(Rd;dx) = 〈f, g〉L2(Rd;dx),

using the Birkhoff ergodic theorem, we have

lim
ε→0
〈UKλ f, g〉L2(Rd;µε,ω(dx)) = 〈UKλ f, g〉L2(Rd;dx)

and
lim
ε→0
〈f, g〉L2(Rd;µε,ω(dx)) = 〈f, g〉L2(Rd;dx).

We conclude from (1.12) that

lim
ε→0

Eε,ω(U ε,ωλ f, g) = EK(UKλ f, g).

The same result as Theorem 1.4 holds for the case where the jump variable
z is periodic. To be precise, consider the following assumption:

(C1∗) The coefficient κ(x, y;ω) is given by (1.6) for some non-negative mea-
surable function ν(z;ω) on Rd×Ω, which satisfies that the function z 7→ ν(z;ω)
is 1-periodic in the sense that it can be seen as a function defined on the d-
dimensional torus Td := (R/Z)d, and E[ν̄] <∞ with

ν̄(ω) :=

∫
Td
ν(z;ω) dz.

Here is our second main theorem.
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Theorem 1.5. Suppose that (C1∗) and (C2) hold and that E[µp] for
some p > 1. Then the conclusion of Theorem 1.4 holds with

K(z) := 2E[ν̄].

The proofs of Theorems 1.4 and 1.5 are similar to that of [8, Theorem
1.3] and we will give a sketch of the proofs in Section 3. We like to mention a
recent paper [31] on the study of homogenization of a class of symmetric Lévy
processes on Rd with (deterministic) periodic jumping kernels.

It is natural to consider further the invariance principle of the scaled pro-
cesses on the path space. In order to obtain it, we need to establish the tightness
of the scaled processes, as mentioned in the introduction. In fact, if the initial
distribution is absolutely continuous with respect to an invariant measure, then
the tightness can be obtained by using the so-called forward-backward martin-
gale decomposition (see [11, Proposition 3.4] for the corresponding statement
in the discrete setting). Hence one can obtain the convergence of the processes
on the path space under such initial condition (or under some weaker topol-
ogy), see [11, Theorems 2.2 and 2.3] for more discussions in the discrete case.
When (x, y) 7→ κ(x, y;ω) is bounded between two positive constants, we can
use heat kernel estimates from [12] when Γ = Rd or parabolic Harnack in-
equalities from [13] when Γ ( Rd to establish the tightness, and therefore the
weak convergence of the scaled processes starting from any point. However,
it is highly non-trivial to prove such convergence if the process starts at any
fixed point (in other word, if the initial distribution is a Dirac measure), when
(x, y) 7→ κ(x, y;ω) is not bounded between two positive constants. We will
address this problem in a separate paper.

In this paper, we use := as a way of definition. For all x ∈ Rd and
r > 0, set B(x, r) = {z ∈ Rd : |z − x| < r}. For p ∈ [1,∞] and Lebesgue
measurable A ⊂ Rd, we use |A| to denote the d-dimensional Lebesgue measure
of A, Cb(A) the space of bounded and continuous functions on A, Lp(A; dx)
the space of Lp-integrable functions on A with respect to the Lebesgue mea-
sure, and Lploc(R

d; dx) the space of locally Lp-integrable functions on Rd with
respect to the Lebesgue measure. Denote 〈·, ·〉L2(Rd;µ(dx)) the inner product in

L2(Rd;µ(dx)). Denote by B(Rd) the set of locally bounded measurable func-
tions on Rd, by Bb(R

d) the set of bounded measurable functions on Rd, and by
Bc(R

d) the set of bounded measurable functions on Rd with compact support.
C1
c (Rd) (respectively, Cc(R

d) or C∞c (Rd)) denotes the space of C1-smooth (re-
spectively, continuous or C∞-smooth) functions on Rd with compact support.
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2. SURVEY OF THE RESULTS IN [8]

In this section, we survey the main results from [8]. Consider the following
assumption concerning κ(x, y;ω).

(A1) The coefficient κ(x, y;ω) is given by (1.6) for some non-negative mea-
surable function ν(z;ω) on Rd × Ω, which satisfies that

(i) There is a constant l > 0 such that for any n > 0 and x, z1, z2 ∈ Rd,

|Cov (νn(z1 ; ·), νn(z2; τx(·))) | :=∣∣E [νn(z1; ·) · νn(z2; τx(·))]− E[νn(z1; ·)]E[νn(z2; ·)]
∣∣

6 C1(n)
(
1 ∧ |x|−l

)
,

(2.1)

where νn = ν ∧ n and C1(n) is a positive constant depending on n.

(ii) There is a non-negative measurable function ν̄ on Rd such that E[ν(z/ε; ·)]
converges weakly to ν̄(z) in L1

loc(R
d; dx) as ε → 0; that is, for every

h ∈ L∞loc(Rd; dx),

lim
ε→0

∫
Rd
h(z)E[ν(z/ε; ·)] dz =

∫
Rd
h(z)ν̄(z) dz.

We note that the mixing condition (2.1) in assumption (A1) is weaker
than the mutually independent stable-like random conductance models inves-
tigated in [11, 9, 10]. Indeed, (2.1) only requires the mixing condition on the
position variable x, not on the jumping size variable z; while in [11, 9, 10] the
mutual independence is imposed on both variables x and z, which was crucial
to verify (A4*) (ii) in [11] (see also [9, Section 4]).

Theorem 2.1. ([8, Theorem 1.3]) Suppose that (A1) and (C2) hold, and
that E[µp] < ∞ for some p > 1. Then the conclusion of Theorem 1.4 holds
with

K(z) := ν̄(z) + ν̄(−z).

Another model considered in [8] is κ(x, y;ω) of product form, motivated
by [22, (Q1)]. We consider the following assumptions.

(B1) For every ω ∈ Ω and x, y ∈ Rd,

(2.2) κ(x, y;ω) = ν1(τxω)ν2(τyω) + ν1(τyω)ν2(τxω),

where ν1 and ν2 are non-negative random variables on (Ω,F,P).

(B2) There are non-negative random variables Λ1 6 Λ2 on (Ω,F,P) with

E
[
Λ−1

1 + Λ2
2

]
<∞
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so that for a.s. ω ∈ Ω,

Λ1(τxω)Λ1(τyω) 6 κ(x, y;ω) 6 Λ2(τxω)Λ2(τyω) for every x, y ∈ Rd.

The following fact is proved in [8, Proposition 1.4].

Proposition 2.2. Suppose that κ(x, y;ω) is given by (2.2) for some non-
negative random variables ν1 and ν2 on (Ω,F,P). Then condition (B2) holds
if and only if ν1 and ν2 satisfy that

E
[
(ν1ν2)−1/2 + (ν1 + ν2)2

]
<∞.

Any κ(x, y;ω) of form (2.2) enjoys the property (1.1). Similar to Remark
1.3(iv), we can verify that (1.2) is satisfied when (B1) and (B2) hold. Under
(2.2), the corresponding symmetric Dirichlet form (Eω,Fω) has the expression

Eω(f, f) :=
1

2

∫∫
Rd×Rd\∆

(f(x)− f(y))2 ν1(τxω)ν2(τyω)

|x− y|d+α
1{y−x∈Γ} dx dy

for f ∈ Fω.

In this case, we are able to drop the mixing condition (2.1) from Theorem 2.1.

Theorem 2.3. ([8, Theorem 1.6]) Suppose that (B1) and (B2) hold, and
E[µp] < ∞ for some p > 1. Then the conclusion of Theorem 1.4 holds with
constant

K(z) := E[ν1]E[ν2].

As an application of Theorem 2.3, we have the following example that
improves [22, Theorem 3, Case (Q1)], where the coefficients λi(τxω) (i = 1, 2)
are assumed to be uniformly bounded between two positive constants and
Γ = Rd.

Example 2.4. ([8, Example 1.7]) Let Γ be an infinite symmetric cone in
Rd that has non-empty interior. For any ε > 0, let Lε,ω be a Lévy-type operator
given by

(2.3) Lε,ωf(x) = p.v.

∫
(f(y)− f(x))

λ1(τx/εω)λ2(τy/εω)

|y − x|d+α
1{y−x∈Γ} dy,

where λ1 and λ2 are two non-negative measurable functions on (Ω,F,P) such
that

λ2 ∈ L2(Ω;P), λ−1
2 ∈ L1(Ω;P) and λ2/λ1 ∈ Lp(Ω;P),

for some p > 1. Then as ε→ 0, Lε,ω converges in the resolvent topology to

Lf(x) = p.v.

∫
(f(y)− f(x))

C0

|y − x|d+α
1{y−x∈Γ} dy,

where

(2.4) C0 =
(E[λ2])2

E [λ2/λ1]
.
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At the first sight, the constant coefficient C0 should be E[λ1λ2], but with
the idea of the time change, it turns out the correct one should be (2.4). It is
worth emphasizing again that in this site model the mixing condition (2.1) of
the media given in Assumption (A1) is not needed.

3. PROOFS OF THEOREMS 1.4 AND 1.5

In this section, we give the proofs of Theorems 1.4 and 1.5. In fact, most
of the arguments in the proofs except Proposition 3.2 below are the same as
those in the proofs of [8, Theorems 1.3 and 1.6], so we will only sketch ideas
except the proof of Proposition 3.2.

3.1. Some general results in [8]

In this subsection, we give some general results concerning homogeniza-
tion of stable-like Dirichlet forms. For any ε > 0, let Lε,ω be the generator
of the Dirichlet form (Eε,ω,Fε,ω) on L2(Rd;µε,ω(dx)) given by (1.4). Let LK

be the generator of the Dirichlet form (EK ,FK) of (1.5) on L2(Rd; dx). The
goal of homogenization theory is to construct homogenized characteristics and
clarify whether the solutions for the operators Lε,ω are close to the solution
for the operator LK . As mentioned in Section 1.2, we are concerned with the
following question: when does the solution to the equation

(3.1) (λ− Lε,ω)uε,ω = f

on L2(Rd;µε,ω(dx)) for any λ > 0 and f ∈ Cc(Rd) converge in the resolvent
topology, as ε→ 0, to the solution to the equation

(3.2) (λ− LK)u = f

on L2(Rd; dx)? We address this question under the following assumption.

Assumption (H): There is Ω0 ⊂ Ω of full probability so that

(i) For every ω ∈ Ω0 and for any sequence of functions {fε : ε ∈ (0, 1]} such
that fε ∈ Fε,ω for any ε ∈ (0, 1], and

lim sup
ε→0

(‖fε‖∞ + Eε,ω(fε, fε)) <∞,

{fε : ε ∈ (0, 1]} is a pre-compact set as ε → 0 in L1(B(0, r); dx) for
every r > 1 in the sense that for any sequence {εn : n > 1} ⊂ (0, 1] with
limn→0 εn = 0, there are a subsequence {εnk : k > 1} and a function
f ∈ L1

loc(R
d; dx) so that fnk converges to f in L1(B(0, r); dx) for every

r > 1.
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(ii) For every ω ∈ Ω0 and any g ∈ C∞c (Rd),

lim
η→0

lim sup
ε→0

∫∫
{0<|x−y|6η}

(g(x)− g(y))2κ(x/ε, y/ε;ω)

|x− y|d+α
dx dy = 0

and

lim
η→0

lim sup
ε→0

∫∫
{|x−y|>1/η}

(g(x)− g(y))2κ(x/ε, y/ε;ω)

|x− y|d+α
dx dy = 0.

(iii) There is a constant p > 1 such that for every ω ∈ Ω0 and R > 0,

lim sup
ε→0

∫
B(0,R)

(∫
B(0,R)

κ(x/ε, y/ε;ω) dy

)p
dx <∞.

(iv) For every ω ∈ Ω0, any η > 0, f ∈ Bb(Rd) and g ∈ C∞c (Rd),

lim
ε→0

∫
Rd

∫
{η<|x−y|<1/η}

(f(x)−f(y))(g(x)−g(y))
κ(x/ε, y/ε;ω)

|x−y|d+α
1{y−x∈Γ} dx dy

=

∫
Rd

∫
{η<|x−y|<1/η}

(f(x)−f(y))(g(x)−g(y))
K(x− y)

|x−y|d+α
1{y−x∈Γ} dx dy,

where K(z) is a measurable symmetric function on Rd such that C1 6
K(z) 6 C2 for some constants C1, C2 > 0.

Let U ε,ωλ be the λ-order resolvent of the regular Dirichlet form (Eε,ω,Fε,ω)
on L2(Rd;µε,ω(dx)), and UKλ the λ-order resolvent of the regular Dirichlet form
(EK ,FK) on L2(Rd; dx). It is well known that U ε,ωλ f and UKλ f are the unique
solution to (3.1) and (3.2), respectively.

The following theorem concerning the convergence in L1
loc(R

d; dx) and
the resolvent topology is given in [8, Theorems 2.2 and 2.3].

Theorem 3.1. Suppose that assumption (H) holds and E[µp] < ∞ for
some p > 1. Then, there is a subset Ω1 ⊂ Ω of full probability measure so that
for every ω ∈ Ω1 and f ∈ Cc(Rd),

U ε,ωλ f converges to UKλ f in L1
loc(R

d; dx) as ε→ 0

and

lim
ε→0
‖U ε,ωλ f − UKλ f‖L2(Rd;µε,ω(dx)) = 0.

Thanks to this theorem, in order to prove Theorems 1.4 and 1.5 it is
enough to prove that assumption (C) implies assumption (H). We will prove
it in the following subsections.
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3.2. Weak convergence of bilinear forms

In this subsection, we give a proposition to guarantee the weak conver-
gence of non-local bilinear forms. Recall that Γ ⊂ Rd is an infinite symmetric
cone that has non-empty interior. Note that when d = 1, Γ = R.

Proposition 3.2. (i) Suppose that (C1) holds. Then there is a subset
Ω1 ⊂ Ω of full probability measure so that for every ω ∈ Ω1, any η > 0,
f ∈ B(Rd) and g ∈ Bc(Rd),

lim
ε→0

∫
Rd

∫
{η<|z|<1/η, z∈Γ}

(f(x+z)−f(x))(g(x+z)−g(x))

|z|d+α
κ(x/ε,(x+z)/ε;ω) dz dx

=

∫
Rd

∫
{η<|z|<1/η, z∈Γ}

(f(x+ z)− f(x))(g(x+ z)− g(x))

|z|d+α
(E[ν̄(z; ·)]

+ E[ν̄(−z; ·)]) dz dx.

(ii) Suppose that (C1∗) holds and that there is a non-negative random
variables Λ on (Ω,F,P) with E[Λp] <∞ for some p > 1 so that for a.s. ω ∈ Ω,

(3.3) κ(x, y;ω) 6 Λ(τxω) + Λ(τyω) for every x, y ∈ Rd.

Then there is a subset Ω2 ⊂ Ω of full probability measure so that for every
ω ∈ Ω2, any η > 0, f ∈ B(Rd) and g ∈ Bc(Rd),

lim
ε→0

∫
Rd

∫
{η<|z|<1/η, z∈Γ}

(f(x+z)−f(x))(g(x+z)−g(x))

|z|d+α
κ (x/ε,(x+z)/ε;ω) dz dx

= 2

∫
Rd

∫
{η<|z|<1/η, z∈Γ}

(
f(x+ z)− f(x)

)(
g(x+ z)− g(x)

)
|z|d+α

E[ν̄] dz dx.

Clearly (C2) implies (3.3).

The proof of the proposition will use the following lemma from [8], which
is an extension of the Birkhoff ergodic theorem, and the ideas of its proof.

Lemma 3.3. ([8, Lemma 3.1(i)]) Let (Ω,F,P) be a probability space on
which there is a stationary and ergodic measurable group of transformations
{τx}x∈Rd with τ0 = id. Suppose that ν(z;ω) is a non-negative measurable
function on Rd × Ω such that the function z 7→ E [ν(z; ·)p] is locally integrable
for some p > 1. Then there is a subset Ω0 ⊂ Ω of full probability measure so
that for every ω ∈ Ω0 and every compactly supported f ∈ Lq(Rd × Rd; dx dy)
with q = p/(p− 1),

(3.4) lim
ε→0

∫∫
Rd×Rd

f(x, z)ν(z; τx/εω) dz dx =

∫∫
Rd×Rd

f(x, z)E [ν(z; ·)] dz dx.
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Proof of Proposition 3.2. (i) Under (C1), there is Ω0 ⊂ Ω of full proba-
bility so that for every ω ∈ Ω0, for any η, ε > 0, f ∈ B(Rd) and g ∈ Bc(Rd),∫
Rd

∫
{η<|z|<1/η, z∈Γ}

(f(x+z)−f(x))(g(x+z)−g(x))

|z|d+α
κ (x/ε, (x+z)/ε;ω) dz dx

=

∫
Rd

∫
{η<|z|<1/η, z∈Γ}

(f(x+ z)− f(x))(g(x+ z)− g(x))

|z|d+α
ν
(
z/ε; τx/εω

)
dz dx

+

∫
Rd

∫
{η<|z|<1/η, z∈Γ}

(f(x+z)−f(x))(g(x+z)−g(x))

|z|d+α
ν
(
−z/ε; τ(x+z)/εω

)
dz dx

=:
2∑
i=1

Iεi .

By changing variables x + z 7→ x and z 7→ −z in the term Iε2 , it holds
that Iε1 = Iε2 , where we used the fact that Γ = −Γ.

Note that for every η > 0, f ∈ B(Rd) and g ∈ Bc(Rd),

F (x, z) := 1{η<|z|<1/η, z∈Γ}
(f(x+ z)− f(x))(g(x+ z)− g(x))

|z|d+α

is a bounded and compactly supported function on Rd × Rd. Recall that we
assume (1.7) with E[ν̄(z; ·)γ ] 6 C2 for all z ∈ Rd and some γ > 1. According
to (1.7), Remark 1.3(iii) and Lemma 3.3, there is a subset Ω1 ⊂ Ω0 of full
probability measure so that for any ω ∈ Ω1, η > 0, f ∈ B(Rd) and g ∈ Bc(Rd),

lim
ε→0

Iε1 = lim
ε→0

∫
Rd

∫
{η<|z|<1/η, z∈Γ}

(
f(x+z)−f(x)

)(
g(x+z)−g(x)

)
|z|d+α

ν̄(z; τx/εω) dz dx

=

∫
Rd

∫
{η<|z|<1/η, z∈Γ}

(
f(x+z)−f(x)

)(
g(x+z)−g(x)

)
|z|d+α

E[ν̄(z; ·)] dz dx.

Putting all these estimates above together immediately yields that

lim
ε→0

∫
Rd

∫
{η<|z|<1/η, z∈Γ}

(
f(x+z)−f(x)

)(
g(x+z)−g(x)

)
|z|d+α

κ(x/ε, (x+z)/ε;ω) dz dx

= 2

∫
Rd

∫
{η<|z|<1/η, z∈Γ}

(
f(x+ z)− f(x)

)(
g(x+ z)− g(x)

)
|z|d+α

E[ν̄(z; ·)] dz dx.

Again by changing variables x + z 7→ x and z 7→ −z in the right hand side of
the equality above, we obtain the desired assertion.

(ii) Suppose that (C1∗) holds. Then, we can still define Iεi for i = 1, 2 as
in (i). As before, we only need to consider the term Iε1 .
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For any bounded set D = D1 ×D2 ⊂ Rd ×Rd with Di (i = 1, 2) being a
connected interval in Rd, we have∫∫

D1×D2

ν(z/ε; τx/εω) dz dx

=
∑

i:Qεi⊂D2

∫
D1

∫
Qεi

ν(z/ε; τx/εω) dz dx

+
∑

i:Qεi∩D2 6=∅,Qεi∩Dc2 6=∅

∫
D1

∫
Qεi∩D2

ν(z/ε; τx/εω) dz dx

=:
2∑
j=1

Jεj ,

where Qεi = [zεi − ε/2, zεi + ε/2]d with zεi ∈ εZd. Note that∫
Qεi

ν(z/ε; τx/εω) dz =εd
∫

[zεi /ε−1/2,zεi /ε+1/2]d
ν(z; τx/εω) dz

=εd
∫
Td
ν(z; τx/εω) dz = εdν̄(τx/εω),

(3.5)

where ν̄(ω) :=
∫
Td
ν(z;ω) dz. We have

Jε1 =

∫
D1

( ∑
i:Qεi⊂D2

|Qεi |
)
ν̄
(
τx/εω

)
dx.

Observe that for connected interval D2,

lim
ε→0

∣∣∣( ∑
i:Qεi⊂D2

|Qεi |
)
− |D2|

∣∣∣ = 0.

Thus, thanks to the Birkhoff ergodic theorem, for a.s. ω ∈ Ω,

lim sup
ε→0

∣∣∣Jε1 − |D1 ×D2| · E[ν̄]
∣∣∣ = 0.

Furthermore, note that |{i : Qεi ∩D2 6= ∅, Qεi ∩Dc
2 6= ∅}| 6 c3ε

−(d−1) for some
constant c3 > 0 independent of ε. Then, by (3.5) and Birkhoff ergodic theorem
again, we can get that for a.s. ω ∈ Ω,

lim
ε→0
|Jε2 | 6 lim

ε→0
c3ε

∫
D1

ν̄(τx/εω)dx = 0.

Putting both estimates for Jε1 and Jε1 together, and then letting ε → 0 we
conclude that for a.s. ω ∈ Ω,

(3.6) lim
ε→0

∫∫
D1×D2

ν(z/ε; τx/εω) dz dx = |D| · E[ν̄].
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With the aid of (3.6), we now can use the idea of the proof for [8, Lemma
3.1(i)] to obtain the desired assertion. Indeed, let

S :=

{
F (x, z) =

m∑
i=1

ai1Ai×Bi(x, z) : m ∈ {1, 2, · · ·}, ai ∈ Q, Ai, Bi ∈ BQ(Rd)

}
.

Here Q denotes the set of all rational numbers, and BQ(Rd) denotes the col-
lection of all bounded cubes in Rd whose end points are rational numbers.

According to (3.6), it is easy to see that there exists a subset Ω0 ⊂ Ω
with full probability measure such that for every ω ∈ Ω1 and F ∈ S ,

(3.7) lim
ε→0

∫∫
Rd×Rd

F (x, z)ν(z/ε; τx/εω) dz dx =

∫∫
Rd×Rd

F (x, z)E[ν̄] dz dx.

Similarly, by (3.3) with E[Λp] < ∞ and the argument for (3.7), we can also
find a subset Ω2 ⊂ Ω1 with full probability measure such that for every ω ∈ Ω2

and A,B ∈ BQ(Rd),

(3.8) lim
ε→0

∫∫
A×B

ν(z/ε; τx/εω)p dz dx =

∫∫
A×B

E[ν̄p] dz dx,

where p > 1 is from the assumption.
For general bounded compactly supported function F on Rd × Rd, take

A,B ∈ BQ(Rd) so that supp[F ] ⊂ A × B. Since Cb(A × B) is dense in
Lq(A×B; dx dy) for q = p/(p− 1) and S is dense in Cb(A×B) under uniform
norm, there is a sequence of functions {Fn}n>1 ⊂ S such that

lim
n→∞

‖Fn − F‖Lq(A×B;dx dy) = 0.

Hence, by (3.7) and (3.8), we know that for every ω ∈ Ω2,

lim sup
ε→0

∣∣∣∣∫∫
Rd×Rd

F (x, z)ν(z/ε; τx/εω) dz dx−
∫∫

Rd×Rd
F (x, z)E [ν̄] dz dx

∣∣∣∣
6 lim sup

ε→0

∣∣∣∣∫∫
Rd×Rd

(F (x, z)− Fn(x, z))ν(z/ε; τx/εω) dz dx

∣∣∣∣
+

∣∣∣∣∫∫
Rd×Rd

(F (x, z)− Fn(x, z))E[ν̄] dz dx

∣∣∣∣
+ lim sup

ε→0

∣∣∣∣∫∫
A×B

Fn(x, z)ν(z/ε; τx/εω) dz dx−
∫∫

A×B
Fn(x, z)E [ν̄] dz dx

∣∣∣∣
6 ‖F − Fn‖Lq(A×B;dx dy)

×

[
lim sup
ε→0

(∫∫
A×B

ν(z/ε; τx/εω)p dz dx

)1/p

+

(∫∫
A×B

(E [ν̄])p dz dx

)1/p
]

6 2‖F − Fn‖Lq(A×B;dx dy)

(∫∫
A×B

E [ν̄p] dz dx

)1/p

.
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Letting n→∞, we get that for any ω ∈ Ω2 and any bounded function F with
compact support,

lim sup
ε→0

∣∣∣∣∫∫
Rd×Rd

F (x, z)ν(z/ε; τx/εω) dz dx−
∫∫

Rd×Rd
F (x, z)E[ν̄] dz dx

∣∣∣∣ = 0.

Now, taking

F (x, z) := 1{η<|z|<1/η, z∈Γ}
(f(x+ z)− f(x))(g(x+ z)− g(x))

|z|d+α

we arrive at that for every ω ∈ Ω2,

lim
ε→0

Iε1 =

∫
Rd

∫
{η<|z|<1/η, z∈Γ}

(
f(x+ z)− f(x)

)(
g(x+ z)− g(x)

)
|z|d+α

E[ν̄] dz dx,

which in turn yields the required assertion.

3.3. Pre-compactness of functions in L1-space

In this subsection, we give the compactness for a sequence of uniformly
bounded functions whose associated scaled Dirichlet forms are also uniformly
bounded. The following is a key compactness result established in [8, Proposi-
tion 3.4].

Proposition 3.4. Suppose that (C2) holds. Then there is a subset
Ω0 ⊂ Ω of full probability measure so that for every ω ∈ Ω0, any collection
of functions {fε : ε ∈ (0, 1]} with fε ∈ Fε,ω for any ε ∈ (0, 1] having

lim sup
ε→0

(‖fε‖∞ + Eε,ω(fε, fε)) <∞

Then, {fε : ε ∈ (0, 1]} is pre-compact as ε → 0 in L1(B(0, r); dx) for every
r > 1.

Below is the key lemma for the proof.

Lemma 3.5. ([8, Lemma 3.5]) Suppose that (C2) holds. Then there is
subset Ω0 ⊂ Ω of full probability measure so that the following holds for every
ω ∈ Ω0. Suppose that {fε : ε ∈ (0, 1]} is a collection of functions with fε ∈ Fε,ω

for ε ∈ (0, 1] and
lim sup
ε→0

Eε,ω(fε, fε) <∞.
Then for every r > 1, 0 < |h| 6 r/3 and 1 6 i 6 d,

lim sup
ε→0

sup
x0∈B(0,r)

∫
B2h(x0,r)

|fε(x+ hei)− fε(x)| dx

6 c0(r)hα/2
(

lim sup
ε→0

Eε,ω(fε, fε)
1/2

)
,

(3.9)
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where {ei : 1 6 i 6 d} is the orthonormal basis of Rd, B2h(x0, r) := {y ∈
B(x0, r) : |y − ∂B(x0, r)| > 2h} and c0(r) is a positive measurable function
depending on r but independent of h and ω.

The proof of this lemma is partly motivated by (and hence resembles)
the proof of the compact embeddings in fractional Sobolev spaces; see [14,
Theorem 4.54, p. 216].

Given Lemma 3.5, the proof of Proposition 3.4 is relatively easy.

Proof of Proposition 3.4. According to [14, Theorem 1.95, p. 37], the fol-
lowing (a) and (b) imply that {fε : ε ∈ (0, 1]} is a pre-compact set, as ε → 0,
in L1(B(0, r); dx) for every r > 1.

(a) For every r > 1 and ζ > 0, there exists a constant δ1 := δ1(r, ζ;ω)
such that for every h ∈ Rd with |h| < δ1 such that

(3.10) lim sup
ε→0

∫
Bδ1 (0,r)

|fε(x+ h)− fε(x)| dx 6 ζ.

(b) For every r > 1 and ζ > 0, there exists a constant δ2 := δ2(r, ζ) such
that for every h ∈ Rd with |h| < δ2 such that

(3.11) lim sup
ε→0

∫
B(0,r)\Bδ2 (0,r)

|fε(x)| dx 6 ζ.

(3.10) can be shown by (3.9) and the triangular inequalities. For any δ > 0,
we have∫

B(0,r)\Bδ(0,r)
|fε(x)| dx 6 ‖fε‖∞|B(0, r) \Bδ(0, r)| 6 c2(r)‖fε‖∞δ,

where c2(r) is a positive constant independent of δ and ε. This implies (3.11).

Note that we use the negative moment condition on Λ1 in (1.9) only in
arguments for the statements in this part (in particular, Lemma 3.5).

3.4. Proofs of Theorems 1.4 and 1.5

Proofs of Theorems 1.4 and 1.5. By Theorem 3.1, it is enough to verify
that assumption (C) implies assumption (H).

According to Proposition 3.2(i) (resp. Proposition 3.2(ii)) and Proposition
3.4, assumption (C) implies (resp. (C1∗) and (C2) imply) conditions (iv) and
(i) in assumption (H). On the other hand, it follows from the proof of [8,
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Theorem 1.3] that conditions (iii) and (ii) in assumption (H) hold true under
condition (C2). For example, by (C2), for any bounded sets A,B ⊂ Rd and
x ∈ A, we have∫

B
κ(x/ε, y/ε;ω) dy 6 |B|Λ2

(
τx/εω

)
+

∫
B

Λ2(τy/εω) dy.

Hence, using the Birkhoff ergodic theorem and (1.9), the condition (iii) of
assumption (H) holds true. Using the Birkhoff ergodic theorem again and
(C2) (though requires some more delicate computations), we can show that
property (ii) of assumption (H) holds as well; see the proof of [8, Theorem 1.3]
for related details. This completes the proof.
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