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1. NON-KÄHLER ELLIPTIC SURFACES

Let X
π→ B be a minimal non-Kähler elliptic surface with B a smooth

curve of genus g. It is well-known that X
π→ B is a quasi-bundle over the base

B, that is, all the smooth fibres are isomorphic to a fixed elliptic curve E and
the singular fibres (in a finite number) are multiples of elliptic curves (see, for
example, [6], [4]) .

If m1T1,m2T2, ...,mlTl are the singular fibers and m is the least common
multiple of m1,m2, ...,ml, then there exists an m- cyclic covering ε : B′ → B
and a principal elliptic bundle (with fibre E), π′ : X ′ → B′, with an m-cyclic
covering ψ′ : X ′ → X over ε : B′ → B. Using this construction, the study of
vector bundles over a non-Kähler elliptic surface is reduced to the case when
X

π→ B is a principal elliptic bundle, which we suppose for the rest of the talk.

Remark 1. Let X → B be principal elliptic bundle over the smooth curve
B of genus g. For g = 0, X is a Hopf surface, for g = 1, X is a primary Kodaira
surface and, for g ≥ 2, X is called a properly elliptic surface.

Let E∗ denote the dual of E (we fix a non-canonical identification E∗ =
Pic0(E) by fixing an origin on E); in fact we can identify E∗ ∼= E. The
Jacobian surface associated to X

π→ B is

J(X) = B × E∗ p1→ B,

REV. ROUMAINE MATH. PURES APPL. 66 (2021), 2, 257–263



258 V. Br̂ınzănescu 2

and X is obtained from the relative Jacobian J(X) by a finite number of
logarithmic transformations [18]. We have the following result (see [5], [6], [7]):

Theorem 1. For any minimal non-Kähler elliptic surface we have the
isomorphism:

NS(X)/Tors(NS(X)) ∼= Hom(JB, P ic
0(E)),

where NS(X) is the Neron - Severi group of the surface and JB denotes the
Jacobian variety of the curve B.

This result was extended by Br̂ınzănescu - Ueno for torus quasi-bundles
over curves, see [12].

Remark 2. In the case of elliptic surfaces, from the above theorem we
get:

For any Chern class c = c1(L), with L ∈ Pic(X) a line bundle, the class
c ∈ NS(X)/Tors(NS(X)), if it is non-zero, defines a covering map c : B →
Pic0(E), which gives us a section of the Jacobian J(X). This is exactly the
spectral curve associated to the line bundle L, defined by Hitchin (see [17]).

2. VECTOR BUNDLES ON NON-KÄHLER ELLIPTIC
SURFACES

Let V be a holomorphic rank-2 vector bundle on X, with fixed c1(V ) =
c1 ∈ NS(X) and c2(V ) = c2 ∈ Z. Now, we fix also the determinant line bundle
of V , denoted by δ = det(V ). It defines an involution on the relative Jacobian
J(X) = B × E∗ of X:

iδ : J(X)→ J(X), (b, λ)→ (b, δb ⊗ λ−1),

where δb denotes the restriction of δ to the fibre Eb = π−1(b), which has degree
zero (see Lemma 2.2 in [9]). Taking the quotient of J(X) by this involution,
each fibre of p1 becomes E∗/iδ ∼= P1 and the quotient J(X)/iδ is isomorphic
to a ruled surface Fδ over B. Let η : J(X)→ Fδ be the canonical map.

We need some notation. The Chern classes and the rank can be defined
for any analytic coherent sheaf F over X. If F is locally free, then we have
c1(F) = c1(det(F)) ∈ NS(X). Generally, by the [22], any analytic coherent
sheaf F over a complex surface has a resolution

0→ V2 → V1 → V0 → F → 0,

with Vi locally free sheaves. Then

c1(F) = c1(V0)− c1(V1) + c1(V2) ∈ NS(X).



3 Vector bundles on non-Kähler elliptic surfaces and integrable systems 259

Now, let F be an analytic coherent sheaf over a surface X of rank r > 0,
with Chern classes c1(F) and c2(F). The discriminant ∆(F) is defined by

∆(F) :=
1

r

(
c2(F)− r − 1

2r
c21(F)

)
.

For a non-algebraic surface X, a ∈ NS(X) and r a positive integer we
can define the following rational positive number (see [4], [8], [2])

m(r, a) := − 1

2r
max{Σr

1(a/r − µi)2, µi ∈ NS(X) with Σr
1µi = a}.

The main existence result of holomorphic rank-2 vector bundles over non-
Kähler elliptic surfaces is the following (see [9]):

Theorem 2. Let X be a minimal non-Kähler elliptic surface over a
smooth curve B of genus g and fix a pair (c1, c2) in NS(X) × Z. Set mc1 :=
m(2, c1) and denote c1 the class of c1 in NS(X) modulo 2NS(X); moreover,
let ec1 be the invariant of the ruled surface Fc1 determined by c1. Then, there
exists a holomorphic rank-2 vector bundle on X with Chern classes c1 and c2
if and only if

∆(2, c1, c2) ≥ (mc1 − dc1/2),

where dc1 := (ec1 + 4mc1)/2. Note that both dc1 and (mc1 − dc1/2) are non-
negative numbers. Furthermore, if

(mc1 − dc1/2) ≤ ∆(2, c1, c2) < mc1 ,

then the corresponding vector bundles are non-filtrable.

3. MODULI SPACES OF STABLE VECTOR BUNDLES

The main tool to study vector bundles on any elliptic surface X is by
taking restrictions to the smooth fibres. Note that if X is non-Kähler, then
the restriction of any line bundle on X to a smooth fibre of π always has
degree zero; see [9]. For a rank two vector bundle V over X, its restriction to a
generic fibre of π is semistable; more precisely, its restriction to a fibre π−1(b)
is unstable on at most an isolated set of points b ∈ B and, these isolated points
are called the jumps of the bundle. Furthermore, there exists a divisor SV in
the relative Jacobian J(X) = B×E∗ of X, called the spectral curve or cover of
the bundle, that encodes the isomorphism class of the bundle over each fibre
of π. The spectral curve is the following divisor

SV := Σk
1({xi} × E∗) + C,
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where C is a bisection of J(X) (i.e. C.E∗ = 2) and x1, x2, ..., xk are points in
B that correspond to the jumps of V .

The spectral curve is constructed by using a twisted Fourier - Mukai
transform. For more details, see [10], Section 3, Theorem 3.1, [15] and [13].

By construction, the spectral curve SV of the bundle V is invariant by the
involution iδ of J(X), and descends to the quotient Fδ; in fact, it is a pullback
via η of a divisor on Fδ of the form

GV := Σk
1fi +A,

where fi is the fibre of the ruled surface over the point xi and A is a section of
the ruling such that η∗A = C. The divisor GV is called the graph of V .

The degree of a vector bundle can be defined on any compact complex
manifold M of dimension d. A theorem of Gauduchon’s [16] states that any
hermitian metric on M is conformally equivalent to a metric (called now a
Gauduchon metric), whose associated (1, 1)-form ω satisfies ∂∂ωd−1 = 0. Sup-
pose that M is endowed with such a metric and let L be a holomorphic line
bundle on M . The degree of L with respect to ω is defined (see [14]), up to a
constant factor, by

deg(L) :=

∫
M
F ∧ ωd−1,

where F is the curvature of a hermitian connection on L, compatible with ∂L.
Any two such forms differ by an exact ∂∂- exact form. Since ∂∂ωd−1 = 0, the
degree is independent of the choice of connection and is therefore well-defined.
This degree is an extension of that in the Kähler case, where we get the usual
topological degree. In general, this degree is not a topological invariant, for it
can take values in a continuum.

Having defined the degree of holomorphic line bundles, we define the
degree of a torsion-free coherent sheaf V by deg(V) := deg(detV), where detV
is the determinant line bundle of V, and the slope of V by

µ(V) := deg(V)/rank(V).

Now, we define the notion of stability: A torsion-free coherent sheaf V on M is
stable if and only if for every coherent subsheaf S ⊂ V with 0 < rk(S) < rk(V),
we have µ(S) < µ(V).

Fix a rank-2 vector bundle V on a minimal non-Kähler elliptic surface X
and let δ be its determinant line bundle; there exists a sufficient condition on
the spectral cover of V that ensures its stability (see [11]):
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Proposition 1. Suppose that the spectral cover of V includes an irre-
ducible bisection C of J(X). Then V is irreducible, and hence it is also stable
with respect to any Gauduchon metric.

Let X be a minimal non-Kähler elliptic surface and consider a pair (c1, c2)
in NS(X)×Z. We fix a Gauduchon metric on X. For a fixed line bundle δ on
X with c1(δ) = c1, letMδ,c2 be the moduli space of stable (with respect to the
fixed Gauduchon metric) holomorphic rank-2 vector bundles with invariants
det(V ) = δ and c2(V ) = c2. Note that, for any c1 ∈ NS(X), one can choose a
line bundle δ on X such that

c1(δ) ∈ c1 + 2NS(X) and m(2, c1) = −1

2
(c1(δ)/2)2;

moreover, if there exist line bundles a and δ′ such that δ = a2δ′, then there is
a natural isomorphism between the moduli spaces Mδ,c2 and Mδ′,c2 , defined
by V → a⊗ V .

This moduli space can be identified, via the Kobayashi - Hitchin corre-
spondence, with the moduli space of gauge-equivalence classes of Hermitian -
Einstein connections in the fixed differentiable rank-2 vector bundle determined
by δ and c2 (see, for example, [14], [19]). In particular, if the determinant δ
is the trivial line bundle OX , then there is a one-to-one correspondence be-
tweenMOX ,c2 and the moduli space of SU(2)-instantons, that is, anti-selfdual
connections.

We can define the map

G :Mδ,c2 → Div(Fδ)

that associates to each stable vector bundle its graph in Div(Fδ), called the
graph map. In [3], [20], the stability properties of vector bundles on Hopf
surfaces were studied by analysing the image and the fibres of this map. In
particular, it was shown [20] that the moduli space admits a natural Poisson
structure with respect to which the graph map is a Lagrangian fibration whose
generic fibre is an abelian variety, i.e. the map G admits an algebraically
completely integrable system structure. For the general case, the moduli spaces
Mδ,c2 are studied by Br̂ınzănescu - Moraru in [11].

We have the following results (see [11]):

Theorem 3. Let X
π→ B be a non-Kähler elliptic surface and let Mδ,c2

be defined as above. Then:

(i) There are necessary and sufficient conditions such thatMδ,c2 is nonempty
(see Theorem 2).
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(ii) If c2 − c21/2 > g − 1 (g is the genus of B), the moduli space Mδ,c2 is
smooth on the open dense subset of regular bundles (a regular bundle is a vector
bundle for which its restriction to any fibre has its automorphism group of the
smallest dimension).

(iii) The generic fibre of the graph map G : Mδ,c2 → Div(Fδ) is a Prym
variety (for Prym varieties, see [21]).

(iv) Let Pδ,c2 be the set of divisors in Fδ of the form Σk
1fi + A, where A

is a section of the ruling and the fi’s are fibres of the ruled surface, that are
numerically equivalent to η∗(B0)+c2f . For c2 ≥ 2, the graph map is surjective
on Pδ,c2. For c2 < 2, see [11].

(v) Explicit descriptions of the the singular fibres of G are given, see [11].

Special results on the moduli spaceMδ,c2 in the case of primary Kodaira
surfaces are given in [1].

4. INTEGRABLE SYSTEMS

Let X
π→ B be a minimal non-Kähler elliptic surface with B a smooth

curve of genus g. For g ≤ 1 the surface X has a Poisson structure. By using
this Poisson structure, in the case of a principal elliptic bundle, one defined a
Poisson structure on the moduli space Mδ,c2 ; see, for details [11]. Then:

Theorem 4. Let X
π→ B a principal elliptic bundle. If g ≤ 1, the moduli

space Mδ,c2 is smooth of dimension 8∆(2, c1, c2) and G :Mδ,c2 → Div(Fδ) is
an algebraically completely integrable Hamiltonian system.

For details, see [20] and [11].

We finish with the following problem: Is it possible to define a Poisson
structure on the moduli space Mδ,c2 in the case g ≥ 2 ?
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[12] V. Br̂ınzănescu and K. Ueno, Neron-Severi group for torus quasi-bundles over curves.
In: Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), pp. 11–32, Lecture Notes in
Pure and Appl. Math., 179, Dekker, New York, 1996.
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