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I give a brief overview of the mathematical theory of Noether symmetries of mul-
tifield cosmological models, which decompose naturally into wvisible and Hessian
(a.k.a. ‘hidden’) symmetries. While visible symmetries correspond to those in-
finitesimal isometries of the Riemannian target space of the scalar field map which
preserve the scalar potential, Hessian symmetries have a much deeper theory. The
latter correspond to Hesse functions, defined as solutions of the so-called Hesse
equation of the target space. By definition, a Hesse manifold is a Riemannian man-
ifold which admits nontrivial Hesse functions — not to be confused with a Hessian
manifold (the latter being a Riemannian manifold whose metric is locally the Hes-
sian of a function). All Hesse n-manifolds M are non-compact and characterized by
their index, defined as the dimension of the space of Hesse functions, which carries
a natural symmetric bilinear pairing. The Hesse index is bounded from above by
n + 1 and, when the metric is complete, this bound is attained iff M is a Poincaré
ball, in which case the space of Hesse functions identifies with R™™ through an iso-
morphism constructed from the Weierstrass map. More generally, any elementary
hyperbolic space form is a complete Hesse manifold and any Hesse manifold whose
local Hesse index is maximal is hyperbolic. In particular, the class of complete
Hesse surfaces coincides with that of elementary hyperbolic surfaces and hence any
such surface is isometric with the Poincaré disk, the hyperbolic punctured disk or
a hyperbolic annulus. Thus Hesse manifolds generalize hyperbolic manifolds. On
a complete Hesse manifold (M, G), the value of any Hesse function A can be ex-
pressed though the distance from a characteristic subset of M determined by A.
Moreover, the gradient flow of A can be described using the distance function.
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1. INTRODUCTION AND PHYSICS MOTIVATION

Cosmological models with at least two real scalar fields are of increasing
interest in theoretical physics. In our previous work [1, 2, 11, 3, 4], we initiated
a geometric study of the classical dynamics of multifield cosmological models
with arbitrary scalar manifold (which we approached from a mathematically
rigorous perspective), summarizing some of our results in [5, 6, 7]. Cosmological
models with n real scalar fields and standard kinetic term are parameterized by
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330 C. I. Lazaroiu 2

a so-called scalar triple (M, G, V), where M is a connected smooth manifold
(generally non-compact and of non-trivial topology) which is the target space of
the scalar field map, G is a Riemannian metric on M which specifies the kinetic
term of the scalar fields and V is a smooth real-valued function defined on
M, which specifies the scalar potential. Such models arise naturally in string
theory, where (M, G) appears as a moduli space of string compactifications
and V is induced by a flux on the compactification manifold or by quantum
effects. The classical cosmological model parameterized by (M, G, V') involves
the scale factor a € C°(R,R~¢) of a simply-connected Friedmann-Lemaitre-
Robertson-Walker spacetime and a smooth curve ¢ : R — M (whose parameter
t € R is called cosmological time) subject to a system of ODEs known as the
cosmological equations:

-1

3H2+2H+§H¢|@ —~Vop=0
(1) (Ve+3H)p + (gradgV) op=0,

L.,

Sl + Voo =3H",
where the dot indicates derivation with respect to ¢ and H e & ¢ C*(R) is
the Hubble parameter. The last equation in this system is called the Friedmann
equation. Notice that a enters this system only through its logarithmic deriva-

tive H. When H is positive, eliminating it through the Friedmann equation
allows one to reduce (1) to the single second order autonomous ODE:

@ Vo) + 2 IEOIE 2V (0] 7 610) + (aradgV Yot =0

which defines a dissipative geometric dynamical system (in the sense of [13])
on the total space of the tangent bundle of M. In general, little is known
about the deeper behavior of this dynamical system, some aspects of which
were explored in [11, 3, 4] and summarized in [5, 6, 7].

Let N %2 R<g X M be the configuration space of the variables a and (.
The cosmological equations (1) can be derived from the variational principle
of the so-called minisuperspace Lagrangian' L Mg, v : TN — R, which is given
by:

. .\ def. . 1.,
B Lmoviss) T st +d [GIAR- V)| |
supplemented by the Friedmann constraint:
1.
@) SlIGIE + V(o) =382

The term “minisuperspace” is historically motivated and has nothing to do with super-
symmetry.
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Here we identity TN with the first jet bundle of A/ and we abuse notation as
common in jet bundle theory. Notice that the Friedmann constraint is non-
holonomic.

The constrained Lagrangian description given by (3) and (4) allows for
systematic study of the Lie symmetries (see [12]) of (2) using the Noether
method. In [1], we exploited this point of view to classify those cosmological
models with dim M = 2 which admit Noether symmetries, making the techni-
cal assumption that the metric G is rotationally invariant. As already pointed
out in that reference, the latter assumption is purely technical and not needed
for the results of loc. cit. Moreover, the approach of [1] generalizes to cos-
mological models parameterized by arbitrary scalar triples (M, G, V), leading
to a deep mathematical theory. This generalization is discussed in detail in
the preprints [10] and [8]. We summarize some of its results below, focusing
on those aspects which are most relevant to Riemannian geometers. For no-
tational simplicity, we rescale the physics-motivated scalar manifold metric G
to: . et § G
thus replacing (M, G) by the rescaled scalar manifold (M,G) and (M,G, V)
by the rescaled scalar triple (M, G, V).

Notations and conventions. Throughout this paper, M will denote
a smooth, paracompact, Hausdorff and connected n-manifold (which need not
be compact). The differential of a function f € C>°(M) is denoted by df €
QY (M), while its value at a point m € M is denoted by:

dpf = (df)(m) € T, M = Homg(T,, M, R) .

We use the notations:
def. . def.
Z(f) = {meM| f(m)=0}, Crit(f) = {meM |d,f=0}
for the zero and critical locus of f and:
def. ,_
My(a) = [T ({a}) = {m e M| f(m) = a}
for the level set of f at a € R. We will often use the following two operators
determined by a Riemannian metric G on M:

e The Killing operator of (M, G), defined as the R-linear first-order dif-

ferential operator K¢ : X' (M) — I'(M, Sym?(T*M)) which associates to any

vector field X € X (M) et I'(M,TM) the symmetrization of the covariant

derivative of the 1-form X € Q'(M):

def.

K(X) = sym?[V(X?)] .
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In local coordinates on M, we have:

Cdef. 1

Ka(X)ij =5

1
[Vin + V]XZ] = 5 <8ZXJ + 8jX2‘ — QFZX]C) R
where Ffj are the Christoffel symbols:
1
Ffj = leFijl = §G”“(ade + @'Gjl - 81Gz‘j)

and we use implicit summation over repeated indices.

e The Hessian operator of (M, G), defined as the R-linear second order
differential operator Hessg : C>°(M) — T'(M, Sym?(T* M)) which associates
to a smooth real-valued function f defined on M its Hessian tensor:

Hessg(f) def. Vdf.

In local coordinates on M, we have:

Hesse (f)ij S Hessq(f)(03,0;) = 8:0;f — TE0Lf

Notice the relation:

Kq(grads f) = Hessg(f) VfeC®(M) .

2. NOETHER SYMMETRIES OF MULTIFIELD
COSMOLOGICAL MODELS

Let (M,G) be a Riemannian manifold and V' € C*(M) be a smooth

real-valued function defined on M. Let N/ %< R<g x M. We have a natural
decomposition TN = T(1)N @ TipyN, where T(;y and Ty are the pullbacks
of the tangent bundles TR~ and 7'M through the canonical projections p; :
N — Ryg and py : N — M:

TN E pi(TR>0) | TN ©ps(TM)

Hence any vector field X € X(N) decomposes as: X = X(j) + X(g), with
X € DN, T(yN). In local coordinates (U, a, ") on N, we have:

9 9
da’ Aot
where X% X' € C*®°(U) and i = 1,...,n.

X(l)(aa 30) = Xa(aa 90) X(Q)(aa SO) = Xi(av 30)
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2.1. The characteristic system of variational symmetries

The following result reduces the study of Noether symmetries of the mi-
nisuperspace Lagrangian to that of certain real-valued functions and vector
fields defined on M.

THEOREM 2.1 ([8]). A wector field X € X(N) is a time-independent
Noether symmetry of the minisuperspace Lagrangian of the classical cosmolog-
ical model parameterized by the rescaled scalar manifold (M,G) and by the
scalar potential V' iff it has the form:

A 4
X = XA,Y = ﬁﬁa + Y — m(gradGA) y
where the function A € C>®(M) and the vector field Y € X (M) satisfy the
characteristic system of (M, G,V):

(5) Hessg(A) =GA , (dV,dA)g =2VA
(6) KeY)=0 , Y(V)=0.

Notice that the two equations above containing A decouple from those
containing Y, so the characteristic system consists of two independent systems
of linear PDEs: the A-system (5) and the Y -system (6) of (M,G,V). In local

coordinates, the characteristic system reads:
(0:0; ~ThO) A= GyA . GOV =2VA
V.Y;+V,;Y;=0 , Y@9V=0,

where we use Einstein summation over repeated indices ¢, 5,k =1, ...,n.

The solutions of the Y-system coincide with those Killing vector fields Y
of (M, G) which satisfy LyV = 0, i.e. with infinitesimal isometries of (M, G)
which preserve the scalar potential V. Such solutions form the Lie algebra of
the group of symmetries of the rescaled scalar triple (M, G, V'), defined as the
stabilizer of V' inside the group Iso(M, G) of isometries of (M, G):

Aut(M, G, V) L (¢ € Iso(M,G) | Vory =V} .

Notice that Aut(M, G, V) is a Lie group since it is a closed subgroup of
Iso(M,G). For a generic triple (M, G, V), we have Aut(M,G,V) = 1, hence
the Y-system of a generic rescaled scalar triple admits only the trivial solution
Y =0.

The first equation of the A-system will be called the Hesse equation of
(M, G). The second equation of that system (which we call the A-V' equation)
can be solved explicitly for V once we pick a solution of the first.
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THEOREM 2.2. Let A be a nontrivial solution of the Hesse equation. Then
any smooth solution of the A-V -equation of (M, Q) takes the form:

(7) V = Q[|dA[[g = Q[A* — (A, A)e]

where Q € C*°(M \ Crit(A)) is an arbitrary smooth function which is constant
along the gradient flow of A:
(8) (dQ,dA)g =0 .

For generic (M, G), the Hesse equation admits only the trivial solution
A = 0, which satisfies the A-V equation with any V.

The observations above imply, as expected, that a generic multifield cos-

mological model has no Noether symmetries. Those special models which do
admit such symmetries are of particular interest in theoretical physics.

Definition 2.3. A time-independent Noether symmetry X = Xy is
called:

o visible if A =0, in which case X = Xoy =Y.

e Hessian if Y = 0, in which case X = X o = %&1 — wf‘ﬁ(gradGA).
The rescaled scalar triple (M, G, V') and corresponding cosmological model are
called visibly-symmetric or Hessian if they admit visible or Hessian symmetries,
respectively.

Let M(M, G, V), Ny (M, G, V) and N(M, G, V) be the linear spaces of
Hessian, visible and time-independent Noether symmetries. Then there exists
an obvious linear isomorphism:

m(Mv G7 V) =R mh(M7 G7 V) S5 mv(Ma Ga V) :

Definition 2.4. The cosmological model defined by the rescaled scalar
triple (M, G, V) is called weakly Hessian if the Hesse equation of (M, G) admits
nontrivial solutions. It is called Hessian if 9N, (M, G, V) # 0.

Theorem 2.2 implies:

COROLLARY 2.5. The cosmological model defined by the rescaled scalar
triple (M, G, V') is Hessian iff it is weakly Hessian and the scalar potential V
has the form (7), with Q a solution of (8).

Since the study of visible symmetries reduces to a classical problem in
Riemannian geometry, the mathematically interesting problem is to classify
all Hessian scalar triples and hence all Hessian cosmological models. By the
results above this reduces in turn to the problem of characterizing those Rie-
mannian manifolds whose Hesse equation admits nontrivial solutions. Below,
we describe a few results in this direction, whose proof can be found in [10].
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3. HESSE FUNCTIONS AND HESSE MANIFOLDS

Let us start by formulating the mathematical problem without reference
to its origin in physics.

Definition 3.1. Let (M, G) be a Riemannian manifold of positive dimen-
sion. A Hesse function of (M, G) is a smooth solution A € C*°(M) of the fol-
lowing linear second order PDE, which is called the Hesse equation of (M, G):

9) Hessg(A) = GA
and whose space of solutions we denote by Hg(M). The Hesse index of (M, G)
is defined through:

be(M) < dimg He(M) .
The Riemannian manifold (M, G) is called a Hesse manifold if ha(M) > 0,
ie. if Hg(M) # 0.

Remark 3.2. The notion of Hesse manifold should not be confused with
that of Hessian manifold, which means a Riemannian manifold whose metric
is given locally by the Hessian of a function.

We start by studying the Hesse equation.

3.1. Relation to Hessian equations. Non-compactness of Hesse
manifolds.

The Hesse equation (9) of (M, G) is equivalent with a system of so-called
Hessian equations (see [16, 9], namely a Hessian system which includes both
the Helmholtz and Monge-Ampere equations of (M, G).

For any f € C*°(M) and m € M, let:

def. . T = n—
QY (f)(2) = det [z idp, v — HessG(f)(m)} = Z(—l)kcg(f)(m)z ke R[2]

k=0

be the characteristic polynomial of the G,,-symmetric linear operator
Hessq(f)(m) € Endg (T, M)

obtained by raising an index of the symmetric tensor Hessg(f)(m), where z
is a formal variable. The characteristic coefficients c¢{'(f)(m) define smooth
functions c{(f) € C*°(M) as m varies in M.

Definition 3.3. The functions c{/(f) € C®(M) are called the Hessian
functions of f with respect to G.
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Let: def.
Uk(zl,...,zn) = Z zil...zikER[zl,...,zn]
1<i1 <...<ip<n
be the elementary symmetric polynomials in n variables, where k runs from 0
to n. We have:

¢k (£)(m) = ox (M (H)(m),..., An(f)(m)) , ¥m € M,
where \;(f) are functions given by the real eigenvalues of the G-symmetric
endomorphism Hessg(f) of TM. Let AFHessg(f) € Endg(A*TM) be the
k-exterior power of this endomorphism. The relations:
cn(f) = tr [A’fH’eEsG(f)]  Vk=0,...,n

show that the correspondence f — cg( f) gives a differential operator:

& C®(M) = C®(M)
of order 2k (which is non-linear for k > 1).

Definition 3.4. The differential operator ckG is called the k-th invariant
Hessian operator of (M, Q).

In particular, we have:
co=1, cg=tr [H/GESG(A)] =—-AgA, ¢, =det [I—fegsG(A)} =Mg(A) ,
where Ag = —divggrad; and Mg are respectively the positive Laplacian and
the Monge-Ampere operators of (M, G).
Definition 3.5. A Hessian equation on (M, G) is a PDE of the form:

Fo(f xef(f)x...xd(f)=0,
where F' € C*°(R x M) is given and the unknown f is a smooth real-valued
function defined on M.

We refer the reader to [16, 9] for background on Hessian equations.

PROPOSITION 3.6 ([10]). The Hesse equation (9) is equivalent with the
following system of Hessian equations:
AN)=——"—
M) = =
In particular, any Hesse function A satisfies the Helmholtz equation AgA =
—nA and the Monge-Ampére equation Mg(A) = A™.

A VE=1,....n.

Since the right hand side of the Helmholtz equation has the “wrong sign” for
the positive Laplacian A, this implies:

COROLLARY 3.7. Let (M, G) be a Hesse manifold. Then (M,G) is non-
compact.
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3.2. The space of Hesse functions

The space of Hesse functions of any Riemannian manifold is finite-dimen-
sional. More precisely:

PRrOPOSITION 3.8 ([10]). For any Riemannian n-manifold (M,G), we
have hg(M) < n + 1.

The space of Hesse functions carries a natural symmetric bilinear pairing
which is invariant under the action of the isometry group. We start by defining
a certain extension of this pairing.

Definition 3.9. The extended Hesse pairing of (M, Q) is the symmetric
R-bilinear map ( , )& : C*°(M) x C*®°(M) — C>°(M) defined through:

e def.

(f1, fo)e = fife—(df1,df2)e = fife — (gradg f1, gradg fo)a -

Recall that we assume M to be connected. An easy computation using the
Hesse equation gives:

ProPOSITION 3.10 ([10]). The function (A1, A2)% is constant on M for
any Hesse functions Ay, A2 € Hg(M). Hence the restriction of the extended
Hesse pairing to the subspace Hg(M) C C®(M) gives an R-valued bilinear
pairing:

(,)a:HeM) xHg(M) =R,
which we shall call the Hesse pairing of (M, G).

Remark 3.11. By Proposition 3.10, any Hesse function A € Hg (M) sat-
isfies the nonlinear first order ODE:
(10) lgradgAllg = A% — (A, A)g

where (A,A)¢ is a constant. Notice that ||gradgAllZ = [|[dA[|Z . When
(A,A)g = 0, equation (10) reduces on the complement of the zero locus of

A to the eikonal equation of (M, G) for the function f def. log |Al:

(11) lgradeflG =1

Hence (10) can be viewed as a generalization of the eikonal equation.

Definition 3.12. The Hesse norm of a Hesse function A is the non-negative

number ry & |(A, A)gl|, while its type indicator is the sign factor ey def.

sign(A,A)g. A non-trivial Hesse function A is called timelike, spacelike or
lightlike when ej equals +1, —1 or 0 respectively.

Notice that lightlike Hesse functions form a cone in Hg(M).
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3.3. The Morse property of Hesse functions

PRrOPOSITION 3.13 ([10]). Let A € Hg(M) be a nontrivial Hesse func-
tion. Then A has isolated critical points, i.e. it is a Morse function on M.
Moreover, the following statements hold:

o If A is timelike, then A does not have any zeroes on M.
o [If A is spacelike, then A does not have any critical points on M.
o If A is lightlike, then A has neither zeroes nor critical points on M.

Hence A can have zeroes iff (A,A)g < 0 and it can have critical points iff
(A, A)G > 0.

4. THE GRADIENT FLOW OF HESSE FUNCTIONS

Let A € Ha(M) be a non-trivial Hesse function and consider the gradient
flow equation:

(12) v (q) = —(gradgA)(v(q))

for smooth curves v : I — M, where I is an interval and +/(q) def- j—;’. This
equation fixes the parameter ¢ of a solution 7 (which we shall call the gradient
flow parameter) up to translation by a constant. The level set parameter A of

v is defined through:

and decreases as the gradient flow parameter increases.

PROPOSITION 4.1 ([10]). The level set and gradient flow parameters of
any gradient flow curve v of A satisfy:

dA dA

CldwAlE T (A A — A2

(13) dg =

and are related through:

L arctanh (A*)‘(’) , ifea =41

KA KA
(14) q= —% arctan (A;,;\()) , ifex =—1
X0 : ifex= 0

where \g is an integration constant and:

katanh(kpaq) , if ea = +1
(15) A=< —rtan(kpaq) , ifex=-1

% , ifexa=0
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where kp and €p are the Hesse norm and type indicator of X. In the formulas
above, we chose the integration constant Ao such that glx=x, = 0 when ep =
{—1,+1} and g|x=x, = 1 when ep = 0.

4.1. The general form of Hesse functions

The relation to the eikonal equation allows us to express Hesse functions
using the distance function of the Riemannian manifold (M, G), for whose
properties we refer the reader to [14]. We need a few preparations before
stating this result.

PROPOSITION 4.2 ([10]). Suppose that the Riemannian manifold (M, Q)
is complete and let A € Hg(M) \ {0} be a non-trivial Hesse function. Then
the following statements hold:

1. If A is timelike, then the vanishing locus Z(A) of A is empty and
hence A has constant sign (denoted ny) on M. Moreover, A has exactly one
critical point, with critical value nakp, which is a global minimum or mazimum
according to whether ny = +1 or —1.

2. If A is spacelike, then the set Crit(A) of critical points of A is empty.
Moreover, the vanishing locus of A coincides with the ka-level set of the func-
tion ||dA||q:

Z(A) ={m € M||ldmAllc = ra} ,
which is a non-singular hypersurface in M.

3. If A is lightlike, then Z(A) = Crit(A) = 0 and hence A has constant

sign on M, which we denote by na.

Definition 4.3. Suppose that (M, G) is complete. Then a timelike or
lightlike non-trivial Hesse function A € Hg(M) \ {0} is called future (resp.
past) pointing when ny = +1 (resp. —1).

Definition 4.4. Let A € Hg(M) \ {0} be a non-trivial Hesse function of
(M, G). The characteristic set of A is the following closed subset of M:

Crit(A), if A is timelike
QA def- Z(A) if A is spacelike
Mp (1), if A s lightlike
The characteristic constant of A is defined through:
kn , ifepx=+1
A€o, ite=-1
1, ifea=0
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Set Uy < M \ Crit(A). We have:

Qa={m e Uy [|A(m)] = Ci} .

Definition 4.5. Let A € Hg(M) \ {0} be a non-trivial Hesse function of
M. The characteristic sign function of A is the function O, : M — R defined
through:

1, if e =+1
(16) Oa(m) L sign(A(m)) , if ey = —1
sign(|[A(m)] —1), ifex=0

The A-distance function of (M, G) is the function dp : M — R defined through:

(17) da(m) " O (m)distc(m, Qu) -
THEOREM 4.6 ([10]). Let A € Hg(M) be a non-trivial Hesse function.
Then the following relation holds for all m € M:
sign(A)kp coshdp(m) ,  ifex = +1
A(m) =< kasinhdp(m) , if en = —1
sign(A)eda(m) ifea= 0

4.2. Maximally Hesse manifolds are Poincaré balls

Complete Hesse manifolds of maximal Hesse index turn out to be partic-
ularly simple, namely any such manifold is isometric with a Poincaré ball.

Definition 4.7. A Hesse manifold (M, G) is called mazimally Hesse if
ba(M) =n+1.

Recall that a Riemannian manifold (M, G) is hyperbolic if its metric G
has unit negative sectional curvature. Up to isometry, there exists a unique
simply connected and complete hyperbolic n-manifold, namely the Poincaré
n-ball, whose description we recall below. Let:

D"y € R0 < ||ul|p <1}

be the open unit n-ball, where || || is the Euclidean norm on R™. The Poincaré
ball metric is the complete Riemannian metric G,, on D™ whose squared line
element is given by:

dsén A= e Z du’)

HuHE i=1

The n-dimensional Poincaré ball is the complete hyperbolic manifold D" def-

(D™, Gy).
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PROPOSITION 4.8 ([10]). A complete Riemannian n-manifold (M, G) is
mazimally Hesse iff it is isometric to the Poincaré ball D™.

The space of Hesse functions of D™ identifies naturally with a Minkowski space,

as we explain next. Consider the (n+ 1)-dimensional Minkowski space R el

(R™HL (', ) where:

(18) (X,Y) <

n
x0y0 _ Z Xyt — T]MVXMYV
i=1
is the Minkowski pairing. We denote the canonical basis of R"*! by:
Ey =(1,0,0,...,0), E;=(0,1,0,...,0), ... , E,=1(0,0,0,...,1).

Let X " (X1,...,X"), so that X = (X°, X) and:

(X, X)=XY"-X.Y,
where - denotes the Euclidean scalar product in R™. Let S be the future sheet
of the hyperboloid defined by the equation (X, X) = 1:

S Iy e R(X,X) =1 & X0 >0} = {X e R™1X0 = /1 + \|X|@} .
Then S} is diffeomorphic with D™ through the Weierstrass map Z : D™ — S,
which is defined through:

1 2 2
(u)d§f~< lllly 2 2) , Vu € D"
L= lullp" 1= [Jullg

and whose inverse =71 : S — D" is given by:

— —

X X

=~ 30 = S
XL 141X

Notice the relations

[1]

(19)

=-1(X) VX €S

=@ -1 o LIl
=l

U ES TR
The components Z#(u) (which satisfy the relation 1,,EZ"(u)="(u) = —1) are
the classical Weierstrass coordinates of the point v € D". The Weierstrass
map can be viewed as the projection of D" onto S;' from the point —Ep =
(=1,0,...,0) of RL™, It is well-known that Z is an isometry from D" to S,
when S is endowed with the Riemannian metric induced by the opposite of
the Minkowski metric (18). We can now state the result announced above:

lullf; =

THEOREM 4.9 ([10]). For any n > 1, there exists a bijective isometry
ARV 5 (He, (D), (, )g,) such that:
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4.3. The Hesse sheaf and local Hesse index
Let (M, G) be a Riemannian n-manifold. The Hesse equation naturally

defines a sheaf of vector spaces on M.

Definition 4.10. A local Hesse function of M relative to G is a locally
defined solution of the Hesse equation of (M, G). The Hesse sheaf of (M, G)
is the sheaf of local Hesse functions of (M, G).

PROPOSITION 4.11 ([10]). We have tk'Hg < n + 1.

Definition 4.12. We say (M, G) is locally Hesse if its Hesse sheaf does
not vanish, i.e. if rk Hg > 0.

Notice that Hg(M) = H°(Hg) and hence hg(M) = h°(Hg) = dimp HO(He).
Thus (M, G) is globally Hesse iff its Hesse sheaf admits nontrivial global sec-
tions.

4.4. Locally maximally Hesse manifolds are elementary hyperbolic
space forms

Definition 4.13. A Riemannian manifold (M, G) is called locally mazxi-
mally Hesse if k' Hg =n+ 1.

THEOREM 4.14 ([10]). A Riemannian manifold is locally mazimally Hesse
iff it is hyperbolic.

Note that a general hyperbolic manifold need not be Hesse. The situation
is clarified by the following result.

PRrROPOSITION 4.15 ([10]). Let (M, G) be a complete Riemannian mani-
fold. The following are equivalent:

e (M, Q) is hyperbolic and globally Hesse.

e (M,QG) is an elementary hyperbolic space form.

In this case, (M, G) is mazimally Hesse iff it is isometric with a Poincaré ball.

Hyperbolic uniformization and the notion of elementary hyperbolic space
form are recalled in Appendix A.
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A. HYPERBOLIC UNIFORMIZATION AND ELEMENTARY
HYPERBOLIC SPACE FORMS

Recall that the group of orientation-preserving isometries of the Poincaré
n-ball is naturally isomorphic with the connected component SOy (1,n) of the
identity in the Lorentz group SO(1,n). Indeed, SOg(1,n) acts linearly on
R™*! (and hence on the hyperboloid model S;\ of D") through the fundamental
representation R : SOg(1,n) — Autg(R"*1):

Ra(z) = AX , VA€ SOy(l,n) , VX e R" |

where R4 def- R(A). Since this action preserves orientation as well as the

Minkowski pairing (and hence the Riemannian metric induced on S;), it in-

duces a morphism of groups ¢ : SOg(1,n) — Iso4 (D™), which turns out to be an

isomorphism. For any A € SO¢(1,n), the corresponding isometry 14 def. P(A)

of the Poincaré ball is determined uniquely by the following condition, which
encodes SOg(1,n)-equivariance of the Weierstrass map:
(20) Zotp = Ro= , ie. Z(yYu(d)) = AZ(@), YA € SO,(1,n) , Vi € D" .
A general element A € SOg(1,n) has the form:

A®) = —V(Z*)ﬁT I, + (V(U/)Y(ij)f)ﬁ ® D ]
where ¥ € R"” and we defined:

def. ||, _def. U _\ def. 1
v S jalls, 0T, (@)

The following result is classical:

PROPOSITION A.1. For any v € R"™, @ € D™ and A € SOy(1,n), we have:
2u + 2(y(¥) — 1)(0 - @)0 — () (1 + ||a]| %) v

1= Jlalfg; + (@)1 + [alf; — 20 - @)

By the uniformization theorem of hyperbolic geometry (see [15]), any
oriented and complete hyperbolic n-manifold (M, G) can be written as the
Riemannian quotient of the unit hyperbolic ball D" through a discrete subgroup
I’ € Iso(D™) ~ SO¢(1, n) called the uniformizing group of (M, G). Notice that

I' is isomorphic with the fundamental group of M. We remind the reader of
the following classical notions, for which we refer him or her to [15].

(21) V) () =

Definition A.2. A discrete subgroup I' of SOg(1,n) is called elementary
if its action on the closure of the Poincaré ball fixes at least one point.
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Definition A.3. An n-dimensional elementary hyperbolic space form is
a complete hyperbolic n-manifold uniformized by a torsion-free elementary
discrete subgroup I' € SOg(1,n).

A torsion-free elementary discrete subgroup I' € SOg(1,n) is called:

e elliptic, if it conjugates to a subgroup of the canonical rotation group
R, & Stabgo,(1,n)(£0) = SO(n). In this case, I is finite.

e hyperbolic, if it conjugates to a subgroup of the canonical squeeze group

T & Stabgo,(1,n)(En) =~ SO(1,n — 1). In this case, I' is a hyperbolic cyclic

group.

e parabolic, if it conjugates to a subgroup of the canonical shear group

P, def. Stabgo,(1,n)(Eo + Er) = ISO(n). In this case, I is a free Abelian group

of rank at most n — 1.

Any nontrivial torsion-free elementary discrete subgroup of SOg(1,n) is
either elliptic, parabolic or hyperbolic, while the trivial subgroup of SOq(1,n)
belongs to each of these classes. An elementary hyperbolic space form different
from D" is called elliptic, parabolic or hyperbolic if its uniformizing group I' is
of that type.

Acknowledgments. This work was partly supported by grant PN 19060101/2019-
2022 and partly by IBS-R003-D1.

REFERENCES

[1] L. Anguelova, E. M. Babalic, and C. I. Lazaroiu, Hidden symmetries of two-field cosmo-
logical models. JHEP 2019 (2019), 09, 007.

[2] L. Anguelova, E. M. Babalic, and C. I. Lazaroiu, Two-field Cosmological a-attractors
with Noether Symmetry. JHEP 2019 (2019), 148.

[3] E. M. Babalic and C. I. Lazaroiu, Generalized a-attractor models from elementary hy-
perbolic surfaces. Adv. Math. Phys. 2018 (2018), 7323090.

[4] E. M. Babalic and C. I. Lazaroiu, Generalized two-field a-attractors from the hyperbolic
triply-punctured sphere. Nucl. Phys. B 937 (2018), 434 — 477.

[5] E. M. Babalic and C. I. Lazaroiu, Noether Symmetries of Two-Field Cosmological Mod-
els. AIP Conference Proceedings 2218 (2020), 050005.

[6] E. M. Babalic and C. 1. Lazaroiu, Two-field cosmological models and the uniformiza-
tion theorem. Springer Proceedings in Mathematics & Statistics, Quantum Theory and
Symmetries with Lie Theory and Its Applications in Physics, Vol. 2 (2018), 233 — 241.

[7] E. M. Babalic and C. I. Lazaroiu, Cosmological flows on hyperbolic surfaces. Facta Uni-
versitatis, Series: Physics, Chemistry and Technology 17 (2019), 1, Special Issue, 1 —
9.



17

Hesse manifolds and Hessian symmetries of cosmological models 345

(8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

E. M. Babalic and C. I. Lazaroiu, Noether symmetries of multifield cosmological models.
Preprint.

L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second
order elliptic equations, III: Functions of the eigenvalues of the Hessian. Acta Mathe-
matica 155 (1985), 1, 261 — 301.

C. I. Lazaroiu, Hesse manifolds and Hesse functions. Preprint.

C. I. Lazaroiu and C. S. Shahbazi, Generalized two-field a-attractor models from geo-
metrically finite hyperbolic surfaces. Nucl. Phys. B 936 (2018), 542 — 596.

P. J. Olver, Applications of Lie Groups to Differential Equations. Graduate Texts in
Mathematics 107, Springer, 2nd ed, 1993.

J. Palis Jr. and W. De Melo, Geometric theory of dynamical systems: an introduction.
Springer, New York, U.S.A., 2012.

P. Petersen, Riemannian geometry. Graduate Texts in Mathematics, 3rd ed., Springer,
2016.

J. G. Ratcliffe, Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics
149, Springer, 2006.

X.-J. Wang, The k-Hessian Equation. In: Chang SY., Ambrosetti A., Malchiodi A. (eds)
Geometric Analysis and PDFEs, Lecture Notes in Mathematics 1977, Springer, 2009.

“Horia Hulubei” National Institute of Physics
and Nuclear Engineering (IFIN-HH)
Bucharest-Magurele, Romania
lcalin@theory.nipne.ro
and
Institute for Basic Science
Center for Geometry and Physics
Pohang 37673, Republic of Korea



