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Edge-contraction operations form an effective tool in various graph enumeration
problems, such as counting Grothendieck’s dessins d’enfants and simple and dou-
ble Hurwitz numbers. These counting problems can be solved by a mechanism
known as topological recursion, which is a mirror B-model corresponding to these
counting problems. We show that for the case of orbifold Hurwitz numbers, the
mirror objects, i.e., the spectral curve and the differential forms on it, are con-
structed solely from the edge-contraction operations of the counting problem in
genus 0 and one marked point. This forms a parallelism with Gromov-Witten
theory, where genus 0 Gromov-Witten invariants correspond to mirror B-model
holomorphic geometry.

AMS 2010 Subject Classification: Primary 14N35, 81T45, 14N10; Secondary
53D37, 05A15.

Key words: topological recursion, ribbon graphs, Hurwitz numbers, mirror curves.

1. INTRODUCTION

The purpose of the present paper is to identify the mirror B-model objects
that enable us to solve certain graph enumeration problems. We consider sim-
ple and orbifold Hurwitz numbers, by giving a graph enumeration formulation
for these numbers. We then show that the mirror of these counting problems
are constructed from the edge-contraction operations of [8] applied to orbifold
Hurwitz numbers for the case of genus 0 and one-marked point.

Edge-contraction operations provide an effective method for graph enu-
meration problems. It has been noted in [11] that the Laplace transform of
edge-contraction operations on many counting problems corresponds to the
topological recursion of [14]. In this paper, we examine the construction of
mirror B-models corresponding to the simple and orbifold Hurwitz numbers.
In general, enumerative geometry problems, such as computation of Gromov-
Witten type invariants, are often solved by studying a corresponding problem
on the mirror dual side. The effectiveness of the mirror method relies on
complex analysis and holomorphic geometry technique that is available on the
mirror B-model side. The question we consider in this paper is the following:
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Question 1.1. How do we find the mirror of a given enumerative problem?

We give an answer to this question for a class of graph enumeration
problems that are equivalent to counting orbifold Hurwitz numbers. The key
is the edge-contraction operations. The base case, or the case for the “moduli
space” M0,1, of the edge contraction in the counting problem identifies the
mirror dual object, and a universal mechanism of complex analysis, known as
the topological recursion of [14], solves the B-model side of the counting
problem. The solution is a collection of generating functions of the original
counting problem for all genera.

Bouchard and Mariño [3] conjectured that generating functions for simple
Hurwitz numbers could be calculated by the topological recursion of [14], based
on the spectral curve identified as the Lambert curve

(1.1) x = ye−y.

Here, the notion of spectral curve is the mirror dual object for the counting
problem. They arrived at the mirror dual by a consideration of mirror symme-
try of open Gromov-Witten invariants of toric Calabi-Yau threefolds [2]. The
mirror geometry of a toric Calabi-Yau threefold is completely determined by
a plane algebraic curve known as the mirror curve. The Lambert curve (1.1)
appears as the infinite framing number limit of the mirror curve of C3. The
Hurwitz number conjecture of [3] was then solved in a series of papers by one
of the authors [13, 21], using the Lambert curve as a given input. Since conjec-
ture is true, the Lambert curve (1.1) should be the mirror B-model for Hurwitz
numbers. But why? In [13, 21], we did not attempt to give any explanation.

The emphasis of our current paper is to prove that the mirror dual object
is simply a consequence of the M0,1 case of the edge-contraction operation
on the original counting problem. The situation is similar to several cases
of Gromov-Witten theory, where the mirror is constructed by the genus 0
Gromov-Witten invariants themselves.

To illustrate the idea, let us consider the number Td of connected trees
consisting of labeled d nodes (or vertices). The initial condition is T1 = 1. The
numbers satisfy a recursion relation

(1.2) (d− 1)Td =
1

2

∑
a+b=d
a,b≥1

ab

(
d

a

)
TaTb.

A tree of d nodes has d−1 edges. The left-hand side counts how many ways we
can eliminate an edge. When an edge is eliminated, the tree breaks down into
two disjoint pieces, one consisting of a labeled nodes, and the other b = d− a
labeled nodes. The original tree is restored by connecting one of the a nodes on
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one side to one of the b nodes on the other side. The equivalence of counting
in this elimination process gives (1.2). From the initial value, the recursion
formula generates the tree sequence 1, 1, 3, 16, 125, 1296, . . . . We note, however,
that (1.2) does not directly give a closed formula for Td. To find one, we
introduce a generating function, or a spectral curve

(1.3) y = y(x) :=
∞∑
d=1

Td
(d− 1)!

xd.

In terms of the generating function, (1.2) becomes equivalent to

(1.4)

(
x2 ◦ d

dx
◦ 1

x

)
y =

1

2
x

d

dx
y2 ⇐⇒ dx

dy
=
x(1− y)

y
.

The initial condition is y(0) = 0 and y′(0) = 1, which allows us to solve the
differential equation uniquely. Lo and behold, the solution is exactly (1.1).

To find the formula for Td, we need the Lagrange Inversion Formula.
Suppose that f(y) is a holomorphic function defined near y = 0, and that
f(0) 6= 0. Then the inverse function of x = y

f(y) near x = 0 is given by

(1.5) y =

∞∑
k=1

(
d

dy

)k−1 (
f(y)k

)∣∣∣∣∣
y=0

xk

k!
.

The proof is elementary and requires only Cauchy’s integration formula.
Since f(y) = ey in our case, we immediately obtain Cayley’s formula Td = dd−2.

The point we wish to make here is that the real problem behind the scene
is not tree-counting, but simple Hurwitz numbers. This relation is understood
by the correspondence between trees and ramified coverings of P1 by P1 of
degree d that are simply ramified except for one total ramification point. When
we look at the dual graph of a tree, elimination of an edge becomes contracting
an edge, and this operation precisely gives a degeneration formula for counting
problems on Mg,n. The base case for the counting problem is (g, n) = (0, 1),
and the recursion (1.2) is the result of the edge-contraction operation for simple
Hurwitz numbers associated withM0,1. In this sense, the Lambert curve (1.1)
is the mirror dual of simple Hurwitz numbers.

The paper is organized as follows. In Section 2, we present combinatorial
graph enumeration problems, and show that they are equivalent to counting
of simple and orbifold Hurwitz numbers. In Section 3, the spectral curves of
the topological recursion for simple and orbifold Hurwitz numbers (the mirror
objects to the counting problems) are constructed from the edge-contraction
formulas for (g, n) = (0, 1) invariants.
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2. ORBIFOLD HURWITZ NUMBERS AS GRAPH
ENUMERATION

Mirror symmetry provides an effective tool for counting problems of
Gromov-Witten type invariants. The question is how we construct the mir-
ror, given a counting problem. Although there is so far no general formalism,
we present a systematic procedure for computing orbifold Hurwitz numbers in
this paper. The key observation is that the edge-contraction operations for
(g, n) = (0, 1) identify the mirror object.

The topological recursion for simple and orbifold Hurwitz numbers are
derived as the Laplace transform of the cut-and-join equation [1, 13, 21], where
the spectral curves are identified by the consideration of mirror symmetry of
toric Calabi-Yau orbifolds [1, 3, 15, 16]. In this section we give a purely com-
binatorial graph enumeration problem that is equivalent to counting orbifold
Hurwitz numbers. We then show in the next section that the edge-contraction
formula restricted to the (g, n) = (0, 1) case determines the spectral curve and
the differential forms W0,1 and W0,2 of [1]. These quantities form the mirror
objects for the orbifold Hurwitz numbers.

2.1. Cell graphs

To avoid unnecessary confusion, we use the terminology cell graphs in
this article, instead of more common ribbon graphs. Ribbon graphs naturally
appear for encoding complex structures of a topological surface (see for ex-
ample, [18, 19]). Our purpose of using ribbon graphs are for degeneration of
stable curves, and we label vertices, instead of faces, of a ribbon graph.

Definition 2.1 (Cell graphs). A connected cell graph of topological type
(g, n) is the 1-skeleton of a cell-decomposition of a connected closed oriented
surface of genus g with n labeled 0-cells. We call a 0-cell a vertex, a 1-cell
an edge, and a 2-cell a face, of the cell graph. We denote by Γg,n the set of
connected cell graphs of type (g, n). Each edge consists of two half-edges
connected at the midpoint of the edge.

Remark 2.2.

• The dual of a cell graph is a ribbon graph, or Grothendieck’s dessin
d’enfant. We note that we label vertices of a cell graph, which corresponds
to face labeling of a ribbon graph. Ribbon graphs are also called by different
names, such as embedded graphs and maps.

• We identify two cell graphs if there is a homeomorphism of the surfaces
that brings one cell-decomposition to the other, keeping the labeling of 0-cells.
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The only possible automorphisms of a cell graph come from cyclic rotations of
half-edges at each vertex.

Definition 2.3 (Directed cell graph). A directed cell graph is a cell
graph for which an arrow is assigned to each edge. An arrow is the same as an
ordering of the two half-edges forming an edge. The set of directed cell graphs
of type (g, n) is denoted by ~Γg,n.

Remark 2.4. A directed cell graph is a quiver. Since our graph is drawn
on an oriented surface, a directed cell graph carries more information than its
underlying quiver structure. The tail vertex of an arrowed edge is called the
source, and the head of the arrow the target, in the quiver language.

An effective tool in graph enumeration is edge-contraction operations.
Often edge contraction leads to an inductive formula for counting problems of
graphs.

Definition 2.5 (Edge-contraction operations). There are two types of
edge-contraction operations applied to cell graphs.

• ECO 1. Suppose there is a directed edge ~E =
−→
pipi in a cell graph

γ ∈ ~Γg,n, connecting the tail vertex pi and the head vertex pj . We contract ~E
in γ, and put the two vertices pi and pj together. We use i for the label of this

new vertex, and call it again pi. Then we have a new cell graph γ′ ∈ ~Γg,n−1
with one less vertices. In this process, the topology of the surface on which γ
is drawn does not change. Thus genus g of the graph stays the same.

pi pj pi

E

Figure 2.1 – Edge-contraction operation ECO 1. The edge bounded by two
vertices pi and pj is contracted to a single vertex pi.

• We use the notation ~E for the edge-contraction operation

(2.1) ~E : ~Γg,n 3 γ 7−→ γ′ ∈ ~Γg,n−1.

• ECO 2. Suppose there is a directed loop ~L in γ ∈ ~Γg,n at the i-th
vertex pi. Since a loop in the 1-skeleton of a cell decomposition is a topological
cycle on the surface, its contraction inevitably changes the topology of the
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surface. First we look at the half-edges incident to vertex pi. Locally around
pi on the surface, the directed loop ~L separates the neighborhood of pi into
two pieces. Accordingly, we put the incident half-edges into two groups. We
then break the vertex pi into two vertices, pi1 and pi2 , so that one group of
half-edges are incident to pi1 , and the other group to pi2 . The order of two
vertices is determined by placing the loop ~L upward near at vertex pi. Then
we name the new vertex on its left by pi1 , and on its right by pi2 .

Let γ′ denote the possibly disconnected graph obtained by contracting ~L
and separating the vertex to two distinct vertices labeled by i1 and i2.

pi

1
pi 2

piL

Figure 2.2 – Edge-contraction operation ECO 2. The contracted edge is a loop
~L of a cell graph. Place the loop so that it is upward near at pi to which ~L is
attached. The vertex pi is then broken into two vertices, pi1 on the left, and
pi2 on the right. Half-edges incident to pi are separated into two groups,

belonging to two sides of the loop near pi.

• If γ′ is connected, then it is in ~Γg−1,n+1. The loop ~L is a loop of handle.

We use the same notation ~L to indicate the edge-contraction operation

(2.2) ~L : ~Γg,n 3 γ 7−→ γ′ ∈ ~Γg−1,n+1.

• If γ′ is disconnected, then write γ′ = (γ1, γ2) ∈ ~Γg1,|I|+1 × ~Γg2,|J |+1,
where

(2.3)

{
g = g1 + g2

I t J = {1, . . . , î, . . . , n}
.

The edge-contraction operation is again denoted by

(2.4) ~L : ~Γg,n 3 γ 7−→ (γ1, γ2) ∈ ~Γg1,|I|+1 × ~Γg2,|J |+1.

In this case we call ~L a separating loop. Here, vertices labeled by I belong to
the connected component of genus g1, and those labeled by J are on the other
component of genus g2. Let (I−, i, I+) (reps. (J−, i, J+)) be the reordering of
I t {i} (resp. J t {i}) in the increasing order. Although we give labeling i1, i2
to the two vertices created by breaking pi, since they belong to distinct graphs,
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we can simply use i for the label of pi1 ∈ γ1 and the same i for pi2 ∈ γ2. The
arrow of ~L translates into the information of ordering among the two vertices
pi1 and pi2 .

Remark 2.6. The use of directed cell graphs enables us to define edge-
contraction operations, keeping track with vertex labeling. We refer to [10]
for the actual motivation for quiver cell graphs. Since our main concern is
enumeration of graphs, the extra data of directed edges does not plan any role.
In what follows, we deal with cell graphs without directed edges. The edge-
contraction operations are defined with a choice of direction, but the counting
formula we derive does not depend of this choice.

Remark 2.7. Let us define m(γ) = 2g− 2 +n for a graph γ ∈ Γg,n. Then
every edge-contraction operation reduces m(γ) exactly by 1. Indeed, for ECO
1, we have

m(γ′) = 2g − 2 + (n− 1) = m(γ)− 1.

The ECO 2 applied to a loop of handle produces

m(γ′) = 2(g − 1)− 2 + (n+ 1) = m(γ)− 1.

For a separating loop, we have

2g1 − 2 + |I|+ 1
+) 2g2 − 2 + |J |+ 1

2g1 + 2g2 − 4 + |I|+ |J |+ 2 = 2g − 2 + n− 1.

2.2. r-Hurwitz graphs

We choose and fix a positive integer r. The decorated graphs we wish to
enumerate are the following.

Definition 2.8 (r-Hurwitz graph). An r-Hurwitz graph (γ,D) of type
(g, n, d) consists of the following data.

• γ is a connected cell graph of type (g, n), with n labeled vertices.

• |D| = d is divisible by r, and γ has m = d/r unlabeled faces and s
unlabeled edges, where

(2.5) s = 2g − 2 +
d

r
+ n.

• D is a configuration of d = rm unlabeled dots on the graph subject to
the following conditions:
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1. The set of d dots are grouped into m subsets of r dots, each of which
is equipped with a cyclic order.

2. Every face of γ has cyclically ordered r dots.

3. These dots are clustered near vertices of the face. At each corner of
the face, say at Vertex i, the dots are ordered according to the cyclic order that
is consistent of the orientation of the face, which is chosen to be counter-clock
wise.

4. Let µi denote the total number of dots clustered at Vertex i. Then
µi > 0 for every i = 1, . . . , n. Thus we have an ordered partition

(2.6) d = µ1 + · · ·+ µn.

In particular, the number of vertices ranges 0 < n ≤ d.

5. Suppose an edge E connecting two distinct vertices, say Vertex i and
j, bounds the same face twice. Let p be the midpoint of E. The polygon
representing the face has E twice on its perimeter, hence the point p appears
also twice. We name them as p and p′. Which one we call p or p′ does not
matter. Consider a path on the perimeter of this polygon starting from p and
ending up with p′ according to the counter-clock wise orientation. Let r′ be
the total number of dots clustered around vertices of the face, counted along
the path. Then it satisfies

(2.7) 0 < r′ < r.

For example, not all r dots of a face can be clustered at a vertex of degree 1.
In particular, for the case of r = 1, the graph γ has no edges bounding the
same face twice.

An arrowed r-Hurwitz graph (γ, ~D) has, in addition to the above data
(γ,D), an arrow assigned to one of the µi dots from Vertex i for each index
1 ≤ i ≤ n.

The counting problem we wish to study is the number Hrg,n(µ1 . . . , µn)
of arrowed r-Hurwitz graphs for a prescribed ordered partition (2.6), counted
with the automorphism weight. The combinatorial data corresponds to an
object in algebraic geometry. Let us first identify what the r-Hurwitz graphs
represent. We denote by P1[r] the 1-dimensional orbifold modeled on P1 that
has one stacky point

[
0
/(

Z/(r)
)]

at 0 ∈ P1.

Example 2.9. The base case is Hr0,1(r) = 1 (see Figure 2.3). This counts

the identity morphism P1[r]
∼−→ P1[r].
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Figure 2.3 – The graph has only one vertex and no edges. All r dots are
clustered around this unique vertex, with an arrow attached to one of them.

Because of the arrow, there is no automorphism of this graph.

Definition 2.10 (Orbifold Hurwitz cover and Orbifold Hurwitz numbers).
An orbifold Hurwitz cover f : C −→ P1[r] is a morphism from an orbifold C
that is modeled on a smooth algebraic curve of genus g that has

1. m stacky points of the same type as the one on the base curve that
are all mapped to

[
0
/(

Z/(r)
)]
∈ P1[r],

2. arbitrary profile (µ1, . . . , µn) with n labeled points over ∞ ∈ P1[r],

3. and all other ramification points are simple.

If we replace the target orbifold by P1, then the morphism is a regular map from

a smooth curve of genus g with profile (

m︷ ︸︸ ︷
r, . . . , r) over 0 ∈ P1, labeled profile

(µ1, . . . , µn) over ∞ ∈ P1, and a simple ramification at any other ramification
point. The Euler characteristic condition (2.5) of the graph γ gives the number
of simple ramification points of f through the Riemann-Hurwitz formula. The
automorphism weighted count of the number of the topological types of such
covers is denoted by Hr

g,n(µ1, . . . , µn). These numbers are referred to as orbifold
Hurwitz numbers. When r = 1, they count the usual simple Hurwitz numbers.

The counting of the topological types is the same as counting actual
orbifold Hurwitz covers such that all simple ramification points are mapped to
one of the s-th roots of unity ξ1, . . . , ξs, where ξ = exp(2πi/s), if all simple
ramification points of f are labeled. Indeed, such a labeling is given by elements
of the cyclic group {ξ1, . . . , ξs} of order s. Let us construct an edge-labeled
Hurwitz graph from an orbifold Hurwitz cover with fixed branch points on the
target as above. We first review the case of r = 1, i.e., the simple Hurwitz
covers. Our graph is essentially the same as the dual of the branching graph of
[22].

2.3. Construction of r-Hurwitz graphs

First we consider the case r = 1. Let f : C −→ P1 be a simple Hur-
witz cover of genus g and degree d with labeled profile (µi, . . . , µn) over ∞,
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unramified over 0 ∈ P1, and simply ramified over B = {ξ1, . . . , ξs} ⊂ P1, where
ξ = exp(2πi/s) and s = 2g − 2 + d + n. We denote by R = {p1, . . . , ps} ⊂ C
the labeled simple ramification points of f , that is bijectively mapped to B
by f : R −→ B. We choose a labeling of R so that f(pα) = ξα for every
α = 1, . . . , s.

On P1, plot B and connect each element ξα ∈ B with 0 by a straight
line segment. We also connect 0 and ∞ by a straight line z = t exp(πi/s),
0 ≤ t ≤ ∞. Let ∗ denote the configuration of the s line segments. The
inverse image f−1(∗) is a cell graph on C, for which f−1(0) forms the set of
vertices. We remove all inverse images f−1(0ξα) of the line segment 0ξα from
this graph, except for the ones that end at one of the points pα ∈ R. Since
pα is a simple ramification point of f , the line segment ending at pα extends
to another vertex, i.e., another point in f−1(0). We denote by γ∨ the graph
after this removal of line segments. We define the edges of the graph to be the
connected line segments at pα for some α. We use pα as the label of the edge.
The graph γ∨ has d vertices, s edges, and n faces.

An inverse image of the line 0∞ is a ray starting at a vertex of the graph
γ∨ and ending up with one of the points in f−1(∞), which is the center of a
face. We place a dot on this line near at each vertex. The edges of γ∨ incident
to a vertex are cyclically ordered counter-clockwise, following the natural cyclic
order of B. Let pα be an edge incident to a vertex, and pβ the next one at
the same vertex according to the cyclic order. We denote by dαβ the number
of dots in the span of two edges pα and pβ, which is 0 if α < β, and 1 if
β < α. Now we consider the dual graph γ of γ∨. It has n vertices, d faces,
and s edges still labeled by {p1, . . . , ps}. At the angled corner between the
two adjacent edges labeled by pα and pβ in this order according to the cyclic
order, we place dαβ dots. The data (γ,D) consisting of the cell graph γ and the
dot configuration D is the Hurwitz graph corresponding to the simple Hurwitz
cover f : C −→ P1 for r = 1.

It is obvious that what we obtain is an r = 1 Hurwitz graph, except for
the condition (5) of the configuration D, which requires an explanation. The
dual graph γ∨ for r = 1 is the branching graph of [22]. Since |B| = s is the
number of simple ramification points, which is also the number of edges of
γ∨, the branching graph cannot have any loops. This is because two distinct
powers of ξ in the range of 1, . . . , s cannot be the same. This fact reflects in the
condition that γ has no edge that bounds the same face twice. This explains
the condition (5) for r = 1.

Remark 2.11. If we consider the case r = 1, g = 0 and n = 1, then
s = d − 1. Hence the graph γ∨ is a connected tree consisting of d nodes
(vertices) and d− 1 labeled edges. Except for d = 1, 2, every vertex is uniquely
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labeled by incident edges. The tree counting of Introduction is relevant to
Hurwitz numbers in this way.

Now let us consider an orbifold Hurwitz cover f : C −→ P1[r] of genus
g and degree d = rm with labeled profile (µi, . . . , µn) over ∞, m isomor-
phic stacky points over

[
0
/(

Z/(r)
)]
∈ P1[r], and simply ramified over B =

{ξ1, . . . , ξs} ⊂ P1[r], where s = 2g − 2 + m + n. By R = {p1, . . . , ps} ⊂ C we
indicate the labeled simple ramification points of f , that is again bijectively
mapped to B by f : R −→ B. We choose the same labeling of R so that
f(pα) = ξα for every α = 1, . . . , s.

On P1[r], plot B and connect each element ξα ∈ B with the stacky point
at 0 by a straight line segment. We also connect 0 and ∞ by a straight line
z = t exp(πi/s), 0 ≤ t ≤ ∞, as before. Let ∗ denote the configuration of the s
line segments. The inverse image f−1(∗) is a cell graph on C, for which f−1(0)
forms the set of vertices. We remove all inverse images f−1(0ξα) of the line
segment 0ξα from this graph, except for the ones that end at one of the points
pα ∈ R. We denote by γ∨ the graph after this removal of line segments. We
define the edges of the graph to be the connected line segments at pα for some
α. We use pα as the label of the edge. The graph γ∨ has m vertices, s edges.

The inverse image of the line 0∞ forms a set of r rays at each vertex
of the graph γ∨, connecting m vertices and n centers f−1(∞) of faces. We
place a dot on each line near at each vertex. These dots are cyclically ordered
according to the orientation of C, which we choose to be counter-clock wise.
The edges of γ∨ incident to a vertex are also cyclically ordered in the same way.
Let pα be an edge incident to this vertex, and pβ the next one according to the
cyclic order. We denote by dαβ the number of dots in the span of two edges
pα and pβ. Let γ denote the dual graph of γ∨. It now has n vertices, m faces,
and s edges still labeled by {p1, . . . , ps}. At the angled corner between the
two adjacent edges labeled by pα and pβ in this order according to the cyclic
order, we place dαβ dots, again cyclically ordered as on γ∨. The data (γ,D)
consisting of the cell graph γ and the dot configuration D is the r-Hurwitz
graph corresponding to the orbifold Hurwitz cover f : C −→ P1[r].

We note that γ∨ can have loops, unlike the case of r = 1. Let us place γ∨

locally on an oriented plane around a vertex. The plane is locally separated
into r sectors by the r rays f−1(0∞) at this vertex. There are s half-edges
coming out of the vertex at each of these r sectors. A half-edge corresponding
to ξα cannot be connected to another half-edge corresponding to ξβ in the same
sector, by the same reason for the case of r = 1. But it can be connected to
another half-edge of a different sector corresponding again to the same ξα. In
this case, within the loop there are some dots, representing the rays of f−1(0∞)
in between these half-edges. The total number of dots in the loop cannot be r,
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because then the half-edges being connected are in the same sector. Thus the
condition (5) is satisfied.

Example 2.12. Theorem 2.15 below shows that

H2
0,2(3, 1) =

9

2
.

This is the weighted count of the number of 2-Hurwitz graphs of type (g, n, d) =
(0, 2, 4) with an ordered partition 4 = 3 + 1.

Figure 2.4 – Hurwitz covers counted in H2
0,2(3, 1) have two orbifolds points, two

simple ramification points, and one ramification point of degree 3.

Figure 2.5 – There are two 2-Hurwitz graphs. The number of graphs is 3/2 for
the graph on the left counting the automorphism, and 3 for the one on the

right. The total is thus 9/2.

In terms of formulas, the 2-Hurwitz cover corresponding to the graph on
the left of Figure 2.5 is given by

f(x) =
(x− 1)2(x+ 1)2

x
.

To make the simple ramification points sit on ±1, we need to divide f(x) by
f(i/
√

3), where x = ±1/
√

3 are the simple ramification points. The 2-Hurwitz
cover corresponding to the graph on the right of Figure 2.5 is given by

f(x) =
(x− 1)2(x+ 1)2

x− a
,
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where a is a real number satisfying |a| >
√

3/2. The real parameter a changes

the topological type of the 2-Hurwitz cover. For −
√
3
2 < a <

√
3
2 , the graph is

the same as on the left, and for |a| >
√
3
2 , the graph becomes the one on the

right.

2.4. The edge-contraction formulas

Definition 2.13 (Edge-contraction operations). The edge-contraction op-
erations (ECOs) on an arrowed r-Hurwitz graph (γ, ~D) are the following pro-
cedures. Choose an edge E of the cell graph γ.

• ECO 1. We consider the case that E is an edge connecting two distinct
vertices Vertex i and Vertex j. We can assume i < j, which induces a direction

i
E−→ j on E. Let us denote by F+ and F− the faces bounded by E, where F+

is on the left side of E with respect to the direction. We now contract E, with
the following additional operations:

1. Remove the original arrows at Vertices i and j.

2. Put the dots on F± clustered at Vertices i and j together, keeping the
cyclic order of the dots on each of F±.

3. Place a new arrow to the largest dot on the corner at Vertex i of Face
F+ with respect to the cyclic order.

4. If there are no dots on this particular corner, then place an arrow to
the first dot we encounter according to the counter-clock wise rotation from E
and centered at Vertex i.

The new arrow at the joined vertex allows us to recover the original graph from
the new one.

• ECO 2. This time E is a loop incident to Vertex i twice. We contract
E and separate the vertex into two new ones, as in ECO2 of Definition 2.5.
The additional operations are:

1. The contraction of a loop does not change the number of faces. Sepa-
rate the dots clustered at Vertex i according to the original configuration.

2. Look at the new vertex to which the original arrow is placed. We keep
the same name i to this vertex. The other vertex is named i′.

3. Place a new arrow to the dot on the corner at the new Vertex i that
was the largest in the original corner with respect to the cyclic order.
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Figure 2.6 – After contracting the edge, a new arrow is placed on the dot that
is the largest (according to the cyclic order) around Vertex i in the original

graph, and on the face incident to E which is on the left of E with respect to
the direction i→ j. The new arrow tells us where the break is made in the

original graph. If there are no dots on this particular face, then we go around
Vertex i counter-clock wise and find the first dot in the original graph. We
place an arrow to this dot in the new graph after contracting E. Here again

the purpose is to identify which of the µi dots come from the original Vertex i.

4. If there are no dots on this particular corner, then place an arrow to
the first dot we encounter according to the counter-clock wise rotation from E
and centered at Vertex i on the side of the old arrow.

5. We do the same operation for the new Vertex i′, and put a new arrow
to a dot.

6. Now remove the original arrow.

Figure 2.7 – New arrows are placed so that the original graph can be recovered
from the new one.

Although cumbersome, it is easy to show that

Lemma 2.14.The edge-contraction operations preserve the set of r-Hurwitz
graphs.

An application of the edge-contraction operations is the following count-
ing recursion formula.
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Theorem 2.15 (Edge-Contraction Formula). The number of arrowed
Hurwitz graphs satisfy the following edge-contraction formula.
(2.8)(

2g − 2 +
d

r
+ n

)
Hrg,n(µ1 . . . , µn)

=
∑
i<j

µiµjHrg,n−1(µ1, . . . , µi−1, µi + µj , µi+1, . . . , µ̂j , . . . , µn)

+
1

2

n∑
i=1

µi
∑

α+β=µi
α,β≥1

Hrg−1,n+1(α, β, µ1, . . . , µ̂i, . . . , µn)

+
∑

g1+g2=g

ItJ={1,...,̂i,...,n}

Hrg1,|I|+1(α, µI)H
r
g2,|J |+1(β, µJ)

 .
Here, ̂ indicates the omission of the index, and µI = (µi)i∈I for any subset
I ⊂ {1, 2, . . . , n}.

Remark 2.16. The edge-contraction formula (ECF) is a recursion with
respect to the number of edges

s = 2g − 2 +
µ1 + · · ·+ µn

r
+ n.

Therefore, it calculates all values ofHrg,n(µ1 . . . , µn) from the base caseHr0,1(r).
However, it does not determine the initial value itself, since s = 0. We also
note that the recursion is not for Hrg,n as a function in n integer variables.

Proof. The counting is done by applying the edge-contraction operations.
The left-hand side of (2.8) shows the choice of an edge, say E, out of s =
2g − 2 + d

r + n edges. The first line of the right-hand side corresponds to the
case that the chosen edge E connects Vertex i and Vertex j. We assume i < j,
and apply ECO 1. The factor µiµj indicates the removal of two arrows at these
vertices (Figure 2.6).

When the edge E we have chosen is a loop incident to Vertex i twice,
then we apply ECO 2. The factor µi is the removal of the original arrow
(Figure 2.7). The second and third lines on the right-hand side correspond
whether E is a handle-cutting loop, or a separation loop. The factor 1

2 is there
because of the symmetry between α and β of the partition of µi. This complete
the proof.
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Theorem 2.17 (Graph enumeration and orbifold Hurwitz numbers). The
graph enumeration and counting orbifold Hurwitz number are related by the
following formula:

(2.9) Hrg,n(µi, . . . , µn) = µ1µ2 · · ·µnHr
g,n(µi, . . . , µn).

Proof. The simplest orbifold Hurwitz number is Hr
0,1(r), which counts

double Hurwitz numbers with the same profile (r) at both 0 ∈ P1 and∞ ∈ P1.
There is only one such map f : P1 −→ P1, which is given by f(x) = xr. Since
the map has automorphism Z/(r), we have Hr

0,1(r) = 1/r. Thus (2.9) holds
for the base case.

We notice that (2.8) is exactly the same as the cut-and-join equation of
[1, Theorem 2.2], after modifying the orbifold Hurwitz numbers by multiplying
µ1 · · ·µn. Since the initial value is the same, and the formulas are recursion
based on s = 2g − 2 + d

r + n, (2.9) holds by induction. This completes the
proof.

3. CONSTRUCTION OF THE MIRROR SPECTRAL CURVES
FOR ORBIFOLD HURWITZ NUMBERS

In the earlier work on simple and orbifold Hurwitz numbers in connec-
tion to the topological recursion [1, 3, 5, 13, 21], the spectral curves are de-
termined by the infinite framing limit of the mirror curves to toric Calabi-Yau
(orbi-)threefolds. The other ingredients of the topological recursion, the dif-
ferential forms W0,1 and W0,2, are calculated by the Laplace transform of the
(g, n) = (0, 1) and (0, 2) cases of the ELSV [12] and JPT [17] formulas. Cer-
tainly the logic is clear, but why these choices are the right ones is not well
explained.

In this section, we show that the edge-contraction operations themselves
determine all the mirror ingredients, i.e., the spectral curve, W0,1, and W0,2.
The structure of the story is the following. The edge-contraction formula (2.8)
is an equation among different values of (g, n). When restricted to (g, n) =
(0, 1), it produces an equation on Hr0,1(d) as a function in one integer variable.
The generating function of Hrg,n(µ1, . . . , µn) is reasonably complicated, but
it can be expressed rather nicely in terms of the generating function of the
(0, 1)-values Hr0,1(d), which is essentially the spectral curve of the theory. The
edge-contraction formula (2.8) itself has the Laplace transform that can be
calculated in the spectral curve coordinate. Since (2.8) contains (g, n) on each
side of the equation, to make it a genuine recursion formula for functions with
respect to 2g − 2 + n in the stable range, we need to calculate the generating
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functions ofHr0,1(d) andHr0,2(µ1, µ2), and make the rest of (2.8) free of unstable
terms. The result is the topological recursion of [1, 13].

Let us now start with the restricted (2.8) on (0, 1) invariants:

(3.1)

(
d

r
− 1

)
Hr0,1(d) =

1

2
d
∑

α+β=d
α,β≥1

Hr0,1(α)Hr0,1(β).

At this stage, we introduce a generating function

(3.2) y = y(x) =
∞∑
d=1

Hr0,1(d)xd.

In terms of this generating function, (3.1) is a differential equation

(3.3)

(
xr+1 ◦ d

dx
◦ 1

xr

)
y =

1

2
rx

d

dx
y2,

or simply
y′

y
− ry′ = r

x
.

Its unique solution is
Cxr = ye−ry

with a constant of integration C. As we noted in the previous section, the
recursion (2.8) does not determine the initial value Hr0,1(d). For our graph
enumeration problem, the values are

(3.4) Hr0,1(d) =

{
0 1 ≤ d < r;

1 d = r,

which determine C = 1. Thus we find

(3.5) xr = ye−ry,

which is the r-Lambert curve of [1]. This is indeed the spectral curve for the
orbifold Hurwitz numbers.

Remark 3.1. We note that rHr0,1(rm) satisfies the same recursion equa-
tion (3.1) for r = 1, with a different initial value. Thus essentially orbifold
Hurwitz numbers are determined by the usual simple Hurwitz numbers.

Remark 3.2. If we define Td = (d − 1)!Hr=1
0,1 (d), then (3.1) for r = 1 is

equivalent to (1.2). This is the reason we consider the tree recursion as the
spectral curve for simple and orbifold Hurwitz numbers.

For the purpose of performing analysis on the spectral curve (3.5), let us
introduce a global coordinate z on the r-Lambert curve, which is an analytic
curve of genus 0:

(3.6)

{
x = x(z) := ze−z

r

y = y(z) := zr.
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We denote by Σ ⊂ C2 this parametric curve. Let us introduce the generating
functions of general Hrg,n, which are called free energies:

(3.7) Fg,n(x1, . . . , xn) :=
∑

µ1,...,µn≥1

1

µ1 · · ·µn
Hrg,n(µ1, . . . , µn)

n∏
i=1

xµii .

We also define the exterior derivative

(3.8) Wg,n(x1, . . . , xn) := d1 · · · dnFg,n(x1, . . . , xn),

which is a symmetric n-linear differential form. By definition, we have

(3.9) y = y(x) = x
d

dx
F0,1(x).

The topological recursion requires the spectral curve, W0,1, and W0,2. From
(3.8) and (3.9), we have

(3.10) W0,1(x) = y
dx

x
= yd log(x).

Remark 3.3. For many examples of topological recursion such as ones
considered in [11], we often define W0,1 = ydx, which is a holomorphic 1-form
on the spectral curve. For Hurwitz theory, due to (3.9), it is more natural to
use (3.10).

As a differential equation, we can solve (3.9) in a closed formula on the
spectral curve Σ of (3.6). Indeed, the role of the spectral curve is that the free
energies, i.e., Fg,n’s, are actually analytic functions defined on Σn. Although
we define Fg,n’s as a formal power series in (x1, . . . , xn) as generating func-
tions, they are analytic, and the domain of analyticity, or the classical sense of
Riemann surface, is the spectral curve Σ. The coordinate change (3.6) gives
us

(3.11) x
d

dx
=

z

1− rzr
d

dz
,

hence (3.9) is equivalent to

zr−1(1− rzr) =
d

dz
F0,1

(
x(z)

)
.

Since z = 0 =⇒ x = 0 =⇒ F0,1(x) = 0, we find

(3.12) F0,1

(
x(z)

)
=

1

r
zr − 1

2
z2r.

The calculation of F0,2 is done similarly, by restricting (2.8) to the (g, n) =
(0, 1) and (0, 2) terms. Assuming that µ1 + µn = mr, we have

(3.13)

(
d

r
− 1

)
Hr0,2(µ1, µ2)
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= µ1µ2Hr0,1(µ1 + µ2) + µ1
∑

α+β=µ1
α,β>0

Hr0,1(α)Hr0,2(β, µ2)

+ µ2
∑

α+β=µ2
α,β>0

Hr0,1(α)Hr0,2(µ1, β).

As a special case of [1, Lemma 4.1], this equation translates into a differential
equation for F0,2:

1

r

(
x1

∂

∂x1
+ x2

∂

∂x2

)
F0,2(x1, x2)

=
1

x1 − x2

(
x21

∂

∂x1
F0,1(x1)− x22

∂

∂x2
F0,1(x2)

)
−
(
x1

∂

∂x1
F0,1(x1) + x2

∂

∂x2
F0,1(x2)

)
+

(
x1

∂

∂x1
F0,1(x1)

)(
x1

∂

∂x1
F0,2(x1, x2)

)
+

(
x2

∂

∂x2
F0,1(x2)

)(
x2

∂

∂x2
F0,2(x1, x2)

)
.

(3.14)

Denoting by xi = x(zi) and using (3.11), (3.14) becomes simply

(3.15)
1

r

(
z1

∂

∂z1
+ z2

∂

∂z2

)
F0,2

(
x(z1), x(z2)

)
=
x1z

r
1 − x2zr2
x1 − x2

− (zr1 + zr2)

on the spectral curve Σ. This is a linear partial differential equation of the first
order with analytic coefficients in the neighborhood of (0, 0) ∈ C2, hence by
the Cauchy-Kovalevskaya theorem, it has the unique analytic solution around
the origin of C2 for any Cauchy problem. Since the only analytic solution to
the homogeneous equation(

z1
∂

∂z1
+ z2

∂

∂z2

)
f(z1, z2) = 0

is a constant, the initial condition F0,2(0, x2) = F0,2(x1, 0) = 0 determines the
unique solution of (3.15).

Proposition 3.4. We have a closed formula for F0,2 in the z-coordinates:

(3.16) F0,2

(
x(z1), x(z2)

)
= log

z1 − z2
x(z1)− x(z2)

− (zr1 + zr2).

Proof. We first note that log z1−z2
x(z1)−x(z2) is holomorphic around (0, 0) ∈ C2.

(3.16) being a solution to (3.15) is a straightforward calculation that can be



326 O. Dumitrescu and M. Mulase 20

verified as follows:(
z1

∂

∂z1
+ z2

∂

∂z2

)
log

z1 − z2
x(z1)− x(z2)

=
z1 − z2
z1 − z2

− z1e
−zr1 (1− rzr1)− z2e−z

r
2 (1− rzr2)

x1 − x2

= 1− x1 − x2
x1 − x2

+ r
x1z

r
1 − x2zr2
x1 − x2

= r
x1z

r
1 − x2zr2
x1 − x2

.

Since F0,2

(
x(0), x(z2)

)
= log ez

r
2 − zr2 = 0, (3.16) is the desired unique solution.

In [1], the functions (3.12) and (3.16) are derived by directly computing
the Laplace transform of the JPT formulas [17]
(3.17)

Hr
0,1(d) =

db
d
r
c−2

bdr c!
,

Hr
0,2(µ1, µ2) =

r〈
µ1
r
〉+〈µ1

r
〉 1
µ1+µ2

µ
bµ1r c
1 µ

bµ2r c
2

bµ1
r
c!bµ2

r
c! µ1 + µ2 ≡ 0 mod r

0 otherwise.

Here, q = bqc + 〈q〉 gives the decomposition of a rational number q ∈ Q into
its floor and the fractional part. We have thus recovered (3.17) from the edge-
contraction formula alone, which are the (0, 1) and (0, 2) cases of the ELSV
formula for the orbifold Hurwitz numbers.
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