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We give a gentle introduction to the global geometric formulation of the bosonic
sector of four-dimensional supergravity on an oriented four-manifold M of ar-
bitrary topology, providing a geometric characterization of its U-duality group.
The geometric formulation of four-dimensional supergravity is based on a choice
of a vertically Riemannian submersion π overM equipped with a flat Ehresmann
connection, which determines the non-linear section sigma model of the theory,
and a choice of flat symplectic vector bundle S equipped with a positive complex
polarization over the total space of π, which encodes the inverse gauge couplings
and theta angles of the theory and determines its gauge sector. The classical
fields of the theory consist of Lorentzian metrics on M , global sections of π and
two-forms valued in S satisfying an algebraic relation which defines the notion
of twisted self-duality in four Lorentzian dimensions. We use this geometric
formulation to investigate the group of electromagnetic duality transformations
of supergravity, also known as the continuous classical U-duality group, which
we characterize using a certain short exact sequence of automorphism groups of
vector bundles. Moreover, we discuss the general structure of the Killing spinor
equations of four-dimensional supergravity, providing several explicit examples
and remarking on a few open mathematical problems. This presentation is aimed
at mathematicians working in differential geometry.
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1. INTRODUCTION

Supergravity theories are supersymmetric theories of gravity which, aside
from their intrinsic phenomenological interest, are of fundamental importance
in high energy physics, since they describe the low-energy limit of string and
M-theory and their associated supersymmetric compactifications [10, 13, 32, 40,
58]. In addition to their role in theoretical physics, supergravity theories have
been the source of important developments and activity in mathematics, espe-
cially in geometry and topology, see for instance [31, 33, 37, 42, 56, 61] as well as
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their references and citations. Indeed, the local formulation of supergravity is
well-known to involve important mathematical structures and objects interact-
ing in a delicate equilibrium dictated by supersymmetry, such as Kähler-Hodge
manifolds, Riemannian manifolds of special holonomy, harmonic maps, excep-
tional Lie groups, gerbes and Courant algebroids or gauge-theoretic moduli
spaces, to name only a few. This makes the mathematical study of supergrav-
ity into a rich and quite formidable endeavour. Supergravity theories can be
defined in various dimensions and signatures and can be deformed through var-
ious mechanisms while preserving their supersymmetric structure (see [60, 35]
and references therein for details on the deformation of such theories through
gauging). In this short review, we will consider exclusively four-dimensional
ungauged supergravity theories in Lorentzian signature, where the term un-
gauged indicates that we will not consider any gauging of the theory. Such
theories are particularly relevant for several reasons, both from the physical
and mathematical point of view, among which we can mention the following:

• Four-dimensional supergravity theories describe the effective dynam-
ics of the massless modes of string and M-theory compactifications to four-
dimensions, which is the observed physical dimension of spacetime and there-
fore yields the adequate set-up for phenomenological applications [10, 41].

• Supergravity theories in four-dimensions enjoy a type of duality called
electromagnetic U-duality, which is inherited from ordinary electromagnetic du-
ality in four Lorentzian dimensions and has deep connections with string theory
U-duality groups [44]. Furthermore, electromagnetic duality gives rise to inter-
esting mathematical structures of gauge-theoretic type [51].

• Four-dimensional supergravity theories involve rich non-linear sigma
models with Riemannian target spaces of special type [32, 58, 43], whose moduli
spaces of solutions can be expected to enjoy interesting applications in the
differential topology of Riemannian three and four manifolds.

• The dimensional reduction of N = 2 four-dimensional supergravity to
three-dimensions is the origin of the celebrated c-map in quaternionic-Kähler
and projective special Kähler geometry [28, 26, 42], see also [24] for a related
construction called the the r-map in the literature. In particular, N = 2 super-
gravity has a deep connection with Quaternionic-Kähler manifolds whose math-
ematical investigation has been already initiated in several pioneering works,
see [1, 2, 18, 42, 55] and their citations.

In contrast to higher-dimensional supergravities, which receive increasing
mathematical attention and whose geometric formulation and structure is be-
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ing actively investigated [7, 9, 12, 29, 37, 38, 59], the mathematics community
has paid little attention to low-dimensional supergravity, in particular four-
dimensional supergravity. This might be due in part to the inaccessibility of the
relevant physics literature to mathematicians. Nonetheless, four-dimensional
supergravity is an extremely rich subject from a mathematical standpoint, and
there exists indeed a plethora of such theories involving interesting modern
mathematical structures and leading to novel mathematical problems, most of
which have not emerged into the mathematical community. The distinction be-
tween higher and low dimensional supergravity is akin to that between higher
and low-dimensional differential topology, the latter yielding a remarkably rich
and subtle theory [27]. Given their importance, the local structure and prop-
erties of four dimensional supergravities have been extensively studied in the
physics literature, in a long-term effort that evolved myriad of ramifications.
We refer the reader to [3, 4, 6, 14, 15, 19, 20, 23, 25, 30, 54] for more details and
references. Despite all this work, the global geometric formulation and proper
mathematical theory of four-dimensional supergravity are poorly understood
and remain open for investigation and exploration.

It would be desirable to develop the complete mathematical foundations
of all four-dimensional supergravities, including their bosonic and fermionic
sectors. In our opinion, this may be currently out of reach. Fortunately, most
applications of supergravity to differential geometry and topology only require
the mathematical theory of the bosonic sector together and the Killing spinor
equations, which fully capture the geometry and topology of supersymmetric
solutions and associated moduli spaces. Solutions of the equations of motion
of a supergravity theory which satisfy the supergravity Killing spinor equa-
tions are called supersymmetric solutions and have been intensively studied in
the physics [39] and mathematics literature [33], the latter focusing almost en-
tirely on higher-dimensional Riemannian signature. The global geometrization
of bosonic supergravity together with its associated Killing spinor equations
on oriented manifolds of arbitrary topology was named geometric supergravity
in [49, 50, 16], which initiated a long-term program devoted to systematically
developing the mathematical foundations of four-dimensional (ungauged) geo-
metric supergravity. The first step in this program concerns the bosonic sector,
paying special attention to its Dirac quantization, electromagnetic U-duality
group and various reductions to three-dimensional Riemannian manifolds and
Riemann surfaces. We note that the mathematical theory of geometric super-
gravity is far from finished, and [49, 50, 16] constitute only a first few steps
towards its completion.

In this short review we will discuss some of the results of [49, 50, 16]
concerning the global mathematical formulation and symplectic duality struc-
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ture of geometric supergravity. Roughly speaking, the generic bosonic sector
of four-dimensional supergravity consists of three sub-sectors, namely:

• The gravitational sector, which corresponds to the Einstein-Hilbert
term of the local Lagrangian.

• The scalar sector, which corresponds locally to a non-linear sigma model
coupled to gravity.

• The gauge sector, which corresponds locally to a theory of an arbitrary
number of abelian gauge fields coupled to the scalars fields of the scalar sector.

Therefore, four-dimensional supergravity can be though of as the unification,
using supersymmetry as a guiding principle, of three cornerstones of differential
geometry, namely the theory of Einstein metrics, the theory of harmonic maps
and Yang-Mills theory.

The Killing spinor equations of four-dimensional supergravity are first
order differential equations involving the bosonic fields of the theory and a su-
persymmetry parameter, which is mathematically described as a section of an
appropriate bundle of Clifford modules over the underlying Lorentzian man-
ifold. Supergravity Killing spinor equations generalize, through the princi-
ple of supersymmetry, well-known spinorial equations studied intensively in
the literature, such as Hermite-Yang-Mills equations, instanton equations, the
Seiberg-Witten equations, generalized Killing spinor equations or the pseudo-
holomorphicity equations. The study of supergravity Killing spinor equations
makes contact with modern areas of mathematics under current development
and brings supergravity into mathematical gauge theory, a field of mathematics
whose tools and methods are specially well-adapted to the study of supersym-
metric solutions and their moduli spaces. We hope that the development of the
mathematical theory of four-dimensional supergravity can clarify this relation
and bring new problems and perspectives into mathematical gauge theory.

An important remark is in order: we do not discuss the Dirac quantization
of geometric supergravity in this report, since it is yet to be fully developed and
it is work in progress [51]. As shown in Op. Cit., implementing Dirac quan-
tization is a fundamental step in order to properly understand the geometric
structure of four-dimensional supergravity as well as the global structure of its
solutions and associated moduli spaces.

The outline of this manuscript is as follows. In Section 2 we review the
well-known local formulation of four-dimensional bosonic supergravity, giving
a rigorous seemingly novel description of its electromagnetic U-duality group.
In Section 3 we explain the global geometric formulation of bosonic four-
dimensional supergravity together with the necessary geometric background.
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In Section 4 we describe the global electromagnetic U-duality group of geomet-
ric supergravity, characterizing it in terms of a certain short exact sequence and
discussing some examples. Finally, in Section 5 we briefly discuss the Killing
spinor equations of four-dimensional supergravity and present some explicit
examples, mentioning along the way some open mathematical problems.

2. LOCAL BOSONIC SUPERGRAVITY

In this section we review the local formulation of the generic bosonic sector
of four-dimensional supergravity, paying special attention to the electromag-
netic U-duality group of the theory, which consists of electromagnetic duality
transformations of the abelian gauge fields coupled to scalars and gravity. The
local formulation of the bosonic sector of four-dimensional supergravity was
considered in detail in references [3, 4, 5, 34], where the duality transformations
of the local theory were investigated. The reader is referred to [6, 14, 30, 54]
for comprehensive reviews and exhaustive lists of references.

Let U be a contractible non-empty oriented and relatively compact open
subset of R4 with coordinates {xa}, where a = 1, . . . , 4. Fixing non-negative
integers ns, nv, the configuration space of the local bosonic sector of extended
four-dimensional supergravity with ns scalar fields and nv abelian gauge fields
is defined as the set of triples (g, φ,A) consisting of:

• A Lorentzian metric g defined on U .

• An Rns -valued function φ : U → Rns defined on U . We denote the
components of φ by φi : U → R, with i = 1, . . . , ns and fix an oriented open
subset V ⊂ Rns containing φ(U). The real functions

{
φi
}

are the (locally-
defined) scalar fields of the theory. We will refer to such functions φ : U → Rns

as scalar maps.

• An Rnv -valued one-form A ∈ Ω1(U,Rnv). When necessary, we will
denote the components of A by AΛ ∈ Ω1(U), with Λ = 1, . . . , nv, which corre-
spond to the local U(1) gauge fields of the theory. We denote by:

F
def.
= dA ∈ Ω2(U,Rnv) ,

the field strength associated to A, whose components will be denoted by FΛ =
dAΛ ∈ Ω2(U).

The local bosonic sector of extended four-dimensional supergravity is defined
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through the following action functional:

Sl[gU , φ,A]
def.
=

∫
U

{
−RgU + Gij(φ)∂aφ

i∂aφj +RΛΣ(φ)FΛ
ab ∗ FΣ ab

+IΛΣ(φ)FΛ
abF

Σ ab
}
νgU ,

(1)

where:

• νgU is the Lorentzian volume form associated to g and the given orien-
tation on U .

• G ∈ Γ(T ∗V � T ∗V ) is a Riemannian metric on V . We denote by:

G(φ)
def.
= G ◦ φ : U → Sym(ns,R)

the composition of G with φ and by Gij(φ) the components of G(φ) in the
Cartesian coordinates of V ⊂ Rns .

• R, I : V → Sym(nv,R) are smooth functions on V valued in the vector
space of nv × nv square symmetric matrices with real entries. We denote by:

R(φ)
def.
= R ◦ φ : U → Sym(nv,R) , I(φ)

def.
= I ◦ φ : U → Sym(nv,R)

the compositions of R and I with φ and by IΛΣ(φ), RΛΣ(φ) the entries of the
corresponding symmetric matrices. Furthermore, I is required to be positive
definite, a condition which is imposed in order to have a consistent kinetic term
for the gauge fields AΛ.

Therefore, the local bosonic sector of supergravity on the oriented open
sets (U, V ) is uniquely determined by a choice of Riemannian metric G on V
and matrix-valued functions I and R as described above. In some cases a
scalar potential can occur in (1), but we have set it to zero for simplicity. The
functional Sl can be naturally written as a sum of three pieces:

Sl = Sel + Ssl + Svl ,

where:
Sel [g]

def.
= −

∫
U

Rgνg

is the Einstein-Hilbert action on U ,

Ssl [g, φ]
def.
=

∫
U
Gij(φ)∂aφ

i∂aφj νg

is a local non-linear sigma model with target space metric G, and

Svl [g, φ,A]
def.
=

∫
U

{
RΛΣ(φ)FΛ

ab ∗ FΣ ab + IΛΣ(φ)FΛ
abF

Σ ab
}
νg ,

is a local Abelian Yang-Mills theory coupled to the scalars
{
φi
}
i=1,...,ns

.
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Remark 2.1. In standard supergravity terminology, Sel defines the gravity
sector of the theory, Ssl defines the scalar sector of the theory and Svl defines
the gauge sector of the theory.

The matrix I generalizes the inverse of the squared coupling constant
appearing in ordinary four-dimensional gauge theories, whereas R generalizes
the theta angle of quantum chromodynamics. All together, the generic bosonic
sector of extended supergravity couples Einstein-Hilbert’s action to a non-linear
sigma model with Riemannian target space (V,G) and to a given number of
abelian gauge fields. In supergravity terminology, the Riemannian manifold
(V,G) is called the scalar manifold of the theory and G its scalar metric.

Definition 2.2. We define a local electromagnetic structure on V to
be a pair (R, I), where both R and I are symmetric nv × nv matrix-valued
functions on V with I positive-definite. We will denote by EV the set of all
electromagnetic structures on V . We define a local scalar-electromagnetic
structure on V to be a triple (G,R, I), where G is a Riemannian metric
on V and (R, I) is an electromagnetic structure. We will refer to the local
supergravity with scalar metric G and gauge couplings (R, I) simply as the
local supergravity associated to (G,R, I).

Supersymmetry constrains the local isometry type of the Riemannian man-
ifold (V,G) that can be considered as the target space of the non-linear sigma
model of a given supergravity theory. Depending on the amount N of super-
symmetry preserved, the local isometry type of (V,G) is given as follows [4]:

Table 1 – Isometry type of the scalar manifolds of four-dimensional
supergravity, depending on the amount N of supersymmetry of the theory.

The symbol nc denotes the number of chiral multiplets, nv denotes the number
of vector multiplets and nH denotes the number of hypermultiplets

Number of
supersymmetries

Isometry type of (V,G) Dimension

N = 1 MKH 2nc
N = 2 MPSK ×MQK 2nv + 4nH
N = 3 SU(3, n)/S(U(3)×U(n)) 6nv
N = 4 SU(1, 1)/U(1)×SO(6, n)/S(O(6)×O(n)) 6nv + 2

N = 5 SU(1, 5)/S(U(1)×U(5)) 10
N = 6 SO∗(12)/(U(1)× SU(6)) 30
N = 8 E7(7)/(SU(8)/Z2) 70

Remark 2.3. The case N = 7 does not appear in the previous list because
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N = 7 supergravity can be shown to always admit an additional supersymmetry
which automatically makes it into N = 8 supergravity [13].

The symbolMKH denotes a Kähler-Hodge manifold, or more precisely a
complex manifold equipped with a chiral triple [16], whereasMPSK andMQK

respectively denote a projective special Kähler manifold and a Quaternionic-
Kähler manifold. For N > 2, the scalar manifolds appearing in the previous
table are all simply connected and non-compact symmetric manifolds equipped
with a certain Riemannian metric. All of them are diffeomorphic to Rk for an
appropriate k. In the N = 8 case, E7(7) denotes the maximally non-compact
real form of the complex exceptional Lie group E7 and SU(8)/Z2 ⊂ E7(7) is its
maximal compact subgroup.

2.1. Equations of motion

Let Gg
ab

def.
= Rg

ab−
1
2gabR

g denote the Einstein tensor associated to g. The
equations of motion that follow from the action functional (1) for a given local
scalar-electromagnetic structure (G,R, I) are the following:

• The Einstein equations:

Gg
ab =Gij(φ)∂aφ

i∂bφ
j − 1

2
gabGij(φ)∂cφ

i∂cφj

+ 2IΛΣ(φ)FΛ
acF

Σc
b −

1

2
gabIΛΣ(φ)FΛ

cdF
Σcd .

(2)

• The scalar equations:

∇ga(Gik(φ)∂aφi) =
1

2
∂kGij(φ)∂aφ

i∂aφj +
1

2
∂kRΛΣ(φ)FΛ

ab ∗ FΣab

+
1

2
∂kIΛΣ(φ)FΛ

abF
Σab .

(3)

• The Maxwell equations:

(4) ∇ga(RΛΣ(φ) ∗ FΣab + IΛΣ(φ)FΣab) = 0 .

The variables of the supergravity equations consist on Lorentzian metrics
g on U , ns scalars

{
φi
}
and nv closed two-forms

{
FΛ
}
. Conditions dFΛ = 0,

Λ = 1, . . . , nv, are known as the Bianchi identities, and ensure that F = dA
for a vector valued one-form A on U . It can be easily seen that the Maxwell
equations are equivalent to:

d(RΛΣ(φ)FΣ) = d(IΛΣ(φ) ∗ FΣ) .
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Define now the two-forms:

GΛ(φ)
def.
= RΛΣ(φ)FΣ − IΛΣ(φ) ∗ FΣ ∈ Ω2(U) , Λ = 1, . . . , n .

For ease of notation, we will sometimes drop the explicit dependence of GΛ(φ)
on φ. Then, the Bianchi identities and Maxwell equations (4) are given by:

dFΣ = 0 , dGΛ = 0 , Λ = 1, . . . , n

which in turn can be equivalently written simply as:

dV(φ) = 0 ,

where V(φ) ∈ Ω2(U,R2n) denotes the following vector of two-forms:

V(φ) =

(
F

G(φ)

)
∈ Ω2(U,R2nv) .

The following important lemma follows by direct computation.

Lemma 2.4. Let (R, I) be a local electromagnetic structure. A vector-
valued two-form V ∈ Ω2(U,R2nv) can be written as:

V =

(
F

G(φ)

)
,

for F ∈ Ω2(U,Rnv), where φ : U → Rns and G(φ) = R(φ)F − I(φ) ∗ F , if and
only if:

(5) ∗V = −J (φ)(V) ,

where J : V → Gl(2nv,R) is the matrix-valued map defined as follows

J =

(
−I−1R I−1

−I −RI−1R RI−1

)
: V → Gl(2nv,R) ,

and J (φ)
def.
= J ◦ φ : U → Gl(2nv,R). In particular, we have J 2 = −1.

Remark 2.5. The matrix-valued map J : V → Gl(2nv,R) can be under-
stood as a fiber-wise complex structure on the trivial vector bundle of rank 2nv
over V .

Equation (5) is known in the literature as the twisted self-duality condi-
tion for the field strength V ∈ Ω2(U,R2nv). The following proposition gives
the geometric interpretation of condition (5), which in turn unveils the global
geometric interpretation of the twisted self-duality condition, as we will see in
Section 3. For future reference, we define the standard symplectic form of R2n

to have the matrix representation:

(6) ω =

(
0 −Id
Id 0

)
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in the canonical basis of R2nv . More precisely, if we denote the canonical basis
of R2nv by E = (e1, . . . , env , f1, . . . , fnv), we have:

(7) ω
def.
=
∑
a

f∗a ∧ e∗a , a = 1, . . . , nv ,

where E∗= (e∗1, . . .,e
∗
nv
, f∗1,. . .,f

∗
nv

) is the basis dual to E = (e1,. . .,env, f1, . . .,fnv).

Proposition 2.6. Let ω be the standard symplectic form on R2n. A
matrix-valued map J : V → Aut(R2n) can be written as:

(8) J =

(
−I−1R I−1

−I −RI−1R RI−1

)
: V → Aut(R2n)

for a local electromagnetic structure (R, I) if and only if J |p is a compatible
taming of ω for every p ∈ V .

Remark 2.7. We recall that a complex structure J on R2nv is said to be
a compatible taming of ω if:

ω(Jξ1, Jξ2) = ω(ξ1, ξ2) , ∀ ξ1, ξ2 ∈ R2nv ,

and:
ω(ξ, Jξ) > 0 , ∀ ξ ∈ R2nv\ {0} .

In the following we shall always consider R2nv to be endowed with the sym-
plectic form ω as introduced above.

Proof. If J is taken as in equation (8) for a certain local electromagnetic
structure (R, I) then a direct computation shows that it is a compatible taming
of ω. Conversely, assume that J is a complex structure on R2nv taming ω at
every point in V (we omit the evaluation at a point for ease of notation). Let
E = (e1, . . . , env , f1, . . . , fnv) the canonical basis of R2n, which is symplectic
with respect to ω. The vectors Ef = (f1, . . . , fnv) form a basis of the complex
vector space (R2n,J ), and there exists a unique mapN : V → Mat(n,C) valued
in the complex n× n square matrices and satisfying:

(9) ea =
∑
b

Nab fb , a, b = 1, . . . , nv .

Then:

ω(ea, fb) =
∑
c

ω(Nac fc, fb) =
∑
c

Im (N )acω(Jfc, fa) = −δab ,

which implies that Im (N ) is a symmetric and positive definite n×n real matrix.
Moreover, using the previous equation and the compatibility of J with ω, we
compute:

0 = ω(ea, eb) = Re(N )ab + Im(N )acω(J(eb), fc) = Re(N )ab − Re(N )ba ,
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whence N : V → Mat(nv,C) is valued in the symmetric complex square matri-
ces of positive-definite imaginary part. Hence, setting:

R def.
= −Re(N ) , I def.

= Im(N ) ,

we obtain a well-defined local electromagnetic structure (R, I). Using again
equation (9) to compute the action of J on the basis E we obtain:

J (ea) = −RabI−1
bc ec−RabI−1

bc Rcd fd−Iad fd , J (fa) = I−1
ab eb+I

−1
ab Rbc fc ,

which is equivalent to (8).

Remark 2.8. The map N : V → Mat(nv,C) constructed in the proof of
the previous proposition is called the period matrix in the literature and can
be used to obtain a convenient local formulation of bosonic supergravity, as we
will explain in Section 2.3.

For future convenience we introduce the following definition.

Definition 2.9. A taming map J on V is a smooth map J : V →
Aut(R2nv) such that J |p is a complex structure on R2nv which compatibly
tames ω, where the latter is the standard symplectic structure on R2nv as de-
fined in (7) in terms of the canonical basis of R2nv . We will denote the space
of all taming maps by JV (R2nv , ω).

Proposition 2.10. There is a one-to-one correspondence between taming
maps J : V → Aut(R2nv) and local electromagnetic structures (R, I), i.e. there
exists a canonical bijection:

γ : EV → JV (R2nv , ω) , (R, I) 7→ J =

(
−I−1R I−1

−I −RI−1R RI−1

)
.

Proof. The statement follows directly from the proof of proposition 2.6.
The inverse:

γ−1 : JV (R2nv , ω)→ EV ,
maps a taming map J : ∈ JV (R2nv , ω) to the electromagnetic structure
γ−1(J ) = (R, I) given by:

R def.
= −Re(N ) , I def.

= Im(N ) ,

where N is the complex matrix uniquely defined by ea =
∑

bNabfb in terms of
the canonical symplectic basis E = (e1, . . . , env , f1, . . . , fnv) of (R2nv , ω).

By the previous proposition, an electromagnetic structure can be equivalently
described in terms of a taming map J and a local scalar-electromagnetic struc-
ture can be denoted simply by pair (G,J ). This description of local electromag-
netic structures is particularly convenient for the global geometric formulation
of bosonic supergravity, as we discuss in section 3.
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The gauge fields {AΛ} integrating {GΛ} are usually referred to as the
electric gauge fields, whereas the one-forms

{
AΛ
}
integrating

{
FΛ
}
are usually

referred as their dual magnetic gauge fields.

Definition 2.11. A vector-valued one-form A ∈ Ω1(U,R2nv) is said to be
twisted selfdual with respect to the Lorentzian metric g, the scalar map
φ : U → Rns and a taming map J if:

∗gV = −J (φ)(V) ,

where V = dA and ∗g is the Hodge dual associated to g and the given orientation
on U .

The global geometric interpretation of the local gauge fields (AΛ, AΛ) and
their role in the formulation of supergravity is investigated in [51] through
the implementation of Dirac quantization. Since we will not consider Dirac
quantization in this review, we will consider instead the classical configuration
space of local bosonic supergravity.

Definition 2.12. The classical configuration space ConfU (G,J ) of the
local bosonic supergravity on U associated to (G,J ), where G is a Riemannian
metric on V and J is a taming map on V , is defined as the following set:

ConfU (G,J )
def.
= {(g, φ,V) | ∗ V = −J (φ)(V) ,

g ∈ Lor(U) , φ ∈ C∞(U, V ) , V ∈ Ω2(U,R2nv)
}
.

The solution space SolU (G,J ) of the local bosonic supergravity associated
to (G,J ) is the subset of ConfU (G,J ) whose elements satisfy the equations of
motion of bosonic supergravity.

Definition 2.13. Let (G,R, I) be a scalar-electromagnetic structure. The
scalar energy momentum tensor associated to (G,R, I) is the following
map:

T (G) : ConfU (G,R, I)→ Γ(T ∗U � T ∗U) ,

(g, φ,V) 7→ Gij(φ)dφi � dφj − 1

2
gGij(φ)∂cφ

i∂cφj .

The gauge energy momentum tensor associated to (G,R, I) is the following
map:

T (R, I) = T (J ) : ConfU (G,R, I)→ Γ(T ∗U � T ∗U) ,

(g, φ,V) 7→ 2IΛΣ(φ)FΛ
acF

Σc
b dxa � dxb − 1

2
gIΛΣ(φ)FΛ

cdF
Σcd .

The sum:

T (G,R, I)
def.
= T (G) + T (R, I) : ConfU (G,R, I)→ Γ(T ∗U � T ∗U) ,
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is the energy momentum tensor of the local supergravity associated to
(G,R, I).

Remark 2.14. The Einstein equations of the local bosonic supergravity
associated to (G,J ) can be written in terms of the energy momentum tensor
simply as:

Gg = T (G,J )(g, φ,V) ,
for (g, φ,V) ∈ ConfU (G,J ).

The gauge energy momentum tensor admits a convenient formulation in terms
of the taming associated to (R, I).

Lemma 2.15. The following formula holds:

T (J )(g, φ,V) = ω(Vac,JV c
b ) dxa � dxb ,

for every (g, φ,V) ∈ ConfU (G,R, I), where J = γ(R, I).

Proof. Write V = (F,G(φ))t. We compute:

ω(Vac,JV c
b ) = F tac(I +RI−1R)F c

b +GtacI−1G c
b − 2F tacRI−1G c

b

= F tacIF c
b + ∗F tacI ∗ F c

b .

Using the relation:

∗F tacI ∗ F c
b = F tacIF c

b −
1

2
F tcdIF cdgab ,

we conclude.

Since the Maxwell equations reduce simply to the condition dV = 0, every
solution V is locally integrable and thus we can write:

(10) V =

(
FΛ

GΛ

)
=

(
dAΛ

dAΛ

)
, Λ = 1, . . . , nv .

2.2. Duality transformations of the local equations

A precise understanding of the group of duality transformations of the lo-
cal equations is crucial to construct the global geometric formulation of bosonic
extended supergravity. By duality transformations we refer here to symmetries
of the local supergravity equations which do not involve diffeomorphisms of
U , that is, symmetries that cover the identity on U . We are especially in-
terested in global symmetries of the equations of motion that may not pre-
serve the action functional (1). These symmetries extend to supergravity the
well-known electromagnetic duality transformations occurring in standard elec-
tromagnetism [21, 22] and are a key ingredient of bosonic supergravity in
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four Lorentzian dimensions and its connection to string theory. Denote by
Sp(2nv,R) ⊂ Aut(R2nv) the group of automorphisms preserving the standard
symplectic form ω and by Diff(V ) the group of diffeomorphisms of V preserv-
ing its fixed orientation. In order to characterize the duality transformations of
local bosonic supergravity we recall first that the group Diff(V ) × Sp(2nv,R)
has a natural action A on Lor(U)× C∞(U, V )× Ω2(U,R2nv) given by:

A : Diff(V )×Sp(2nv,R)× Lor(U)× C∞(U, V )× Ω2(U,R2nv)

→ Lor(U)× C∞(U, V )× Ω2(U,R2nv) ,

(f,A, g, φ,V) 7→ (g, f ◦ φ,AV) .

For every (f,A) ∈ Diff(V )× Sp(2nv,R) we define:

Af,A : Lor(U)× C∞(U, V )× Ω2(U,R2nv)→ Lor(U)× C∞(U, V )× Ω2(U,R2nv),

(g, φ,V) 7→ (g, f ◦ φ,AV) .

This action does not preserve the configuration space ConfU (G,J ) of a given lo-
cal supergravity associated to the local electromagnetic structure (G,J ). There
is however an important subgroup of Diff(V ) × Sp(2nv,R), the so-called U-
duality group, which does preserve both the configuration and solution spaces
of the given supergravity. In order to characterize it we recall first the natural
left-action of the group Diff(V )× Sp(2nv,R) on the set of taming maps, given
by:

J 7→ A (J ◦ f−1)A−1 ,
for every (f,A) ∈ Diff(V )× Sp(2nv,R) and every taming map

J : V → Aut(R2nv).

Given (f,A) ∈ Diff(V )× Sp(2nv,R) and a taming map J : V → Aut(R2nv), in
the following we define:

J fA
def.
= A (J ◦ f−1)A−1 .

Lemma 2.16. The total energy momentum tensor of local bosonic super-
gravity satisfies:

T (f∗G,J fA )(ĝ, φ̂, V̂) = T (G,J )(g, φ,V) ,

where (ĝ, φ̂, V̂) = (g, f ◦ φ,AV) for (f,A) ∈ Diff(V )× Sp(2nv,R).

Proof. We compute:

Ĝij(φ̂)∂aφ̂
i∂bφ̂

j = Ĝij(f ◦ φ)∂a(f ◦ φ)i∂b(f ◦ φ)j

= Ĝij(f ◦ φ)∂kf
i∂lf

j ∂aφ
k∂bφ

l = Gij(φ)∂aφ
k∂bφ

l ,

where we have used that:

Ĝij = (f∗G)ij = Gkl ◦ f−1 ∂i(f
−1)k∂j(f

−1)l .
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This proves the statement for the scalar energy momentum tensor, that is:

T (f∗G)(ĝ, φ̂, V̂) = T (G)(g, φ,V) .

The statement for the gauge energy momentum tensor follows directly from
Lemma 2.15, which implies:

T (J fA )(ĝ, φ̂, V̂) = T (G)(g, φ,V) ,

and hence we conclude.

Theorem 2.17. For every (f,A) ∈ Diff(V ) × Sp(2nv,R), the map Af,A
induces by restriction a bijection:

Af,A : ConfU (G,J )→ ConfU (f∗G,J fA) ,

such that it further restricts to a bijection of the corresponding spaces of solu-
tions:

Af,A : SolU (G,J )→ SolU (f∗G,J fA ) ,

where f∗G is the push-forward of G by f : V → V and J fA
def.
= A (J ◦ f−1)A−1

Remark 2.18. If we consider a pair (f,U) ∈ Diff(V )×Aut(R2nv), with A

not necessarily preserving ω, then J fA is not guaranteed to be a taming map for
the fixed standard symplectic structure ω, a condition which is necessary for
J fA to define a local electromagnetic structure. The group Diff(V )×Aut(R2nv)
was discussed in [45] as the group of pseudo-dualities of four-dimensional su-
pergravity.

Proof. We compute:

J (φ)V = − ∗g V ⇔ (J ◦ f−1)(f ◦ φ)A−1AV = −A−1A ∗g V
⇔ A (J ◦ f−1)(f ◦ φ)A−1AV = − ∗g (AV) ,

which is equivalent to J fA (f ◦ φ)AV = − ∗g (AV), whence:

Af,A(g, φ,V) ∈ ConfU (f∗G,J fA) , ∀ (g, φ,V) ∈ ConfU (G,J ) .

The fact that Af,A is a bijection is now clear. In order to prove that Af,A pre-
serves the corresponding spaces of solutions consider (ĝ, φ̂, V̂) ∈ ConfU (f∗G,J fA )
such that:

(ĝ, φ̂, V̂) = (g, f ◦ φ,AV) ,

for (f,A) ∈ Diff(V,G)× Sp(2nv,R) and (g, φ,V) ∈ SolU (G,J ). Write now:

A =

(
a b
c d

)
,
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in terms of nv × nv blocks and:

V̂ =

(
F̂

Ĝ(φ̂)

)
, V =

(
F

G(φ)

)
.

In particular F̂ = aF + bG(φ). The fact that the solution spaces of the
Einstein equations are preserved by (f,A) follows directly from Lemma 2.16,
since it implies:

Gg = T (f∗G,J fA )(ĝ, φ̂, V̂) = T (G,J )(g, φ,V) ,

We consider now the scalar equations (3), which we evaluate on (ĝ, φ̂, V̂) and
rewrite for convenience as follows:

∇g,Ĝ(φ̂)
a ∂aφ̂i +

Ĝik(φ̂)

2
(∂kR̂ΛΣ(φ̂)F̂Λ

ab ∗ F̂Σab + ∂kÎΛΣ(φ̂)F̂Λ
abF̂

Σab) = 0 ,

where ∇g,Ĝ(φ̂) is the product connection of the Levi-Civita connection of g and
the Levi-Civita connection of Ĝ(φ̂). Using the equivariance properties of the
Levi-Civita connection under metric pull-back we obtain:

∇g,Ĝ(φ̂)
a ∂aφ̂i = ∂kf

i∇g,G(φ)
a ∂aφk .

On the other hand, a tedious calculation shows that:
Ĝik(φ̂)

2 (∂kR̂ΛΣ(φ̂)F̂Λ
ab ∗ F̂Σab + ∂kÎΛΣ(φ̂)F̂Λ

abF̂
Σab)

= Ĝik(φ̂)
2 ω(V̂, ∂kĴ (φ̂)V̂) = ∂lf

i Glk(φ)
4 ω(V, ∂kJ (φ)V) ,

whence (f,G) maps solutions of the scalar equations to solutions of the scalar
equations. Finally, the solution spaces of the Maxwell equations (4) are also
clearly preserved since:

dV̂ = d(AV) = AdV ,
Therefore, (ĝ, φ̂, V̂) ∈ SolU (G,J ) if and only if (g, φ,V) ∈ SolU (G,J ).

The previous theorem can be used to characterize which elements (f,U) ∈
Diff(V ) × Sp(2nv,R) define through the action A symmetries of a the local
supergravity associated to a given local scalar-electromagnetic structure (G,J ).
Denote in the following by Iso(V,G) the isometry group of G.

Corollary 2.19. Let (f,A) ∈ Diff(V ) × Sp(2nv,R) such that
f ∈ Iso(V,G) and:

(11) J fA = A (J ◦ f−1)A−1 = J .
Then Af,A : ConfU (G,J ) → ConfU (G,J ) is a bijection of the configuration
space of the supergravity defined by the scalar-electromagnetic structure (G,J ).
In particular, Af,A preserves the solution space SolU (G,J ), that is, it maps
solutions to solutions.
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A pair (f,A) ∈ Iso(V,G) × Sp(2nv,R) satisfying equation (11) will be called
a duality transformation. It is easy to see that two duality transformations
(f1,U1) and (f2,U2) can be composed in the natural way:

(f1,A1) ◦ (f2,A2) = (f1 ◦ f2,A1 ◦ A2) ,

whence the set of all duality transformation of the local bosonic supergravity
associated to (G,J ), which we denote by U(G,J ), becomes naturally a group.

Definition 2.20. The electromagnetic U-duality group, orU-duality
group for short, of the local bosonic supergravity associated to (G,J ) is given
by:

(12) U(G,J )
def.
=
{

(f,A) ∈ Iso(V,G)× Sp(2nv,R) | AJ A−1 = J ◦ f
}
.

Remark 2.21. By corollary 2.19, for every element (f,A) ∈ U(G,J ), the
map Af,A : ConfU (G,J )→ ConfU (G,J ) restricts to a bijection

Af,A : SolU (G,J )→ SolU (G,J ).

Denote by StabSp(J ) ⊂ Sp(2nv,R) the subgroup of Sp(2nv,R) preserving the
given taming map J , that is:

StabSp(J )
def.
=
{
A ∈ Sp(2nv,R) | AJ A−1 = J

}
.

Then, for every electromagnetic structure (G,J ) we have the following short
exact sequence:

(13) 1→ StabSp(J )→ U(G,J )→ Isopr(V,G)→ 1 ,

where StabSp(J ) embeds in U(G,J ) through the map A 7→ (Id,A) and
Isopr(V,G) ⊂ Iso(V,G) is the subgroup of the isometry group of (V,G) that
is obtained by projecting U(G,J ) onto its first component in the presentation
(12). On the other hand, by definition we have a canonical surjective map:

U(G,J )→ Sppr(2nv,R) ⊂ Sp(2nv,R) , (f,A) 7→ A ,

fitting in the following short exact sequence:

(14) 1→ StabIso(J )→ U(G,J )→ Sppr(2nv,R)→ 1 ,

where:
StabIso(J )

def.
= {f ∈ Iso(V,G) | J ◦ f = J } ,

is the stabilizer of J in Iso(V,G) and Sppr(2nv,R) the subgroup of Sp(2nv,R)
that is obtained by projecting U(G,J ) onto its second component in the pre-
sentation (12). All together, we obtain the following proposition.

Proposition 2.22. The electromagnetic U-duality group U(G,J ) of the
local supergravity theory associated to the electromagnetic structure (G,J )
canonically fits into the short exact sequences (13) and (14).
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The short exact sequences (13) and (14) are very useful to compute the
electromagnetic U-duality group of a given local bosonic supergravity. In par-
ticular, we obtain the following corollary.

Corollary 2.23. If StabSp(J ) = Id then U(G,J ) = Isopr(V,G) ⊂
Iso(V,G) canonically becomes a subgroup of the isometry group of the scalar
manifold (V,G). If StabIso(J ) = Id is trivial then (14) yields a canonical em-
bedding U(G,J ) ↪→ Sp(2nv,R) in the symplectic group Sp(2nv,R). If both
StabSp(J ) = Id and StabIso(J ) = Id then the U-duality group U(G,J ) is
canonically isomorphic to a subgroup of Iso(V,G) embedded in Sp(2nv,R).

The previous corollary puts on firm grounds the validity of a folklore
statement made in the literature which states that the U-duality group con-
sists of a copy of the isometry group of the scalar manifold into the symplectic
group. Before presenting some examples it is useful to formulate local bosonic
supergravity in terms of the period matrix map.

2.3. The period matrix map

For computational as well as conceptual purposes it is convenient to de-
velop a local formulation of the theory in terms of complexified field strength
and couplings, a formulation which gives rise to the concept of period matrix
(whose name will be justified in a moment). We define the complexified field
strengths:

F+ def.
= F − i ∗ F , F−

def.
= F + i ∗ F ,

in terms of which the gauge sector of the theory (associated to a given electro-
magnetic structure (R, I)) is conveniently written, using matrix notation, as
follows:

Svl [gU , φ,A]
def.
=

i

4

∫
U

{
F+TNF+ − F−TN ∗F−

}
νgU ,

where we have defined the period matrix map:

N def.
= −R+ iI : V → Sym(nv,C) .

Since (R, I) is a local electromagnetic structure, the map N is in fact a function
on V valued in Siegel upper space SH(nv) ⊂ Mat(nv,C) of square nv × nv
complex matrices with positive definite imaginary part. For ease of notation,
we define:

N (φ) = −R(φ) + iI(φ)
def.
= N ◦ φ : U → SH(nv) ,

to which we will refer as the scalar period matrix map.

Remark 2.24. The term period matrix is motivated by the role played by
N when the bosonic supergravity theory under consideration corresponds to
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the effective theory of a Type-IIB compactification on a Calabi-Yau three-fold
X. In such situation, N establishes linear relations between the periods on the
moduli space of complex structures of X with respect to a symplectic basis of
the third homology group of X [30].

The twisted self-duality condition can be described in a very natural man-
ner by introducing complexified field strengths. Recall that the complexifica-
tion of the vector space of real vector-valued two-forms Ω2(U,R2nv) is given by
Ω2(U,C2nv), the vector space of two-forms taking values in the complex vector
space C2nv . We define:

G±
def.
=

1

2
(G∓ i ∗G) ∈ Ω2(U,Cnv) , V± def.

=
1

2
(V ∓ i ∗ V) ∈ Ω2(U,C2nv) .

Note that we have:
∗F± = ±iF± .

Proposition 2.25. A vector-valued two-form V ∈ Ω2(U,R2nv) is twisted
self-dual with respect to a scalar map φ and a taming map:

J =

(
−I−1R I−1

−I −RI−1R RI−1

)
: V → Aut(R2nv) ,

if and only if:

(15) V+ =

(
F+

N ∗(φ)F+

)
for a complex self-dual two-form F+ = 1

2(F − i ∗ F ), where N = R+ iI : V →
SH(nv).

Proof. By Lemma 2.4, V is twisted self-dual with respect to J if and only
if:

V =

(
F

RF − I ∗ F

)
,

for F ∈ Ω2(U,Rnv). This equation can be easily shown to be equivalent to:

(16) V+ =

(
F+

N ∗(φ)F+

)
by computing V+ = 1

2(V − i ∗ V).

With these provisos in mind, we obtain:

G+ = N ∗(φ)F+ , G− = N (φ)F− , V+ = (F+,N ∗F+)t ,

where the superscript ∗ denotes complex conjugation. These conditions are
equivalent with:

V =
1

2
(V+ + V−) ,

being twisted self-dual with respect to the corresponding J .
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Remark 2.26. Since a period matrix N is equivalent to the data (R, I),
which in turn is equivalent to its associated taming map J , we will sometimes
denote the electromagnetic structure (R, I) simply by N .

Due to the fact that the period matrix N takes values in the Siegel upper
space, the real symplectic group Sp(2nv,R) acts on N through the natural left
action of Sp(2nv,R) on SH(nv) via fractional transformations. Recall that the
fractional transformation of τ ∈ SH(nv) by a matrix A ∈ Sp(2nv,R) is, by
definition, given by:

A · τ =
c+ dτ

a+ bτ

def.
= (c+ dτ)(a+ bτ)−1 , τ ∈ SH(nv) ,

where we wrote A in nv × nv blocks as follows:

A =

(
a b
c d

)
.

This is the natural generalization of the action of Sl(2,R) on the upper-half
plane. Hence, a symplectic matrix A ∈ Sp(2n,R) acts point-wise on the period
matrix N (φ) : U → SH(nv):

A · N (φ) =
c+ dN (φ)

a+ bN (φ)
.

Remark 2.27. More generally, Diff(V )× Sp(2nv,R) has a natural left ac-
tion on the set of period matrix maps as follows:

N 7→ A · N ◦ f−1 ,

for every (f,A) ∈ Diff(V )× Sp(2nv,R) and every period matrix map N : V →
SH(nv).

Since a period matrix map N : V → SH)(nv) is equivalent to a taming
map J : V → Aut(R2nv) we can describe the electromagnetic U-duality group
defined in 2.20 in terms of a period matrix map. For this, we recall first that,
as an immediate consequence of Proposition 2.10, there exists a bijection:

µ : JV (R2nv , ω)→ C∞(V,SH(nv)) ,

which, to every compatible taming J ∈ JV (R2nv , ω) assigns the following period
matrix:

µ(J ) = R+ iI : V → SH(nv) ,

where γ−1(R, I) = J is the electromagnetic structure associated to J by
means of the bijection γ. The inverse of µ maps every period matrix τ =
Re(τ) + iIm(τ) : V → SH(nv) to the taming defined explicitly by equation (8)
by identifying R = Re(τ) and I = Im(τ).
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Lemma 2.28. The map µ : JV (R2nv , ω) → C∞(V,SH(nv)) is equivariant
with respect to the natural action of Diff(V ) × Sp(2nv,R on JV (R2nv , ω) and
C∞(V,SH(nv), respectively. That is, the following relation holds:

µ(J fA ) = A · µ(J ) ◦ f−1 ,

for every (f,A) ∈ Diff(V )× Sp(2nv,R).

Proposition 2.29. Let J be a taming map and set N def.
= µ(J ). The

electromagnetic U-duality group U(G,J ) of the local bosonic supergravity asso-
ciated to (G,J ) is canonically isomorphic to:
(17)
U(G,N )

def.
= {(f,A) ∈ Iso(V,G)× Sp(2nv,R) | A · N = N ◦ f} , N = µ(J ) ,

through the identity map U(G,N ) 3 (f,A) 7→ (f,A) ∈ U(G,J ).

Proof. It is enough to note that (f,A) ∈ Diff(V ) × Sp(2nv,R) satisfies
J fA = J if and only if µ(J fA ) = µ(J ), which in turn is equivalent to:

A · µ(J ) = µ(J ) ◦ f ,

by Lemma 2.28.

Remark 2.30. Equation (17), which defines the duality group in terms of
the period matrix N , can be alternatively obtained as follows, which is the way
in which this group is usually described in the literature. Consider:

(ĝ, φ̂, V̂) = (g, f ◦ φ,AV) ,

for (f,A) ∈ Diff(V,G)× Sp(2nv,R) and (g, φ,V) ∈ SolU (G,J ). Write:

A =

(
a b
c d

)
.

By Proposition 2.25, we have V+ = (F+,N ∗(φ)F+) but in general for an
arbitrary (f,A) there will exist no period matrix N̂ : V → SH(nv) such that
V̂+ = (F̂+, N̂ ∗(φ̂)F̂+). Imposing that such period matrix N̂ exists we obtain:

N̂ = A · N ◦ f−1 ,

and the condition appearing in (17) follows now by imposing N̂ = N .

Using the previous canonical identification between U(G,N ) and U(G,J )
we obtain short exact sequences for U(G,N ) analogous to (13) and (14), namely:

1→ StabSp(N )→ U(G,N )→ Isopr(V,G)→ 1 ,

1→ StabIso(N )→ U(G,N )→ Sppr(2nv,R)→ 1 ,(18)
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where:

StabSp(N )
def.
= {A ∈ Sp(2nv,R) | A · N = N} ,

StabIso(N )
def.
= {f ∈ Iso(V,G) | N ◦ f = N}

We consider now several examples of importance in supergravity, which
are more conveniently studied using the period matrix map rather than the
taming map.

Example 2.31. Assume that N ∈ SH(nv) is a constant matrix. Then:

N ◦ f = A · N ,

for every f ∈ Iso(V,G) and A ∈ StabSp(N ) ⊂ Sp(2nv,R). Since the action
of Sp(2nv,R) on SH(nv) is transitive with stabilizer isomorphic to the unitary
group U(nv) ⊂ Sp(2nv,R) and N is assumed to be constant, the conjugacy
class of the stabilizer of N in Sp(2nv,R) is independent of N . Therefore:

U(G,N ) ' Iso(V,G)×U(nv) ,

is by Proposition 2.22 the corresponding U-duality group.

Example 2.32. Set nv = 1. We have SH(1) = H. Furthermore, assume
V = H is equipped with its Poincaré metric G. Take N : H → H to be the
identity map, that is, N (τ) = τ where τ is the global coordinate on H. Notice
that this particular period matrix occurs in pure N = 4 four-dimensional su-
pergravity [11]. We have Iso(H,G) = PSl(2,R) acting on H through fractional
transformations. Hence:

N ◦ f(τ) = f · τ = f · N (τ) = f̂ · N (τ) , ∀ f ∈ Iso(H,G) ,

where f̂ ∈ Sl(2,R) denotes any lift of f ∈ PSl(2,R) to Sl(2,R). This implies
that Isopr(M,G) = Iso(M,G). On the other hand, a direct computation shows
that:

StabSp(N ) = Z2 = {Id,−Id} ⊂ Sl(2,R) .
Therefore, by Proposition 2.22 we have the following short exact sequence:

(19) 1→ Z2 → U(G,N )→ PSl(2,R)→ 1 ,

which yields a central extension of U(G,N ). Using now the fact that
StabIso(N ) = Id we conclude that the electromagnetic U-duality group is
U(G,N ) = Sl(2,R) and (19) is indeed a non-trivial central extension of the
isometry group of the scalar manifold.

Example 2.33. Take nv = 2 and set V = H equipped with its Poincaré
metric G. Consider the period matrix N : H→ SH(2) defined as follows:

N (τ) =

(
τ 0
0 − 1

τ

)
,
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where τ is the global coordinate on H. Clearly N is symmetric. Furthermore,
its imaginary part is positive definite:

ImN (τ) =

(
Im (τ) 0

0 Im (τ)
|τ |2

)
,

whence N is a well-defined period matrix. In fact, N is the period matrix
occurring in the axio-dilaton model of N = 2 supergravity, see for example [36,
Section 2] for more details. It is unambiguously fixed by supersymmetry and
in particular by the projective special Kähler structure of the scalar manifold
of the theory. As in the previous example, we have:

Iso(V,G) = PSl(2,R) ,

acting through fractional transformations. Let A ∈ Sp(4nv,R). A quick com-
putation shows that:

U · N = N ,

if and only if:
U = (u, u) ∈ SO(2)× SO(2) ↪→ Sp(4,R) ,

where the embedding is diagonal. Hence: StabSp(N ) = U(1) diagonally em-
bedded in Sp(4,R). On other hand, it can be seen that Isopr(H,G) = PSl(2,R)
and hence, the electromagnetic U-duality group fits into the following short
exact sequence:

1→ U(1)→ U(G,N )→ PSl(2,R)→ 1 ,

by Proposition 2.22. Moreover, it can be easily verified that StabIso(N ) = Id.
Hence, the U-duality group is canonically embedded as U(G,N ) = Sppr(4,R) ↪→
Sp(4,R), which provides an explicit realization of the electromagnetic U-duality
group in Sp(4,R).

Example 2.34. Take nv = 2 and set V = H equipped with its Poincaré
metric G. Consider the period matrix N : H→ SH(2) defined as follows:

N (τ) =

(
τ2

2 (τ + 3τ∗) −3
2τ(τ + τ∗)

−3
2τ(τ + τ∗) 3(τ + τ∗) + 3

2(τ − τ∗)

)
,

where τ is the global coordinate on H. Clearly N is symmetric. Its imaginary
part can be computed to be:

ImN (τ) =

(
Im (τ)3 + 3Re (τ)2Im (τ) −3Re (τ)Im (τ)

−3Re (τ)Im (τ) 3Im (τ)

)
,

It is easy to see that Tr (ImN (τ)) > 0 and det(ImN (τ)) > 0 whence Im (N )
is positive definite and N is well-defined as a period matrix. In fact, N is
the period matrix occurring in the t3 model of N = 2 supergravity, see [58,
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Section 7] for more details, which is a particularly important supergravity model
in the context of Type-II compactifications on Calabi-Yau three-folds. It is
unambiguously fixed by supersymmetry and in particular by the projective
special Kähler structure of the scalar manifold of the theory. As in the previous
example, we have:

Iso(V,G) = PSl(2,R) ,

acting through fractional transformations on τ . We have N ◦ f = N for f ∈
Iso(V,G) if and only if f is the identity, whence StabIso(N ) = Id and U(G,N )
embeds in Sp(4,R). Let A ∈ Sp(4nv,R). A tedious computation shows now
that:

U · N = N ,

if and only if A = Id as well as Isopr(V,G) = Iso(V,G). Therefore, the U-duality
group is isomorphic to PSl(2,R) and is canonically embedded in Sp(4,R).

Remark 2.35. Definition 2.20 and Proposition 2.22 should be compared
with the characterization of U-duality groups already existing in the supergrav-
ity literature, see for instance [6, 30]. The general approach considers a fixed
embedding of the isometry group in the symplectic group of the appropriate
dimension in such a way that for each isometry of (V,G) there exists a unique
symplectic transformation satisfying Equation (11) and no isometry leaves J
(or the period matrix) invariant. This immediately implies by assumption that
StabSp(N ) = StabIso = Id and hence such U-duality group is simply a copy
of the isometry group of (V,G) inside Sp(2nv,R). This is in general not the
case for the U-duality group introduced in Definition 2.20, which therefore dif-
fers from the one considered in the literature. This difference becomes more
dramatic when considering the global formulation of the theory, see Section 4.

3. GEOMETRIC BOSONIC SUPERGRAVITY

In this section we describe the global geometric formulation of the generic
bosonic sector of supergravity on an oriented four-manifold M , to which we
will refer simply as geometric bosonic supergravity, or geometric supergravity
for short, following the terminology introduced in [16]. The key points we have
considered when constructing geometric bosonic supergravity are the following:

• We have required geometric bosonic supergravity to be defined in terms
of global differential operators acting on the spaces of sections of the appropriate
fiber bundles. This is specially important to study the global structure of
supergravity solutions and the associated moduli spaces.
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• We have required geometric supergravity to implement the electromag-
netic U-duality groups described in Section 2.2, in the sense that it must be
possible to understand the theory as being the result of gluing the local theories
introduced in Section 2 by means of a C̆ech one cocycle valued in the symplectic
group Sp(2n,R). This point is specially important for geometric supergravity
to describe supergravity U-folds in a differential-geometric context, as explained
in [49], which is particularly relevant for string theory applications.

Since we are mainly interested in the mathematical structure of the gauge
sector of the theory (which is responsible for the existence of a symplectic duality
structure), we will assume for simplicity that the theory is coupled to a standard
non-linear sigma model, instead of the more general notion of section sigma
model considered in [50].

Instead of going through the process of constructing geometric bosonic
supergravity we present it in its final form and we discuss its most interesting
features. A geometric bosonic supergravity with metrically trivial section sigma
model is determined by the following data [49]:

• An oriented and complete Riemannian manifold (M,G), the so-called
scalar manifold of the theory.

• A triple ∆
def.
= (S, ω,D) consisting of a vector bundle S overM endowed

with the symplectic pairing ω and the flat symplectic connection D. We denote
the complexification of ∆ = (S, ω,D) by ∆C = (SC, ωC,DC).

• A compatible taming J on (S, ω,D), that is, a complex structure on S
satisfying:

ω(J s1,J s2) = ω(s1, s2) , Q(s, s)
def.
= ω(s,J s) ≥ 0 ,

for all s1, s2, s ∈ S, with Q(s, s) = 0 if and only if s = 0. We will denote by
Θ

def.
= (∆,J ) a pair consisting of a flat symplectic vector bundle ∆ equipped

with a compatible taming J .

Following the terminology of [49], and given a scalar manifold (M,G), we
will refer to ∆ as a duality structure and to Θ = (∆,J ) as an electromagnetic
structure. The notion of morphism of duality structures and electromagnetic
structures is the natural one given by a morphism of vector bundle preserving
the relevant data data, see [49] for more details. Finally, we will refer to a
scalar manifold (M,G) together with a choice of electromagnetic structure Θ
as a scalar-electromagnetic structure Φ:

Φ
def.
= (M,G,Θ) .
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A choice of duality structure ∆ together with a scalar manifold (M,G) will be
referred to as a scalar-duality structure, being denoted simply by (M,G,∆).
Isomorphism classes of duality structures on a fixed scalar manifold M are
in general not unique and depend on the fundamental group of M. By the
standard theory of flat vector bundles, isomorphism classes of duality structures
are in one to one correspondence with the character variety:

Md
def.
= Hom(π1(M),Sp(2nv,R))/Sp(2nv,R) .

Remark 3.1. The fact that character varieties yield in general continu-
ous moduli spaces implies that one can construct an uncountable infinity of
inequivalent geometric bosonic supergravites, all of which are however locally
equivalent.

A duality structure ∆ can be trivial in two generally inequivalent senses.
We say that ∆ is symplectically trivial if (S, ω) ∈ ∆ is symplectically trivial,
that is, if it admits a global symplectic frame. On the other hand, we will
say that ∆ is holonomy trivial if ∆ is symplectically trivial and the holonomy
of D is in addition trivial. Note that if M is simply connected every duality
structure is symplectically trivial and holonomy trivial.

3.1. Geometric background

Let Φ = (M,G,Θ) be a scalar-electromagnetic structure. Smooth maps
from M toM will be called scalar maps. For every scalar map ϕ : M →M we
use the superscript ϕ to denote bundle pull-back by ϕ. For instance, ∆ϕ will
denote the pull-back of ∆ by ϕ, which defines a flat symplectic vector bundle
over M , and Θϕ will denote the pull-back of Θ by ϕ, respectively. For every
Lorentzian metric g onM and scalar map ϕ we define an isomorphism of vector
bundles:

?g,J ϕ : ΛT ∗M ⊗ Sϕ → ΛT ∗M ⊗ Sϕ ,
through the following equation:

?g,J ϕ(α⊗ s) = ∗gα⊗ J ϕ(s) , α ∈ ΛT ∗M , s ∈ Sϕ

on homogeneous elements. Since the square of the Hodge operator on two-
forms is minus the identity, we obtain by restriction an involutive isomorphism
of vector bundles:

?g,J ϕ : Λ2T ∗M ⊗ Sϕ → Λ2T ∗M ⊗ Sϕ ,

that is, ?2
g,J ϕ = 1. Hence we can split the bundle of two-forms taking values in

Sϕ in eigenbundles of ?g,J ϕ :

Λ2T ∗M ⊗ Sϕ = (Λ2T ∗M ⊗ Sϕ)+ ⊕ (Λ2T ∗M ⊗ Sϕ)− ,



27 Geometric supergravity and electromagnetic duality 291

where the subscript denotes the corresponding eigenvalue. The associated
spaces of sections will be denoted accordingly by:

Ω2(M,Sϕ) = Ω2
+(M,Sϕ)⊕ Ω2

−(M,Sϕ) .

Definition 3.2. Elements of Ω2
+(M,Sϕ) will be called twisted selfdual

two-forms and elements of Ω2
−(M,Sϕ) will be called twisted anti-selfdual

two-forms.

The flat symplectic connection Dϕ ∈ ∆ϕ defines a canonical exterior covariant
derivative for forms on M taking values in Sϕ, which we denote by:

dDϕ : Ωk(M,Sϕ)→ Ωk+1(M,Sϕ) ,

where k = 0, . . . 4. Since Dϕ is flat, the operator dDϕ is a coboundary oper-
ator on the complex of forms taking values in Sϕ. We denote the associated
cohomology groups by Hk(M,∆ϕ) and the corresponding total cohomology by
H(M,∆ϕ). Denote by:

G∆(U)
def.
= {s ∈ Γ(U,Sϕ) | Dϕs = 0} , U ⊂M ,

the sheaf of smooth flat sections of ∆. This is a locally constant sheaf of
symplectic vector spaces of rank 2nv, whose stalk is isomorphic to the typical
fiber of ∆. There exists a natural isomorphism of graded vector spaces:

H(M,∆ϕ) ' H(M,G∆) ,

where H(M,G∆) denotes the sheaf cohomology of G∆.
Note that the definition of electromagnetic structure Θ = (∆,J ) does not

require D ∈ ∆ to be compatible with J ; the case when they are non-compatible
is in fact crucial for the correct description of geometric bosonic supergravity.
The failure of D to be compatible with J is measured by the fundamental form
of an electromagnetic structure.

Definition 3.3. Let Φ = (M,G,Θ) be a scalar-electromagnetic structure.
The fundamental form Ψ of Θ is the following one-form on M taking values
in End(S):

Ψ
def.
= DJ ∈ Ω1(M,End(S)) .

Remark 3.4. It is not hard to see that Ψ(X) ∈ Γ(End(S)), X ∈ TM, is an
anti-linear self-adjoint endomorphism of the Hermitian vector bundle (S, Q,J ).

Definition 3.5. An electromagnetic structure Θ is called unitary if Ψ = 0.

To define geometric bosonic supergravity we need to introduce three natural
operations on tensors taking values in a vector bundle. These operations depend
on the choice of electromagnetic structure Θ.
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Definition 3.6. The twisted exterior pairing (·, ·)g,Qϕ is the unique pseudo-
Euclidean scalar product on ΛT ∗M ⊗ Sϕ satisfying:

(ρ1 ⊗ s1, ρ2 ⊗ s2)g,Qϕ = (ρ1, ρ2)gQ
ϕ(s1, s2) ,

for any ρ1, ρ2 ∈ Ω(M) and any s1, s2 ∈ Γ(Sϕ), where (−,−)g denotes the scalar
product induced by g on tensors over M . Recall that Q(s1, s2) = ω(s1,J s2)
and the superscript denotes pull-back by ϕ.

For any vector bundle W over M , we trivially extend the twisted exterior
pairing to a W -valued pairing (which for simplicity we denote by the same
symbol) between the bundles W ⊗ ΛT ∗M ⊗ Sϕ and ΛT ∗M ⊗ Sϕ:

(w ⊗ η1, η2)g,Qϕ
def.
= w ⊗ (η1, η2)g,Qs , ∀w ∈ Γ(W ) , ∀ η1, η2 ∈ ΛT ∗M ⊗ Sϕ .

Definition 3.7. The inner g-contraction of (2,0) tensors is the bundle
morphism �g : (⊗2T ∗M)⊗2 → ⊗2T ∗M uniquely determined by the condition:

(α1 ⊗ α2)�g (α3 ⊗ α4) = (α2, α4)gα1 ⊗ α3 , ∀α1, α2, α3, α4 ∈ T ∗M .

We define the inner g-contraction of two-forms to be the restriction of �g
to ∧2T ∗M ⊗ ∧2T ∗M ⊂ (⊗2T ∗M)⊗2.

Definition 3.8. We define the twisted inner contraction of Sϕ-valued two-
forms to be the unique morphism of vector bundles:

�Q : Λ2T ∗M ⊗ Sϕ ×M Λ2T ∗M ⊗ Sϕ → ⊗2(T ∗M)

satisfying:
(ρ1 ⊗ s1)�Q (ρ2 ⊗ s2) = Qϕ(s1, s2)ρ1 �g ρ2 ,

for all ρ1, ρ2 ∈ Ω2(M) and all s1, s2 ∈ Γ(Sϕ).

3.2. Configuration space and equations of motion

In this section, we define geometric bosonic supergravity through a sys-
tem of partial differential equations which yields a non-trivial extension of local
supergravity as described in Section 2. We remark that geometric bosonic su-
pergravity is not expected to admit in general an action functional, which is
consistent with the fact that it implements U-duality non-trivially and therefore
its globally-defined solutions can be viewed as locally geometric supergravity
U-folds. We begin by introducing the configuration space of geometric bosonic
supergravity, which yields the space of variables of its system of partial differ-
ential equations.
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Definition 3.9. Let Φ be a scalar-electromagnetic structure on an oriented
four-manifoldM . The configuration space of geometric bosonic supergravity
on (M,Φ) is the set:

ConfM (Φ)
def.
=
{

(g, ϕ,V) | g ∈ Lor(M) , ϕ ∈ C∞(M,M) , V ∈ Ω2
+(M,Sϕ)

}
,

where Lor(M) denotes the space of Lorentzian metrics on M .

Definition 3.10. Let Φ be a scalar-electromagnetic structure on M . The
geometric bosonic supergravity onM associated to Φ is defined by the following
system of partial differential equations:

• The Einstein equations:

(20) Ricg − g

2
Rg =

g

2
Trg(Gϕ)− Gϕ + 2V �Q V .

• The scalar equations:

(21) Tr g(∇dϕ) =
1

2
(∗V,ΨϕV)g,Qϕ ,

where ∇ denotes the connection on T ∗M ⊗TMϕ defined as the tensor product
of the Levi-Civita connection on (M, g) and the pull-back by ϕ of the Levi-
Civita connection on (M,G).

• The Maxwell equations:

(22) dDϕV = 0 ,

for triples Φ = (g, ϕ,V) ∈ ConfM (Φ).

Remark 3.11. The configuration space ConfM (Φ) = ConfM (G,∆,J ) of
geometric bosonic supergravity contains as variables the field strength two-form
instead of the appropriate notion of gauge potential, which should be described
globally by an adequate notion of connection. To identify the geometrically
correct notion of gauge potential we have to first Dirac quantize the theory,
similarly to what is done with standard Maxwell theory. In the latter theory,
assuming that the field strength has integral periods allows one to identify
the gauge potential as a connection on a certain principal S1 bundle. The
complete Dirac quantization of four-dimensional supergravity and its geometric
interpretation has not been developed in the literature and is currently work in
progress [51].

Remark 3.12. The fact that geometric bosonic supergravity reduces lo-
cally to the standard formulation of local bosonic supergravity was proved in
[49], to which we refer the reader for further details.
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In the following we will denote by SolM (Φ) = SolM (G,∆,J ) ⊂ ConfM (Φ)
the solution set of the geometric bosonic supergravity on M associated to the
scalar-electromagnetic structure Φ.

4. THE GLOBAL DUALITY GROUP

In this section we characterize the global duality group of geometric bosonic
supergravity for a fixed scalar electromagnetic structure Φ = (M,G,Θ), which
corresponds to the global counterpart of the electromagnetic U-duality group
of the local theory, as discussed in Section 2.2. Given a duality structure
∆ = (S, ω,D), we denote by Aut(S) the group of unbased automorphisms of
the vector bundle S ∈ ∆. Given u ∈ Aut(S) we will denote by fu : M →M
the unique diffeomorphism covered by u. Moreover, we denote by Aut(∆) the
group of unbased automorphisms of S preserving both ω and D, that is:

Aut(∆)
def.
= {u ∈ Aut(S) | ωu = ω , Du = D} .

Given a duality structure ∆ overM, the group Aut(∆) has a natural left-action
on Lor(M)× C∞(M,M)× Ω2(S), given by:

A : Aut(∆)×Lor(M)× C∞(M,M)× Ω2(M,S)

→ Lor(M)× C∞(M,M)× Ω2(M,S) ,

(u, g, ϕ,V) 7→ (g, fu ◦ ϕ, u · V) ,

which gives the global counterpart of (11). For every u ∈ Aut(∆), we define:

Au : Lor(M)× C∞(M,M)× Ω2(M,S)→ Lor(M)× C∞(M,M)× Ω2(M,S) ,

(g, ϕ,V) 7→ (g, fu ◦ ϕ, u · V) .

This action does not preserve the configuration space ConfU (G,J ) of a given
scalar-electromagnetic structure Φ = (G,J ). Instead, we have the following
result, which gives the global counterpart of Theorem 2.17.

Theorem 4.1 ([49, Theorem 3.15]). For every u ∈ Aut(∆), the map Au
defines by restriction a bijection:

Au : ConfM (G,∆,J )→ ConfM (fu∗G,∆,Ju) ,

which induces a bijection between the corresponding spaces of solutions:

Au : SolM (G,∆,J )→ SolM (fu∗G,∆,Ju) ,

where fu∗G is the push-forward of G by fu : M → M and Ju is the bundle
push-forward of J by u.
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Remark 4.2. Since elements in Aut(S) may cover non-trivial diffeomor-
phisms of M, the pull-back/push-forward conditions appearing above must
be dealt with care. More explicitly, define the following action of Aut(S) on
sections of S:

u · s = u ◦ s ◦ f−1
u : M → S , u ∈ Aut(S) , s ∈ Γ(S) .

This action defines an isomorphism of real vector spaces u : Γ(S) → Γ(S) for
every element u ∈ Aut(S). We have ωu = ω if and only if:

(ωu)(s1, s2)
def.
= ω(u · s1, u · s2) ◦ fu = ω(s1, s2) , ∀ s1, s2 ∈ Γ(S) .

Likewise, Du = D if and only if:

DuX(s)
def.
= u−1 · (Df∗uX(u · s)) = DX(s) , ∀ s ∈ Γ(S) , ∀ X ∈ X(M) ,

where f∗uX ∈ X(M) is the pull-back of X ∈ X(M) by fu : M→M. Moreover,
the explicit push-forward of J by u ∈ Aut(S) is given as follows:

Ju(s)
def.
= u · (J (u−1 · s)) = u ◦ J (u−1 ◦ s) ,

for every s ∈ Γ(S).

Therefore, Aut(∆) yields the global counterpart of the pseudo-duality group
considered in [45], which is given by Diff(M) × Sp(2nv,R), and therefore dif-
fers remarkably from the latter if ∆ is non-trivial. Every u ∈ Aut(∆) maps the
configuration and solutions spaces of the supergravities associated to (G,∆,J )
to those associated to (fu∗G,∆,Ju). Denote by Autb(∆) ⊂ Aut(∆) the sub-
group consisting of automorphisms of Aut(∆) covering the identity. We have
the short exact sequence:

1→ Autb(∆)→ Aut(∆)→ Diff∆(M)→ 1 ,

where Diff∆(M) is the subgroup of the orientation-preserving diffeomorphism
group ofM that can be covered by elements in Aut(∆), which necessarily con-
tains the identity component of Diff(M). The proof of the following important
lemma can be found in [27].

Lemma 4.3. Let ∆ be a duality structure and m ∈M. We have a canon-
ical isomorphism:

Autb(∆) = C(Holm(D),Aut(Sm, ωm)) ,

where Holm(D) denotes the holonomy group of D at m ∈ M, Aut(Sm, ωm) '
Sp(2nv,R) is the automorphism group of the fiber (Sm, ωm) = (S, ω)|m and
C(Holm(D),Aut(Sm, ωm))) denotes the centralizer of Holm(D) in Aut(Sm, ωm).
In particular, Autb(∆) is finite-dimensional.
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We now introduce a global counterpart of the local electromagnetic U-
duality group which is traditionally studied in the supergravity literature and
was discussed in Section 2.

Definition 4.4. Let Φ = (G,∆,J ) be a scalar-electromagnetic structure
onM. We define the electromagnetic U-duality group S(Φ) of Φ, or U-
duality group for short, as the subgroup of Aut(∆) which preserves both the
metric G and the taming J . That is:

S(Φ)
def.
= {u ∈ Aut(∆) | fu∗G = G , J u = J } ,

where J ∈ Φ.

Remark 4.5. We have J u = J if and only if:

J (u ◦ s) = u ◦ J (s) , ∀ s ∈ Γ(s) ,

where ◦ composition of maps.

We denote by Autb(Θ) ⊂ Autb(∆) the based automorphisms of ∆, which are
vector bundle isomorphisms covering the identity and preserving both ∆ and
J . The U-duality group G fits into the following short exact sequence:

1→ Autb(Θ)→ S(Φ)→ IsoΦ(M,G)→ 1 ,

where IsoΦ(M,G) ⊂ Iso(M,G) is the subgroup of the isometry group of (M,G)
that can be covered by elements in S(Φ). Since Autb(Θ) ⊂ Autb(∆), Lemma
4.3 implies that Autb(Θ) is finite-dimensional. Moreover, IsoΦ(M,G) is well-
known to be a finite-dimensional Lie group, which in turn implies that S(Φ)
is a finite-dimensional Lie group which yields the global counterpart of the
local electromagnetic U-duality group defined in (12). The U-duality group of
a supergravity theory maps solutions of that theory to solutions and thus it
can be used as a solution generating mechanism, as the following corollary of
Theorem 4.1 states.

Corollary 4.6. The U-duality group S(Φ) of the supergravity theory
associated to Φ preserves SolM (Φ), that is, it maps solutions to solutions. In
particular, every u ∈ SM (Φ) defines a bijection from SolM (Φ) to itself.

4.1. Holonomy trivial duality structure

In this section we consider the U-duality group in the special case when
the duality structure ∆ is holonomy trivial, that is, when it admits a global
flat symplectic frame. Fixing such a frame E = (e1, . . . , env , f1, . . . , fnv), whose
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dual coframe we denote by E∗ = (e∗1, . . . , e
∗
nv
, f∗1 , . . . , f

∗
nv

), we can canonically
identify ∆ as follows:

S =M×R2nv , ω =
∑
j

f∗j ∧ e∗j , D = d: Ω(M,R2nv)→ Ω(M,R2nv) ,

where d denotes the standard exterior derivative acting on forms taking values
on R2nv . A taming J ∈ Aut(S) of ∆ is equivalent through this identification
to a unique smooth taming map:

J : M→ Aut(R2nv) .

Moreover, E yields a canonical identification of the unbased automorphism
group of Aut(S):

Aut(S) = Diff(M)× C∞(M,Aut(R2nv)) ,

whose action is given by:

(f,U)(p, v) = (f(p),A(p)(v)) ,

for every (p, v) ∈M× R2nv and

(f,A) ∈ Aut(S) = Diff(M)× C∞(M,Aut(R2nv)).

An element (f,A) ∈ Aut(S) preserves ω and D if and only if A is constant
and belongs to the symplectic group Sp(2nv,R) ⊂ Aut(R2nv) defined as the
stabilizer of ω in Aut(R2nv). Therefore:

Aut(∆) = Diff(M)× Sp(2nv,R) ,

which corresponds to the group Diff(V ) × Sp(2nv,R) considered in section 2.
The pullback J u of J by u = (f,A) ∈ Aut(∆) reads:

J u−1 |p(p, v) = (u · J )|f−1(p)(u
−1|p · (p, v)) = u · J |f−1(p)(f

−1(p),A−1(v))

= (p,AJf−1(p)A
−1(v)).

Thus an element (f,A) ∈ Aut(∆) preserves J : M→ Aut(R2nv) if and only if:

A(J ◦ f−1)A−1 = J ,

which in turn implies that the electromagnetic U-duality group associated to a
scalar electromagnetic structure Φ = (G,∆,J ) is given by:

(23) S(Φ)
def.
=
{

(f,A) ∈ Aut(∆) | f∗G = G , AJ A−1 = J ◦ f
}
,

which recovers equation (12).
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5. SUPERGRAVITY KILLING SPINOR EQUATIONS

In the previous sections we discussed the generic bosonic sector of four-
dimensional supergravity, which a priori does not involve supersymmetry and
relies only on a consistent coupling of gravity, scalars and abelian gauge fields
in a manner compatible with electromagnetic duality. In order to have the com-
plete picture of geometric supergravity and to showcase the power of supersym-
metry, we need to discuss the supergravity Killing spinor equations, which arise
from imposing invariance under supersymmetry transformations on a purely
bosonic solution. For the moment, we denote by B the bosonic fields of a
four-dimensional supergravity theory, which we know from Section 3 to con-
sist of Lorentzian metrics, smooth maps into the scalar manifold of the theory
and twisted self-dual two-forms taking values in the duality bundle, and let us
denote by F the corresponding fermionic fields. The latter depend heavily on
the specific supergravity theory under consideration. Given a supersymmetry
parameter ε, which we can think of as being a spinor on M∗, the infinitesi-
mal supersymmetry transformations of B and F in the direction ε correspond
schematically to an infinitesimal transformation of the form:

δεB = F(ε) , δεF = B(ε)

where the right hand side depends linearly on ε. A solution (B,F) of four-
dimensional supergravity is said to be supersymmetric if it is invariant under
such an infinitesimal transformation, i.e.:

(24) δεB = F(ε) = 0 , δεF = B(ε) = 0 .

To the best of our knowledge, there is no fully general and mathematically
rigorous formulation of these transformations which could serve to give the
basis of a mathematical theory of supergravity including its complete fermionic
sector and supersymmetry transformations. As disappointing as this may seem,
what is important to us is that if we restrict the previous transformations to
a purely bosonic background, that is, if we set F = 0, (24) reduces to an
expression of the form:

(25) δεF = B(ε) = 0 ,

which is expected to admit a rigorous mathematical formulation using the tools
of mathematical gauge theory and global differential geometry and analysis. In
the case of four-dimensional ungauged supergravity, equation (25) yields a sys-
tem of partial differential equations for a metric g, a scalar map ϕ and a twisted
∗More precisely, it is a section of a bundle of real or complex Clifford modules of certain

type, which is in general not associated to a spin structure but the more general notion of
Lipschitz structure instead, see [47, 48] for more details.
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self-dual two-form V coupled to a spinor ε. In agreement with the terminology
introduced earlier, a bosonic solution B is then said to be supersymmetric if
Equation (25) holds. The spinorial equations arising from δεF = 0 are always
of the type:

DBε = 0 , QB(ε) = 0 ,

where ε ∈ Γ(S) is a section of an appropriate bundle of real or complex Clifford
modules over the underlying manifold M , DB is a connection on S depend-
ing on B and QB ∈ Γ(End(S)) is an endomorphism of S depending also on
B. We note that the mathematical theory of supergravity Killing spinor equa-
tions is far from being established, so in the following we will content ourselves
with presenting some particular examples where such mathematical formula-
tion does exist, see [16] for more details. The main difficulty in developing the
mathematical theory of supergravity Killing spinor equations resides in giving
global mathematical sense to the local formulas available in the supergravity
physics literature for DB and QB(ε), which involve state of the art geometric
structures subtly coupled through supersymmetry.

5.1. Pure (AdS) N = 1 supergravity

We fix an oriented Lorentzian spin four-manifold, which for simplicity in
the exposition we will assume to satisfy H1(M,Z2) = 0 (so the spin structure is
unique up to isomorphism). For every Lorentzian metric g on M , we denote by
Sg the unique (modulo isomorphism) bundle of irreducible real Clifford modules
over the bundle of Clifford algebras Cl(M, g) of (M, g). Pure (AdS) N = 1
supergravity is the simplest four-dimensional supergravity theory. The scalar
manifold consists of a point and the duality structure is trivial of zero rank.
The scalar potential is constant. The bosonic matter content of the theory,
that is, its configuration space, consists therefore simply of a Lorentzian metric
and the theory admits the following action functional [58, Chapter 5]:

S[g] =

∫
U

[
Rg + 6λ2

]
volg .

The partial differential equations associated to the variational problem of the
previous functional are:

Ric(g) = −3λ2 g .

Therefore, bosonic pure AdS N = 1 supergravity is given by Einstein’s theory
of gravity coupled to a non positive cosmological constant. The Killing spinor
equations of the theory read [58, Chapter 5]:

(26) ∇gvε =
λ

2
v · ε , ∀ v ∈ X(M) ,
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for a real spinor ε ∈ Γ(Sg). Consequently, an Einstein metric g with Einstein
constant −3λ2 is a supersymmetric solution of N = 1 pure AdS supergrav-
ity if and only if (M, g) admits a spinor ε satisfying (26). Hence, the set of
supersymmetric solutions of pure (AdS) N = 1 supergravity is given by:

SolS(M,λ) =

{
(g, ε) | Ric(g) = −3λ2 g , ∇gvε =

λ

2
v · ε , ∀v ∈ X(M)

}
.

Equation (26) is a particular case of a real Killing spinor equation on a
Lorentzian four-manifold, and has been studied in [53, 17]. Reference [53]
proves that an oriented and spin Lorentzian four-manifold carrying a solution
of (26) such that λ 6= 0 is locally conformally a Brinkmann space-time. On the
other hand, Reference [17] proves the following global result.

Theorem 5.1 ([17, Theorem 5.3]). (M, g) admits a nontrivial real Killing
spinor with Killing constant λ

2 if and only if it admits a pair of orthogonal one-
forms u, l ∈ Ω1(M) with u lightlike and l of positive unit norm satisfying:

∇gu = λu ∧ l , ∇gl = κ⊗ u+ λ(l ⊗ l − g) ,

for some κ ∈ Ω1(M). In this case, u] ∈ X(M) is a Killing vector field with
geodesic integral curves.

Remark 5.2. Theorem 5.1 immediately implies that κ is closed if and only
if Leitner’s result holds with respect to u, that is, if and only if every such (M, g)
is locally conformally Brinkmann with respect to u. We have not been able to
prove that κ is necessarily closed.

Of course, when λ = 0 equation (26) reduces to the condition of ε being
a parallel spinor, which has been extensively studied both in the mathematics
and physics literature, see for example [52] and references therein. To the
best knowledge of the authors, the differential topology of globally hyperbolic
Lorentzian manifolds carrying a solution of (26) has not been investigated in
the literature. We believe that the global characterization provided by Theorem
5.1 is a convenient starting point for such a study.

5.2. Chiral N = 1 supergravity with constant scalar map and
superpotential

We fix an oriented and spin Lorentzian four-manifold, which we assume to
satisfyH1(M,Z2) = 0 for the same reasons as in the previous section. For every
Lorentzian metric g on M , we denote by $g the unique (modulo isomorphism)
bundle of irreducible complex Clifford modules over Cl(M, g). The Lorentzian
volume form of (M, g) is denoted by ν, while the complex volume form is denote
by νC = iν.
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We have:

ν2
C = 1 ,(27)

Therefore, the complex spinor bundle splits as a sum of chiral bundles:

$g = $−g ⊕ $+
g ,

where the superscript denotes the chirality. To describe chiralN = 1 supergrav-
ity with constant scalar map and superpotential (see [32, 58] for more details)
we take the scalar manifold to be a point and the duality structure to be trivial
of rank zero. Under these assumptions, it can be shown that the theory admits
an action functional given by:

S[g] =

∫
U

[
Rg + 24|w|2

]
volg ,

where w ∈ C is a complex constant corresponding to the superpotential and
U ⊂M is any relatively compact open set. The equations of motion associated
to the previous functional read:

Ric(g) = −12|w|2g ,

which are the standard Einstein equations coupled to a non positive cosmologi-
cal constant. Using the chiral splitting $g = $−g ⊕$+

g , we define for every w ∈ C
the following morphism of complex vector bundles:

Tw : Ω0($g)→ Ω1($g) , Tw(ε1 ⊕ ε2)(v) = γ(v)(wε1 ⊕ w̄ε2) ,

where γ : Cl(M, g) → End($g) denotes Clifford multiplication. In terms of
Tw : Ω0($g)→ Ω1($g) the Killing spinor equations of the theory are given by:

(28) ∇gε = Tw(ε) , c(ε) = ε ,

where ∇g denotes the lift of the Levi-Civita connection to the spinor bundle
and:

c : $g → $g
denotes the canonical complex-conjugate and spin-equivariant automorphism
of the complex spinor bundle $g (see [16] for more details). Therefore, the set
SolS(M) of supersymmetric solutions on M consists on pairs (g, ε), with g a
Lorentzian metric and ε chiral spinor, such that:

SolS(M) =
{

(g, ε) |Ric(g) = −12|w|2 g , ∇gε = Tw(ε) , c(ε) = ε , ∀v ∈ X(M)
}
.

It is important to point out that Equation (28) does not correspond to a
standard Killing spinor equation (for neither real nor imaginary Killing spinors)
unless w is real, due to the fact that the endomorphism Tw involves the complex
conjugate of w. This in turn implies that the number that occurs as the Einstein
constant of the corresponding integrability condition is actually |w|2. This
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allows w to be any complex number instead of only real or purely imaginary.
To the best of our knowledge, the globally hyperbolic Lorentzian four-manifolds
that admit supersymmetric solutions to this supergravity theory have not been
investigated in the literature.

5.3. Chiral N = 1 supergravity with vanishing superpotential

We fix an oriented Lorentzian Spinc(3, 1) four-manifold, which for simplic-
ity of exposition we will assume to satisfy H2(M,Z) = 0 (so that isomorphism
classes of spinc structures on M are unique). For every Lorentzian metric g on
M , we denote by $g the unique (modulo isomorphism) bundle of irreducible
complex Clifford modules over Cl(M, g). As before, the complex spinor bundle
splits as a sum of chiral bundles:

$g = $−g ⊕ $+
g ,

where the superscript denotes chirality. The scalar manifold of N = 1 super-
gravity with vanishing superpotential and with trivial duality structure of rank
zero is a complex manifoldM equipped with a negative Hermitian holomorphic
line bundle (L,H) with Hermitian structure H. The Riemannian metric G oc-
curring in the non-linear sigma model of four-dimensional supergravity is given
by the metric induced by the curvature of the Chern connection of (L,H),
see [8, 16] for more details. Such N = 1 supergravity admits a Lagrangian
formulation with Lagrangian given by:

Lag[g, ϕ] = Rg − |dϕ|2G,g ,
for pairs (g, ϕ) consisting of Lorentzian metrics g and scalar maps ϕ : M →M.
As it is standard in the theory of harmonic maps (or wave maps), we consider:

dϕ ∈ Ω1(M,TMϕ) ,

as a one-form on M taking values in the pullback of TMϕ by ϕ. Therefore,
the theory reduces to Einstein gravity coupled to a non-linear sigma model
with target space given by the complex manifoldM equipped with the Kähler
metric defined by the curvature of the Chern connection of (L,H). The Killing
spinor equations are given by:

∇ϕε = 0 , dϕ0,1 · ε = 0 ,

where ∇ϕ : Γ($g) → Γ($g) is the canonical lift of the Levi-Civita connection
on (M, g) together with the pull-back of the Chern connection on (L,H) by ϕ.
Therefore, the set ConfS(M,M,L,H) of supersymmetric configurations on M
consists on triples (g, ϕ, ε), with g a Lorentzian metric, ϕ : M → M a scalar
map and ε a chiral spinor, such that:

ConfS(M,M,L,H) =
{

(g, ϕ, ε) | ∇ϕε = 0 , dϕ0,1 · ε = 0
}
.
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Lorentzian manifolds (M, g) admitting a solution (g, ϕ, ε) to the Killing spinor
equations stated above are particular instances of Lorentzian Spinc(3, 1) man-
ifolds admitting parallel spinors. Simply connected and geodesically complete
Lorentzian manifolds admitting spin-c parallel spinors have been studied and
classified in the literature, see reference [57] for the Riemannian case and Ref-
erence [46] for the pseudo-Riemannian case. It cannot be expected a priori that
every Spinc(3, 1) Lorentzian four-manifold which admits a parallel spinor also
admits a solution to the above Killing spinor equations. Adapting the main
Theorem of [46] to our situation we obtain the following result.

Proposition 5.3. LetM be a simply-connected and geodesically complete
Lorentzian four-manifold admitting a supersymmetric solution (g, ϕ, ε) of N =
1 chiral supergravity with vanishing superpotential. Then, one of the following
holds:

1. (M, g) is isometric to four-dimensional flat Minkowski space.

2. (M, g) is isometric to (M, g) ' (R2×X, η1,1×h), where η1,1 is the flat
two-dimensional Minkowski metric and X is a Riemann surface equipped with
a Kähler metric h.

3. The holonomy group H of (M, g) is a subgroup of SO(2) n R2 ⊂
SO0(3, 1), where SO(2) nR2 is the stabilizer of a null vector in R4.

Therefore, every geodesically complete and simply connected supersym-
metric solution must be of the form described by the previous proposition.
However, the converse need not be true, since a supersymmetric solution re-
quires (M, g) to admit a parallel spinor with respect to the specific connection
∇ϕ, which is coupled to the scalar map ϕ, which is in turn required to satisfy
its corresponding Killing spinor equation. To the best of our knowledge, the
problem of classifying globally hyperbolic Lorentzian four-manifolds carrying
supersymmetric solutions of this supergravity theory is currently open.
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