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We review the geometric study for three 4-dimensional integrable discrete dy-
namical systems (the main results being in [8, 10, 9] and obtained in collaboration
with T. Takenawa). By the resolution of indeterminacy the first two are lifted
to pseudo-automorphisms of rational varieties obtained from (P1)4 by blowing-
up along sixteen 2-dimensional subvarieties. The third one cannot be lifted to
a pseudo-automorphism but to an algebraically stable map since it has non-
confined singularities. The invariants and the degree growth rates are computed
from the linearisation on the corresponding Néron-Severi bilattices. It turns
out that the deautonomised version of the one of the confining mappings has
A

(1)
2 + A

(1)
2 type affine Weyl group symmetry, while that of the other confining

mapping has A
(1)
5 type affine Weyl group symmetry.
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1. INTRODUCTION

The Painlevé equations are nonlinear second-order ordinary differential
equations whose solutions are meromorphic except some fixed points, but not
reduced to known functions such as solutions of linear ordinary differential
equations or Abel functions. The discrete counterpart of Painlevé equations
were introduced by Grammaticos, Ramani and their collaborators [16, 30] us-
ing so called the singularity confinement criterion (however historically, the
first appearance of a discrete Painlevé equation was in 1939 in paper about
orthogonal polynomials due to Shohat [37]; then the same equation has been
found again in 1990 by Gross, Migdal [18], Brezin and Kazakov [5]). Since
this criterion is not a sufficient condition for the mapping to be integrable, the
notion of algebraic entropy was introduced by Hietarinta and Viallet [20] and
studied geometrically in [4, 38, 24]. This entropy is essentially the same with
topological entropy [17, 43].

Discrete Painlevé equations share many properties with the differential
case, e.g., the existence of special solutions, such as algebraic solutions, or
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solutions expressed in terms of special functions, affine Weyl group symme-
tries and the geometric classification of equations in terms of rational surfaces.
Among them, associated families of rational surfaces, called the spaces of ini-
tial conditions, were introduced by Okamoto [27] for the continuous case, and
by Sakai [32] for the discrete case, where an equation gives a flow on a family
of smooth projective rational surfaces. The cohomology group of the space of
initial conditions gives information about the symmetries of the equation [32]
and its degree growth [38].

In recent years, research on four dimensional Painlevé systems has been
progressed mainly from the viewpoint of isomonodromic deformation of linear
equations [33, 22], while the space of initial conditions in Okamoto-Sakai’s
sense was known only for few equations. The difficulty lies in the part of
using higher dimensional algebraic geometry. In the higher dimensional case
the center of blowups is not necessarily a point but could be a subvariety of
codimension two at least. Although some studies on symmetries of varieties or
dynamical systems have been reported in the higher dimensional case, most of
them consider only the case where varieties are obtained by blowups at points
from the projective space [13, 39, 3]. One of few exceptions is [40], where
varieties obtained by blowups along codimension three subvarieties from the
direct product of a projective line (P1)N were studied.

In this paper, starting with a mapping ϕ : C4 → C4; (q1, q2, p1, p2) 7→
(q̄1, q̄2, p̄1, p̄2):

A
(1)
2 +A

(1)
2 :


q̄1 = −q2 − p2 + aq−12 + b
p̄1 = q2
q̄2 = −q1 − p1 + aq−11 + b
p̄2 = q1

(1)

and its slight modification,

A
(1)
5 :


q̄1 = −q1 − p2 + aq−12 + b1
p̄1 = q2
q̄2 = −q2 − p1 + aq−11 + b2
p̄2 = q1

,(2)

we construct their spaces of initial conditions, where the mappings are lifted
to pseudo-automorphisms (automorphisms except finite number of subvarieties
of codimension 2 at least) and their invariants. We also give their symmetries
and deautonomisations together with their degree growth. The motivation
for studying these mappings started initially from the fact that they are re-
lated (the second one) to the travelling-wave reduction of a discrete system de-
scribing a modular genetic network, each module containing two genes having
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activation-repression links [11]. Then we realised that they are good candidates
for studying the geometry of 4D discrete Painlevé equations.

It turns out that deautonomised version of mapping (1) is a Bäcklund
transformation of a direct product of two fourth Painlevé equation, which has

two continuous variables and A
(1)
2 +A

(1)
2 (direct product) type symmetry, while

that of mapping (2) is a Bäcklund transformation of Noumi-Yamada’s A
(1)
5

Painlevé equation [26], which has only one continuous variable and A
(1)
5 type

symmetry. Although these equations might seem rather trivial compared to
the Garnier systems, the Fuji-Suzuki system [15] or the Sasano system [35, 34],
we believe that they provide typical models for geometric studies on higher
dimensional Painlevé systems.

The key tools of our investigation are pseudo-isomorphisms and Néron-
Severi bilattices. In the autonomous case, for a given birational mapping, we
successively blow-up a smooth projective rational variety along subvarieties to
which a divisor is contracted. If this procedure terminate, the mapping is lifted
to a pseudo-automorphism on a rational variety. In the non-autonomous case,
the given sequence of mappings are lifted to a sequence of pseudo-isomorphisms
between rational varieties. We refer to those obtained rational varieties as the
space of initial conditions (in Okamoto-Sakai’s sense). In this setting, the
Néron-Severi bilattices play the role of root lattices of affine Weyl groups.

Let us make some remarks on the mappings. Mapping (1) can be written
in a simpler way as,

y1 + y2 + y1 − ay−12 − b = 0

y2 + y1 + y2 − ay−11 − b = 0,

where y1 = q1, y2 = q2, y1 = p2, y2 = p1 and the over/under bar denotes
the image/preimage by the mapping. As can be seen easily, when y1 = y2,
this system is one of the Quispel-Roberts-Thompson mappings[29]. This fact
enables us to find that Mapping (1) is the compatibility condition:

LM −ML = 0

for the Lax pair LΦ = hΦ, Φ = MΦ with

L =



0 y1 1 0 0 0
h −a b− y1 − y2 0 0 0

hy2 h −a 0 0 0

0 0 0 0 y2 1
0 0 0 h −a b− y2 − y1
0 0 0 hy1 h −a


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and

M =



0 0 0 a/y2 1 0
0 0 0 0 0 1
0 0 0 h 0 0

a/y1 1 0 0 0 0
0 0 1 0 0 0
h 0 0 0 0 0

 ,
where h is the spectral parameter.

Since L and L are similar matrices, their characteristic polynomials are
the same. From the coefficients of the characteristic polynomial det(x − L)
with respect to x and h, we have conserved quantities

I1 + I2 and I1I2,

where

I1 = q1p1(q1 + p1 − b)− a(q1 + p1)
I2 = q2p2(q2 + p2 − b)− a(q2 + p2).

(3)

On the other hand, we do not know the Lax pair for Mapping (2). How-
ever, using the space of initial conditions, we find two conserved quantities:

I1 =(q1p1 − q2p2)2 + b1b2(q1p1 + q2p2)

+ b1
(
a(p1 + q2)− q1p21 − q22p2

)
+ b2

(
a(q1 + p2)− q21p1 − q2p22

)
I2 =(a(q1 + p2) + q1p2(b2 − q2 − p1))(a(q2 + p1) + q2p1(b1 − q1 − p2)).(4)

On the other hand, in a prior paper [10], applying the traveling wave
reduction to the lattice super-KdV equation [6, 42] in a case of finitely gen-
erated Grassmann algebra, the authors obtained a four-dimensional discrete
integrable dynamical system

ϕ :



x0 = x2
x1 = x3

x2 = −x2 − x0 +
hx2

1− x2
x3 = −x1 − x3 +

2− x2 + hx3
(1− x2)2

.(5)

This system is a Quispel-Roberts-Thompson (QRT) map, a two dimensional
map generating an automorphism of a rational elliptic surface [29], for vari-
ables x0, x2 coupled with linear equations for variables x1, x3 with coefficients
depending on x2. This system has two invariants

I1 =− hx20 − hx0x2 + h2x0x2 + hx20x2 − hx22 + hx0x
2
2(6)

I2 =2hx0 + x20 − 2hx0x1 + 2hx2 + x0x2 − hx1x2 + h2x1x2 + 2hx0x1x2
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+ x22 + hx1x
2
2 − hx0x3 + h2x0x3 + hx20x3 − 2hx2x3 + 2hx0x2x3,(7)

but does not satisfy the singularity confinement criterion proposed by
Grammaticos-Ramani and their collaborators [16, 30].

In the same paper it is observed that the dynamical degrees of (5) grows
quadratically. This phenomena is rather unusual, since as reported in [23, 19],
the dynamical degree grows in the fourth order for generic coupled systems in
the form 

x0 = f0(x0, x1)
x1 = f1(x0, x1)
x2 = f2(x0, x1, x2)
x3 = f3(x0, x1, x2, x3)

,

where the system is a QRT map for variables x0 and x1, and x2 (resp. x3)
depends on x2 (resp. x3) linearly with coefficients depending on “x0 and x1”
(resp. “x0, x1 and x2”).

In this paper, constructing a rational variety where system (5) is lifted
to an algebraically stable map and using the action of the map on the Picard
lattice, we prove that indeed the growth is quadratic. We also show that one
can find invariants also using the action on the Picard group.

In the two-dimensional case, it is known that an autonomous dynam-
ical system defined by a birational map on a projective rational variety (or
more generally Kähler manifold) can be lifted to either an automorphism or
an algebraically stable map on a rational variety by successive blow-ups [12].

These notions are closely related to the notion of singularity confinement
criterion. While a dynamical system that can be lifted to automorphisms
satisfies singularity confinement criterion (i.e. all the singularities are confined),
a dynamical system that can be lifted only to algebraically stable map does
not satisfies the criterion (i.e. there exists a singularity that is not confined).

As we said in studies of higher dimensional dynamical systems, the role
of automorphisms is replaced by pseudo-automorphisms, i.e. automorphisms
except finite number of subvarieties of codimension at least two [13]. In the
last decade a few authors studied how to construct algebraic varieties on the
level of pseudo-automorphisms [3, 40, 8]. However, since system (5) does not
satisfy the singularity confinement criterion, it is not expected that it could
be lifted to a pseudo-automorphism. To authors knowledge there are no stud-
ies (except section Section 7 of [3], which studies a kind of generalisation of
standard Cremona transformation) on construction of an algebraic variety, in
which the original system is lifted not to a pseudo-automorphism, but rather
to an algebraically stable map using blow-ups along sub-varieties of positive
dimensions. Since the varieties obtained by blow-ups possibly infinitely near
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depend on the order of blow-ups, this is not a straightforward but a challenging
problem.

Since I2 is degree (1, 1) for x1, x3, we can restrict the phase space into
3-dimensional one as

ψ :


x0 = x2

x1 =
I2−(x20+x0x2+x22)−2h(x0−x0x1+x2)−hx1x2(2x0+x2−1+h)

h(−x0 + hx0 + x20 − 2x2 + 2x0x2)

x2 = −x2 − x0 +
hx2

1− x2

.

(8)

We also show that the degree of this 3-dimensional system grows quadratically
as well.

This paper is organised as follows. In Section 2 we recall basic facts
about the algebraic geometry used in this paper. In Section 3 the singular-
ity confinement test is applied for the above mappings. In Section 4 we con-
struct the spaces of initial conditions, where the mappings are lifted to pseudo-
automorphisms, and compute the actions on the Neron-Séveri bilattices. The
degree growth is also computed for these actions. In Section 5 symmetries of
the spaces of initial conditions are studied. Deautonomised mappings are also
given. In Section 6 we discuss the case of non-confining map (5) and construct
here also the space of initial conditions, recovering the two invariants and prov-
infg the quadratic growth of iterates. Section 7 is devoted to conclusions.

Notation. Throughout this paper, we often denote xi1 + xi2 + · · · + xin
by xi1,i2,...,in , where x can be replaced by any symbols like y, z, A,B,C etc.

2. ALGEBRAIC STABILITY AND PSEUDO-ISOMORPHISMS

A rational map f : Pn → Pn is given by (n + 1)-tuple of homogeneous
polynomials having the same degree (without common polynomial factor). Its
degree, deg(f), is defined as the common degree of the fj ’s. We are interested
in to compute deg(fn), but it is not easy, since it only holds that deg(fn) ≤
(deg f)n in general by cancellation of common factors. A related object is the
indeterminacy set of f given by

I(f) = {x ∈ Pn | f0(x) = · · · = fn(x) = 0}

that is a subvariety of codimension 2 at least, whereas f defines a holomorphic
mapping f : Pn \ I(f) → Pn. In this section we recall basic facts in algebraic
geometry used in this kind of study.



7 On the geometry, invariants and symmetries of some 4D-birational mappings 425

Rational correspondence. Let X and Y be smooth projective varieties of
dimension N and f : X → Y a dominant rational map. Using the completion of
the graph of f , Gf , we can decompose f as f = πY◦π−1X such that πX : Gf → X
and πY : Gf → Y are rational morphisms and the equality holds for generic
points in X .

This definition is simple but practically may arise complications in com-
puting defining polynomials of the graph. For example, when X and Y are
rational varieties and (x1, . . . , xN ) and (y1, . . . , yN ) are their local coordinates,
introducing homogeneous coordinates as (X0 : · · · : XN ) = (X0 : X0x1 :
· · · : X0xN ) and (Y0 : · · · : YN ) = (Y0 : Y0y1 : · · · : Y0yN ), we can only
say that the graph Gf is “one of the components” of Ykpl(X0, · · · , XN ) =
Ylpk(X0, · · · , XN ), k, l = 0, . . . , N , where (y1, . . . , yN ) = (p1/p0, . . . , pN/p0) is
the induced homogeneous map and (X0 : · · · : XN ;Y0 : · · · : YN ) is the coor-
dinate system of PN × PN (S5 of [2] and Example 3.4 of [31] are examples of
such complication).

Hironaka’s singularity resolution theorem (Question (E) in S 0.5 of [21])
also gives this decomposition in a more tractable form as: there exists a se-
quence of blowups π : X̃ → X along smooth centers in I(f) such that the
induced rational map f̃ : X̃ → Y is a morphism.

Using these decompositions we can define the push-forward and the pull-
back correspondence of a sub-variety by f as fc(V ) = πY ◦π−1X (V ) = f̃ ◦π−1(V )

for V ⊂ X and f−1c (W ) = πX ◦ π−1Y (W ) = π ◦ f̃−1(W ) for W ⊂ Y. We
denote their restriction to divisor groups by f∗ : Div(X ) → Div(Y) and
f∗ : Div(Y) → Div(X ), where lower dimensional subvarieties are ignored
as zero divisors. Especially, when f is birational, it obviously holds that
f∗ = (f−1)∗ and f∗ = (f−1)∗.

Algebraic stability. The following proposition is fundamental to our study.
Its two dimensional version was shown by Diller and Favre (Proposition 1.13 of
[DF01]) . “If” part was shown by Bedford-Kim (Theorem 1.1 of [3]) and Roeder
(Proposition 1.5 of [31]), while “only if” part by Bayraktar (Theorem 5.3 of
[1]).

Proposition 2.1. Let f : X → Y and g : Y → Z be dominant rational
maps. Then f∗ ◦ g∗ = (g ◦ f)∗ holds if and only if there does not exist a prime
divisor D on X such that f(D \ I(f)) ⊂ I(g).

Since the proof of “if” part is very simple, it would be convenient to quote
from [3], modifying it to fit our terminologies:

If D is a divisor on Z then g∗(D) is a divisor on Y which is the same
as g−1c (D) on Y −I(g) by ignoring codimension greater than one.
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Since I(g) has codimension at least 2 we also have (g ◦ f)∗(D) =
f∗(g∗(D)) on X −I(f) − f−1c (I(g)). By the hypothesis f−1c (I(g))
has codimension at least 2. Thus we have (g ◦ f)∗(D) = f∗g∗(D)
on X .

Example 2.2. Let (x0 : x1 : x2 : x3) be the homogeneous coordinate
system of the complex projective space P3. Let X be a variety obtained by
blowing up P3 along the line x1 = x2 = 0, Y be P3, Z be a variety obtained by
blowing up P3 at the point x1 = x2 = x3 = 0, and f : X → Y and g : Y → Z
be the identity map on P3. Let H, EX and EZ denote the class of the total
transform of the hyperplane, the exceptional divisors of X and Z respectively.
Then it holds that I(f) = ∅, I(g) = {(1 : 0 : 0 : 0)} and there is no prime divisor
D ∈ X such that f(D) ⊂ I(g), while I(f−1) = {(s : 0 : 0 : t) | (s : t) ∈ P1},
I(g−1) = ∅ and g−1(EZ) ⊂ I(f−1). Thus, f∗g∗ = (g ◦ f)∗ holds, but not
(g−1)∗(f−1)∗ = (f−1 ◦ f−1)∗ (see Fig. 1).

x1/x0

x2/x0

x3/x0x3/x0

f g

EX

EZ

Figure 1 – Example 2.2

The pull-backs acts on divisor classes as

f∗ :H 7→ H

g∗ :H 7→ H, EZ 7→ 0

f∗g∗ :H 7→ H, EZ 7→ 0

(g ◦ f)∗ :H 7→ H, EZ 7→ 0

(f−1)∗ :H → H, EX → 0

(g−1)∗ :H → H

(g−1)∗(f−1)∗ :H 7→ H, EX 7→ 0

(f−1 ◦ g−1)∗ :H 7→ H, EX 7→ EZ .

In particular, for the anti-canonical divisor classes −KX = 4H − EX , −KY =
4H and −KZ = 4H − 2EZ , (g−1)∗(f−1)∗(−KX ) = 4H is greater than (f−1 ◦
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g−1)∗(−KX ) = 4H − EZ .

A rational map ϕ from a smooth projective variety X to itself is called
algebraically stable or 1-regular if (ϕ∗)n = (ϕn)∗ holds [14]. The following
proposition is obvious from Proposition 2.1.

Proposition 2.3. A rational map ϕ from a smooth projective variety
X to itself is algebraically stable if and only if there does not exist a positive
integer k and a divisor D on X such that f(D \ I(f)) ⊂ I(fk).

Pseudo-isomorphisms and Néron-Severi bilattices. For a smooth projec-
tive variety X , the Néron-Severi lattice

N1(X ) = Pic(X )/Pic0(X ) ⊂ H2(X ,Z),

where Pic0(X ) is the connected comonent of the Picard group, is the fist
Chern class of the Picard group c1 : Pic(X ) → H2(X ,Z). This lattice and
its Poincaré dual N1(X ) ⊂ H2(X ,Z) are finitely generated lattices. We call
the pair (N1(X ), N1(X )) the Neron-Severi bilattice of X .

We call a birational mapping ϕ : X → Y a pseudo-isomorphism if ϕ is
isomorphic except on finite number of subvarieties of codimension two at least.
This conditions is equivalent to that there is no prime divisor pulled back to
zero divisor by f or f−1. Hence, if ϕ is a pseudo-automorphism, then ϕ and
ϕ−1 are algebraically stable.

Proposition 2.4 ([13]). Let X and Y be smooth projective varieties and
ϕ a pseudo-isomorphism from X to Y. Then ϕ acts on the Néron-Severi bi-
lattice as an automorphism preserving the intersections.

Proof. It is obvious that ϕ∗ : N1(X ) 7→ N1(Y) is an isomorphism by defi-
nition of pseudo-isomorphisms. The action ϕ∗ : N1(X ) 7→ N1(Y) is determined
by this isomorphism and the Poincaré duality.

Blowup of a direct product of Pm. As we have seen in the example, it
is convenient to write the generators of the Néron-Severi bilattice explicitly.
Following [40], we give some formulae for some rational varieties which appear
as spaces of initial conditions of Painlevé systems. Note that the Néron-Severi
bilattice coincides withH2(X ,Z)×H2(X ,Z) if X is a smooth projective rational
variety, since Pic0(X ) = {0} in this case.

Let X be a rational variety obtained by K successive blowups from Pm1×
· · · × Pmn with N = m1 + · · ·+mn, and (x1, . . . ,xn) its coordinate chart with
homogeneous coordinates xi = (xi0 : xi1 : · · · : ximi). Let Hi denote the total
transform of the class of a hyper-plane ci ·xi = 0, where ci is a constant vector
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in Pmi , and Ek the total transform of the k-the exceptional divisor class. Let
hi denote the total transforms of the class of a line

{x | xj = cj(∀j 6= i), xi = sai + tbi(∃(s : t) ∈ P1)},

where ai, bi and cj ’s are constant vectors in Pmi and Pmj respectively, and
ek the class of a line in a fiber of the k-th blow-up. Note that the exceptional
divisor for a blowing-up along a d-dimensional subvariety V is isomorphic to
V × PN−d−1, where PN−d−1 is a fiber.

Then the Picard group ' H2(X ,Z) and its Poincaré dual ' H2(X ,Z) are
lattices

H2(X ,Z) =

n⊕
i=1

ZHi ⊕
K⊕
k=1

ZEk, H2(X ,Z) =

n⊕
i=1

Zhi ⊕
K⊕
k=1

Zek(9)

and the intersection form is given by

〈Hi, hj〉 = δij , 〈El, el〉 = −δkl, 〈Hi, ek〉 = 0.(10)

Let ϕ be a pseudo-automorphism on X , and A and B be matrices repre-
senting ϕ∗ : H2(X ,Z)→ H2(Y,Z) and ϕ∗ : H2(X ,Z)→ H2(Y,Z) respectively
on basis (9). Then, for any f ∈ H2(X ,Z) and g ∈ H2(Y,Z) it holds that

〈f ,g〉 = fTJg, J =

[
In 0
0 −IK

]
,

where ∗T denotes transpose and Im denotes the identity matrix of size m.
Thus, 〈Af , Bg〉 = 〈f ,g〉 yields ATJB = J , and hence

B = J(A−1)TJ,(11)

which is a formula for computing the action onH2(X ,Z) from that onH2(X ,Z).

Example 2.5. Let X be obtained by blowing up P3 at four points (1 : 0 :
0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 0 : 1), and both f : X → X
be the standard Cremona transformation of P3: (x0 : x1 : x2 : x3) → (x−10 :
x−11 : x−12 : x−13 ). Then I(f) consists of the proper (strict) transform of 6 lines
passing through two of the four points blown up. This is a simple example of
a pseudo-automorphism (see Fig. 2).

The push-forward action on divisor classes is

f∗ : H 7→ 3H − 2E0,1,2,3, Ei 7→ H − Ei+1,i+2,i+3 (i = 0, 1, 2, 3 mod 4),

where Ei1,...,ik = Ei1 + · · ·+ Eik , while its dual is

f∗ : h 7→ 3h− e0,1,2,3, ei 7→ 2h− ei+1,i+2,i+3 (i = 0, 1, 2, 3 mod 4).
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The corresponding representing matrices

A =


3 1 1 1 1
−2 0 −1 −1 −1
−2 −1 0 −1 −1
−2 −1 −1 0 −1
−2 −1 −1 −1 0

 , B =


3 2 2 2 2
−1 0 −1 −1 −1
−1 −1 0 −1 −1
−1 −1 −1 0 −1
−1 −1 −1 −1 0


satisfies (11). It is also easy to check that (f∗)

2 is the identity as it should be.

E0

E1

E2

E3

H − E1,2,3 (gray area)

Figure 2 – Example 2.5: E0 and H − E1,2,3 are exchanged.

Degree of a mapping. Let ϕ be a rational mapping from CN to itself:

ϕ : (x̄1, . . . , x̄N ) = (ϕ1(x1, · · · , xN ), . . . , ϕN (x1, · · · , xN )).

The degree of x̄i of ϕ with respect xj is defined as the degree of ϕi as a rational
function of xj , i.e. the maximum of degrees of numerator and denominator.
Let X be a rational variety obtained by K successive blowups from (P1)N .
Then the degree of x̄i of ϕ with respect xj is given by the coefficient of Hj

in ϕ∗(Hi). When ϕ is iterated, the degree of x̄i of ϕn with respect xj is
given by the coefficient of Hj in (ϕn)∗(Hi), which coincides with (ϕ∗)n(Hi)
if ϕ is algebraically stable on X . (The reason is exactly the same with the
two-dimensional case. See [38] for details.)

There is another (and more standard) definition of the mapping degree.
Let ϕ be a rational mapping on CN as above. We can extend the action of ϕ
onto PN by replacing xj by xj/x0, rewriting ϕi’s so that they have the common
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denominator and considering them as x̄i/x̄0. Then ϕ can be expressed as

ϕ : (x̄0 : · · · : x̄N ) = (p0(x0, . . . , xN ) : · · · : pN (x0, · · · , xN )),

where pi’s are homogeneous polynomials and the common factor is only a
constant. Then, the degree of ϕ is defined as the common degree of pi’s. Let
X be a rational variety obtained by K successive blowups from PN . Then the
degree of ϕ is given by the coefficient of H in ϕ∗(H). When ϕ is iterated, the
degree of ϕn is given by the coefficient of H in (ϕn)∗(H), which coincides with
(ϕ∗)n(H) if ϕ is algebraically stable on X .

Above two kinds of degrees are related to each other. Indeed, it is clearly
holds that

max
i
{
∑

j degree of ϕi for xj} ≤ degree of ϕ

≤ N max
i
{
∑

j degree of ϕi for xj}.

Of course we can also consider intermediate of the above degrees by ex-
tending the action of ϕ onto Pm1 × · · · × Pmn with N = m1 + · · · + mn. But
we do not use such degrees in this paper and omit them.

3. SINGULARITY CONFINEMENT

The idea of the singularity confinement test is as follows. Consider a
hypersurface in some compactification X of Cn which is contracted to a lower
dimensional variety (singularity) by a birational automorhism f of X. We
say the singularity to be confined if there exists an integer n ≥ 2 such that
the hypersurface is recovered to some hypersurface by fn in generic. In this
case, the memory of initial conditions is recovered. Let us introduce the set of
contracted hypersurfaces:

E(f) = {D ⊂ X : hypersurface | det(∂f/∂x) = 0 on D in generic},
where zero of the Jacobian contraction to a lower dimensional variety. If sin-
gularity is confined for every D in E(f), we say that the initial data is not lost
and the map f satisfies the singularity confinement criterion. Note that the
existence of confined singular sequence implies algebraical unstability.

In this section we consider the mappings on compactified space (P1)4 =
(CP1)4 and apply the singularity confinement test to them.

Case A
(1)
2 +A

(1)
2 . If we take q1 = ε with |ε| � 1 and the others are generic,

the principal terms of the Laurent series with respect to ε in the trajectories
are

(ε, p
(0)
1 , q

(0)
2 , p

(0)
2 ): 3 dim
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→ (q
(1)
1 , p

(1)
1 , aε−1, ε): 2 dim 14

→ (−aε−1, aε−1, q(2)2 , p
(2)
2 ): 2 dim 4

→ (q
(3)
1 , p

(3)
1 ,−ε,−aε−1): 2 dim 16

→ (q
(4)
1 ,−ε, q(4)2 , p

(4)
2 ): 3 dim,

where x
(j)
i denotes a generic value in C, “k dim” denotes the dimension of

corresponding subvariety in (P1)4 and n denotes the order of blowing up that
we explain in the next section. Similarly, starting with q2 = ε and the others
being generic, we get

(q
(0)
1 , p

(0)
1 , ε, p

(0)
2 ): 3 dim

→ (aε−1, ε, q
(1)
2 , p

(1)
2 ): 2 dim 6

→ (q
(2)
1 , p

(2)
1 ,−aε−1, aε−1): 2 dim 12

→ (−ε,−aε−1, q(3)2 , p
(3)
2 ): 2 dim 8

→ (q
(4)
1 , p

(4)
1 , q

(4)
2 ,−ε): 3 dim.

In both two cases, information on the initial values x
(0)
i is recovered after finite

number of steps, and thus singularities are confined.
We also find another (cyclic) singularity pattern as

(ε−1, p
(0)
1 , q

(0)
2 , p

(0)
2 ): 3 dim

→ (q
(1)
1 , p

(1)
1 ,−ε−1, ε−1): 2 dim 10

→ (q
(2)
1 ,−ε−1, q(2)2 , p

(2)
2 ): 3 dim

→ (q
(3)
1 , p

(3)
1 , ε−1, p

(3)
2 ): 3 dim

→ (−ε−1, ε−1, q(4)2 , p
(4)
2 ): 2 dim 2

→ (q
(5)
1 , p

(5)
1 , q

(5)
2 ,−ε−1): 3 dim

→ (ε−1, p
(6)
1 , q

(6)
2 , p

(6)
2 ),

where the last hyper-surface is the same with the first one.
Moreover, since we need several times blowups for resolve each singular-

ity, we should consider the following singularity sequences as well, where base
varieties of those blow-ups appear

(c
(0)
1 ε−1, c

(0)
2 ε−1, q

(0)
2 , p

(0)
2 ): 2 dim 1

→ (q
(1)
1 , p

(1)
1 , c

(1)
1 ε−1, c

(1)
2 ε−1): 2 dim 9

→ (c
(2)
1 ε−1, c

(2)
2 ε−1, q

(2)
2 , p

(2)
2 )
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(c
(0)
1 ε−1, c

(0)
2 ε, q

(0)
2 , p

(0)
2 ): 2 dim 5

→ (q
(1)
1 , p

(1)
1 , c(1)ε−1, c(1)ε−1): 2 dim 11

→ (c
(2)
1 ε, c

(2)
2 ε−1, q

(2)
2 , p

(2)
2 ): 2 dim 7

→ (q
(3)
1 , p

(3)
1 , c

(3)
1 ε−1, c

(3)
2 ε): 2 dim 13

→ (c(4)ε−1, c(4)ε−1, q
(4)
2 , p

(4)
2 ): 2 dim 3

→ (q
(5)
1 , p

(5)
1 , c

(5)
1 ε, c

(5)
2 ε−1): 2 dim 15

→ (c
(6)
1 ε−1, c

(6)
2 ε, q

(6)
2 , p

(6)
2 ).

where the last subvariety for each sequence is the same with the first one.
The inclusion relations of these bases of blow-ups are

1 ⊃ 2 ⊃ 3 ⊃ 4 , 5 ⊃ 6 , 7 ⊃ 8

9 ⊃ 10 ⊃ 11 ⊃ 12 , 13 ⊃ 14 , 15 ⊃ 16 ,(12)

where we need to compare lower terms of the Laurent series to see these rela-
tions.

Case A
(1)
5 . We find following two singularity sequences:

(ε, p
(0)
1 , q

(0)
2 , p

(0)
2 ): 3 dim

→ (−p(0)2 + a/q
(0)
2 + b1, q

(0)
2 , aε−1, ε): 2 dim 6

→ (p
(0)
2 − a/q

(0)
2 , aε−1,−aε−1,−p(0)2 + a/q

(0)
2 + b1): 1 dim 4

→ (−ε,−aε−1, q(3)2 , p
(0)
2 − a/q

(0)
2 ): 2 dim 8

→ (q
(4)
1 , p

(4)
1 , q

(4)
2 ,−ε): 3 dim,

and

(q
(0)
1 , p

(0)
1 , ε−1, p

(0)
2 ): 3 dim

→ (−p(0)2 − q
(0)
1 + b1, ε

−1,−ε−1, q(0)1 ): 2 dim 2

→ (p
(0)
2 ,−ε−1, q(2)2 ,−p(0)2 − q

(0)
1 + b1): 3 dim

→ (q
(3)
1 , p

(3)
1 , ε−1, p

(3)
2 )Returned.

We should consider the following singularity sequences as well, where base
varieties of those blow-ups appear.

(q
(0)
1 , c

(0)
1 ε−1, c

(0)
2 ε−1, p

(0)
2 ): 2 dim 1

→ (q
(1)
1 , c

(1)
1 ε−1, c

(1)
2 ε−1, p

(1)
2 ): Returned
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(q
(0)
1 , p

(0)
1 , c

(0)
1 ε−1, c

(0)
2 ε): 2 dim 5

→ (−q(0)1 + b1, c
(0)
1 ε−1,−c(0)1 ε−1, q

(0)
1 ): 1 dim 3

→ (c
(2)
2 ε,−c(0)1 ε−1, p

(0)
2 ,−q(0)1 + b1): 2 dim 7

→ (q
(3)
1 , p

(3)
1 , c

(3)
1 ε−1, c

(3)
2 ε): Returned.

Since the mapping is symmetric with respect to (q1, p1) ↔ (q2, p2), there are
the counterparts of these sequences. The inclusion relations of these bases of
blow-ups are the same with (12).

4. SPACE OF INITIAL CONDITIONS AND LINEARISATION

ON THE NÉRON-SEVERI LATTICES

In this section we construct a space of initial conditions by blowing up
the defining variety along singularities of the previous section. Recall that as a
complex manifold, in local coordinates U ⊂ CN , blowing up along a subvariety
V of dimension N − k, k ≥ 2, written as

x1 − h1(xk+1, . . . xN ) = · · · = xk − hk(xk+1, . . . xN ) = 0,

where hi’s are holomorphic functions, is a birational morphism π : X → U
such that X = {Ui} is an open variety given by

Ui = {(u(i)1 , . . . , u
(i)
k , xk+1, . . . xN ) ∈ CN} (i = 1, . . . , k)

with π : Ui → U :

(x1, . . . , xN ) =(u
(i)
1 u

(i)
i + h1, . . . , u

(i)
i−1u

(i)
i + hi−1, u

(i)
i + hi,

u
(i)
i+1u

(i)
i + hi+1 . . . , u

(i)
k u

(i)
i + hk, xk+1, . . . , xN ).

It is convenient to write the coordinates of Ui as(
x1 − h1
xi − hi

, . . . ,
xi−1 − hi−1
xi − hi

, xi − hi,
xi+1 − hi+1

xi − hi
, . . . ,

xk − hk
xi − hi

, xk+1, . . . xN

)
.

The exceptional divisor E is written as ui = 0 in Ui and each point in the
center of blowup corresponds to a subvariety isomorphic to Pk−1: (x1 − h1 :
· · · : xk−1− hk). Hence E is locally a direct product V ×Pk−1. We called such
Pk−1 a fiber of the exceptional divisor. (In algebraic setting the affine charts
often need to be embedded into higher dimensional space.)

Theorem 4.1. Each one of the mappings (1) or (2) can be lifted to a
pseudo-automorphism on a rational projective variety X obtained by successive
16 blow-ups from (P1)4, where the center of each blow-up, Ci (i = 1, . . . , 16),
is two-dimensional sub-variety.
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Center Ci’s are given by the following data, where we only write one of
the affine coordinate of the center variety or the exceptional divisor. The other
coordinates can be obtained automatically (see Fig. 3 and Fig. 4).

Case A
(1)
2 + A

(1)
2 . The center Ci of i-the blowing up and one of the new

coordinate systems Ui obtained by the blowing-up are

C1 : q−11 = p−11 = 0 U1 : (u1, v1, q2, p2) = (q−11 , q1p
−1
1 , q2, p2)

C2 : u1 = v1 + 1 = 0 U2 : (u2, v2, q2, p2) = (u1, u
−1
1 (v1 + 1), q2, p2)

C3 : u2 = v2 + b(1) = 0

U3 : (u3, v3, q2, p2) = (u2, u
−1
2 (v2 + b(1)), q2, p2)

C4 : u3 = v3 + (b(1))2 + a
(1)
0 = 0

U4 : (u4, v4, q2, p2) = (u3, u
−1
3 (v3 + (b(1))2 + a

(1)
0 ), q2, p2)

C5 : q−11 = p1 = 0 U5 : (u5, v5, q2, p2) = (q−11 , q1p1, q2, p2)

C6 : u5 = v5 − a(1)1 = 0

U6 : (u6, v6, q2, p2) = (u5, u
−1
5 (v5 − a(1)1 ), q2, p2)

C7 : q1 = p−11 = 0 U7(v7, u7, q2, p2) = (q1p1, p
−1
1 , q2, p2)

C8 : u7 = v7 + a
(1)
2 = 0

U8 : (v8, u8, q2, p2) = (u−17 (u7 + a
(1)
2 ), u7, q2, p2)

C9 : p−12 = q−12 = 0 U9 : (q1, p1, u9, v9) = (q1, p1, q
−1
2 , p−12 q2)

C10 : u9 = v9 + 1 = 0

U10 : (q1, p1, u10, v10) = (q1, p1, u9, u
−1
9 (v9 + 1))

C11 : u10 = v10 + b(2) = 0

U11 : (q1, p1, u11, v11) = (q1, p1, u10, u
−1
10 (v10 + b(2)))

C12 : u11 = v11 + (b(2))2 + a
(2)
0 = 0

U12 : (q1, p1, u12, v12) = (q1, p1, u11, u
−1
11 (v11 + (b(2))2 + a

(2)
0 ))

C13 : p2 = q−12 = 0 U13 : (q1, p1, u13, v13) = (q1, p1, q
−1
2 , p2q2)

C14 : u13 = v13 − a(2)1 = 0

U14 : (q1, p1, u14, v14) = (q1, p1, u13, u
−1
13 (v13 − a(2)1 ))

C15 : p−12 = q2 = 0 U15 : (q1, p1, v15, u15) = (q1, p1, p2q2, p
−1
2 )

C16 : u15 = v15 + a
(2)
2 = 0

U16 : (q1, p1, v16, u16) = (q1, p1, u
−1
15 (v15 + a

(2)
2 ), u15)

with a
(j)
0 = 0, a

(j)
1 = −a(j)2 = a and b(j) = b for j = 1, 2, where parameters

a = a
(j)
i , b(j) are introduced for “deautonomisation” as explained in the next

section.
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Case A
(1)
5 .

C1 : q−12 = p−11 = 0 U1 : (q1, v1, u1, p2) = (q1, q2p
−1
1 , q−12 , p2)

C2 : u1 = v1 + 1 = 0 U2 : (q1, v2, u2, p2) = (q1, u
−1
1 (v1 + 1), u1, p2)

C3 : u2 = q1 + p2 − b1 = 0

U3 : (q1, v2, u3, v3) = (q1, v2, u2, u
−1
2 (q1 + p2 − b1)

C4 : u3 = v3 + a0 = 0 U4 : (q1, v2, u4, v4) = (q1, v2, u3, u
−1
3 (v3 + a0))

C5 : q−12 = p2 = 0 U5 : (q1, p1, u5, v5) = (q1, p1, q
−1
2 , p2q2)

C6 : u5 = v5 + a2 = 0 U6 : (q1, p1, u5, v5) = (q1, p1, u5, u
−1
5 (v5 + a2))

C7 : q1 = p−11 = 0 U7 : (v7, u7, q2, p2) = (q1p1, p
−1
1 , q2, p2)

C8 : u7 = v7 − a4 = 0 U8 : (v8, u8, q2, p2) = (u−17 (v7 − a4), u7, q2, p2)
C9 : q−11 = p−12 = 0 U9 : (u9, p1, q2, v9) = (q−11 , p1, q2, q1p

−1
2 )

C10 : u9 = v9 + 1 = 0 U10 : (u10, p1, q2, v10) = (u9, p1, q2, u
−1
9 (v9 + 1))

C11 : u10 = q2 + p1 − b2 = 0

U11 : (u11, v11, q2, v10) = (u10, u
−1
10 (q2 + p1 − b2), q2, v10)

C12 : u11 = v11 + a3 = 0

U12 : (u12, v12, q2, v10) = (u11, u
−1
11 (v11 + a3), q2, v10)

C13 : q−11 = p1 = 0 U13 : (u13, v13, q2, p2) = (q−11 , q1p1, q2, p2)
C14 : u13 = v13 + a5 = 0

U14 : (u14, v14, q2, p2) = (u13, p2, q2, u
−1
13 (v13 + a5))

C15 : p−12 = q2 = 0 U15 : (q1, p1, v15, u15) = (q1, p1, p2q2, p
−1
2 )

C16 : u15 = v15 − a1 = 0

U16 : (q1, p1, v16, u16) = (q1, p1, u
−1
15 (v15 − a1), u15)

with

a0 = a3 = 0, a1 = a4 = a, a2 = a5 = −a.

Remark 4.2. Some centers (e.g., C1 and C9) intersect with each other but
do not have inclusion relation. In this case, the variety depends on the order
of blowups. However, since generic points are not in the intersection points,
the varieties are pseudo-isomorphic with each other.

In both cases, the inclusion relations of total transforms of exceptional
divisors Ei’s are the same with (12) as

E1 ⊃ E2 ⊃ E3 ⊃ E4, E5 ⊃ E6, E7 ⊃ E8,

E9 ⊃ E10 ⊃ E11 ⊃ E12, E13 ⊃ E14, E15 ⊃ E16.(13)

Proof. The proof of the theorem is long but straightforward. We omit
the detail, but we can show that any divisors in X are mapped to divisors in

X . For example, in A
(1)
5 case, the exceptional divisor E4 is described as u4 = 0

in U4, while E8 as u8 = 0 in U8. The mapping ϕ from U4 to U8 under a0 = 0
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q1

q2
p1

p2

q1

q2
p1

p2

Figure 3 – Top: case A
(1)
2 + A

(1)
2 ; bottom: case A

(1)
5 ; gray parallelograms: the

centers C1, C5, C7, C9, C13, C15 for both cases.
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q−1
2

p−1
1

q1

p2

u1
v1

q1

p2
blowdown

E1

u2
v2

q1

p2

blowdown

E2 u3
v2

q1

v3
blowdown

E3

Figure 4 – Case A
(1)
5 , gray parallelograms: the centers C1, C2, C3, C4,

rectangulars: the exceptional divisors E1, E2, E3.

and a4 = a is

(v̄8, ū8, q̄2, p̄2) =
(
−v4, u4, aq−11 + (b2 + v2 − b2u4v2)(1− u4v2)−1, q1

)
and hence u4 = 0 implies ū8 in generic (i.e. q1 6= 0).

Similarly computation to this proof yields the following theorem.

Theorem 4.3. The push-forward action of ϕ on H2(X ,Z) is as follows:

Case A
(1)
2 +A

(1)
2 .

Hq1 7→ Hp2 , Hp1 7→ Hq2 + 2Hp2 − E9,10,13,14

Hq2 7→ Hp1 , Hp2 7→ Hq1 + 2Hp1 − E1,2,5,6

E1 7→ Hp2 − E10, E2 7→ Hp2 − E9, E3 7→ E15, E4 7→ E16,
E5 7→ E11, E6 7→ E12, E7 7→ Hp2 − E14, E8 7→ Hp2 − E13,
E9 7→ Hp1 − E2, E10 7→ Hp1 − E1, E11 7→ E7, E12 7→ E8,
E13 7→ E3, E14 7→ E4, E15 7→ Hp1 − E6, E16 7→ Hp1 − E5

(14)
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Case A
(1)
5 .

Hq1 7→ Hp2 , Hp1 7→ Hp1 +Hq2 +Hp2 − E1,2,5,6

Hq2 7→ Hp1 , Hp2 7→ Hq1 +Hp1 +Hp2 − E9,10,13,14

E1 7→ Hp1 − E2, E2 7→ Hp1 − E1, E3 7→ E7, E4 7→ E8,
E5 7→ E3, E6 7→ E4, E7 7→ Hp2 − E6, E8 7→ Hp2 − E5,
E9 7→ Hp2 − E10, E10 7→ Hp2 − E9, E11 7→ E15, E12 7→ E16,
E13 7→ E11, E14 7→ E12, E15 7→ Hp1 − E14, E16 7→ Hp1 − E13

(15)

and the action on H2(X ,Z) is given by (11) with

J =

[
I4 0
0 −I16

]
.

The actions (14) and (15) correspond to singularity patterns in the pre-
vious section. The pull-back actions are given by their inverse.

Corollary 4.4. Both the degrees of mappings (1) and (2) grow quadrat-
ically.

Proof. As mentioned in Section 2, the degrees are given by the coefficients
of Hi’s of (ϕ∗)n, while the Jordan blocks of ϕ∗ consist of1 1 0

0 1 1
0 0 1


and seventeen 1× 1 matrices whose absolute value is 1.

Theorem 4.5. For Case A
(1)
2 +A

(1)
2 , the linear system of the anticanon-

ical divisor class δ = 2
∑2

i=1(Hqi +Hpi)−
∑16

i=1Ei is given by

(α0 + α1I1)(β0 + β1I2) =0(16)

for any (α0 : α1), (β0 : β1) ∈ P1, where Ii are given by (3) and fibers α0+α1I1 =

0 and α0 + α1I2 = 1 are mapped to each other, while for Case A
(1)
5 , the linear

system is given by

α0 + α1I1 + α2I2 =0,(17)

for any (α0 : α1 : α2) ∈ P2, where Ii are given by (4) and each fiber is preserved.

Remark 4.6. In both cases the divisor defined by the coefficients of the

symplectic form coincides with the canonical divisor. Indeed, for Case A
(1)
2 +

A
(1)
2 , the divisor class corresponding to dqi ∧ dpi is

i = 1 :− 2(Hq1 − E1,5)− 2(Hp1 − E1,7)− 3E1−2 − 2E2−3 − E3−4

− E5−6 − E7−8 = −2Hq1 − 2Hp1 + E1,...,8,
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i = 2 : q1 ↔ q2, p1 ↔ p2, Ej ↔ Ej+8 (j = 1, . . . , 8) in the above,

where Ei−j denotes Ei − Ej , while for Case A
(1)
5 , that is

i = 1 :− 2(Hq1 − E9,13)− 2(Hp1 − E1,7)− E1−2 − E7−8 − 2E9−10 − 2E10−11

− E11−12 − E13−14 = −2Hq1 − 2Hp1 + E1,2,7,8,11,12,13,14 (i = 1),

i = 2 : q1 ↔ q2, p1 ↔ p2, Ej ↔ Ej+8 (j = 1, . . . , 8) in the above.

Hence, for CaseA
(1)
2 +A

(1)
2 , the coefficients of the volume form corresponds

to a decomposition of the anti-canonical divisor

−KX =2(Hq1 − E1,5) + 2(Hp1 − E1,7) + 2(Hq2 − E9,13) + 2(Hp2 − E9,15)

+ 3E1−2 + 2E2−3 + E3−4 + E5−6 + E7−8

+ 3E9−10 + 2E10−11 + E11−12 + E13−14 + E15−16,(18)

while for Case A
(1)
5 it is

−KX =(Hq1 ↔ Hq2 in (18)).(19)

The above decompositions is left fixed by the action of the mapping. For

example, in the case A
(1)
2 +A

(1)
2 if we set−KX = D1+...+D14 whereD1 = E1−2,

D2 = E2−3, D3 = E3−4, D4 = 2Hq1 − E1,5, D5 = E5−6, D6 = 2Hp1 − E1,7,
D7 = E7−8, D8 = E9−10, D9 = E10−11, D10 = E11−12, D11 = Hq2 − E9,13,
D12 = E13−14, D13 = Hp2 − E9,15, D14 = E15−16, then we have

ϕ∗ :(D1, D2, ..., D14) 7→
(D8, D13, D14, D9, D10, D11, D12, D1, D6, D7, D2, D3, D4, D5).

The set {D1, D2, ..., D14} is important because its orthogonal complement gives
the symmetry group of the variety.

5. SYMMETRIES AND DEAUTONOMISATION

Let us fix the decomposition of the anti-canonical divisor as (18) or (19).

Definition 5.1. An automorphism s of the Néron-Severi bilattice is called
a Cremona isometry if the following three properties are satisfied:

(a) s preserves the intersection form;
(b) s leaves the decomposition of −KX fixed;
(c) s leaves the semigroup of effective classes of divisors invariant.

In general, if a birational mapping on CN can be lifted to a pseudo-
automorphism on X , its action on the resulting Néron-Severi bilattice is always
a Cremona isometry. In order to consider the inverse problem, i.e. from a Cre-
mona isometry to a birational mapping, at least we need to allow the mapping
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to move the centers of blow-ups, but keeping one of the decomposition of the
anti-canonical divisor

∑
imiDi (mi ≥ 1). Here, the birational mapping is lifted

to an isomorphism from X a to X a′ , where suffix a denotes parameters fixing
the centers of blowups. Note that

∑
imiDi is the unique anti-canonical divi-

sor for generic a, but not unique for the original X and the deautonomisation
depends on the choice of them. Here, we fix one of anti-canonical divisors of
X . This situation is the same with two dimensional case. See [7, 41] in details.

In this section we construct a group of Cremona isometries for the A
(1)
2 +

A
(1)
2 and the A

(1)
5 cases and realise them as groups of birational mappings.

Note that we do not know a canonical way to find root basis in H2(X a,Z),
and hence we can not detect whether there are Cremona isometries outside of
those groups or not. However, those groups act on a Z6 lattice in H2(X a,Z)
nontrivially, which is the largest dimensional lattice orthogonal to the elements
of decomposition of the anti-canonical divisor.

Case A
(1)
2 +A

(1)
2 . Let XA denote a family of the space of initial conditions

constructed in the previous section as

XA := {X a | a = (a
(1)
0 , a

(1)
1 , a

(1)
2 , a

(2)
0 , a

(2)
1 , a

(2)
2 ; b(1), b(2)) ∈ C8}.

Then, there is a natural isomorphism between

H2(X a,Z)×H2(X a,Z) ' H2(X ,Z)×H2(X ,Z)

as abstract lattices.

Let us define root vectors α
(j)
i and co-root vectors α̌

(j)
i (i = 0, 1, 2, j =

1, 2) so that the latter is orthogonal to all Di, i = 1, ..., 14, as

α
(1)
0 = Hq1 +Hp1 − E1,2,3,4, α

(1)
1 = Hp1 − E5,6, α

(1)
2 = Hq1 − E7,8,

α
(2)
0 = Hp2 +Hq2 − E9,10,11,12, α

(2)
1 = Hp2 − E13,14, α

(2)
2 = Hq2 − E15,16

(20)

and

α̌
(1)
0 = hq1 + hp1 − e1,2,3,4, α̌

(1)
1 = hq1 − e5,6, α̌

(1)
2 = hp1 − e7,8,

α̌
(2)
0 = hq2 + hp2 − e9,10,11,12, α̌

(2)
1 = hq2 − e13,14, α̌

(2)
2 = hp2 − e15,16

.

(21)

Then, the pairing 〈α(j)
i , α̌

(l)
k 〉 induces two of the affine root system of type

A
(1)
2 with the null vectors δ(1) = 2Hq1 + 2Hp1 − E1,...,8 and δ(2) = 2Hq2 +

2Hp2 − E9,...,16 and the null co-root vectors δ̌(1) = 2hq1 + 2hp1 − e1,...,8 and
δ̌(2) = 2hq2 + 2hp2 − e9,...,16. The Cartan matrix and the Dynkin diagram are
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2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 −2


α
(1)
0

α
(1)
1 α

(1)
2

α
(2)
0

α
(2)
1 α

(2)
2

.

Let W̃ (A
(1)
2 +A

(1)
2 ) denote the extended affine Weyl group

Aut(A
(1)
2 +A

(1)
2 ) n (W (A

(1)
2 )×W (A

(1)
2 )),

where Aut(A
(1)
2 +A

(1)
2 ) is the group of automorphisms of Dynkin diagram.

The roots α̌
(j)
i ’s are orthogonal to the elements of the decomposition of

the anti-canonical divisor. Thus, if we define the action of the simple reflection
w
α
(j)
i

on the Néron-Severi bilattice as usual as

w
α
(j)
i

(D) = D + 〈D, α̌(j)
i 〉α

(j)
i , w

α
(j)
i

(d) = d+ 〈α(j)
i , d〉α̌(j)

i(22)

for D ∈ H2(X a,Z) and d ∈ H2(X a,Z), it satisfies Condition (a) and (b)
for Cremona isometries (Condition (c) is verified by realising as a birational
mapping). Moreover, the group of Dynkin automorphisms is generated by

σ
(1)
01 :α

(1)
0 ↔ α

(1)
1 , α̌

(1)
0 ↔ α̌

(1)
1 ,

Hp1 ↔ Hq1 +Hp1 − E1 − E2, E1 ↔ Hq1 − E2,

E2 ↔ Hq1 − E1, E3 ↔ E5, E4 ↔ E6,

σ
(1)
12 : α

(1)
1 ↔ α

(1)
2 α̌

(1)
1 ↔ α̌

(1)
2 ,

H1 ↔ H4, E5 ↔ E7, E6 ↔ E8,

σ
(2)
01 : α

(2)
0 ↔ α

(2)
1 , α̌

(2)
0 ↔ α̌

(2)
1 ,

Hp2 ↔ Hp2 +Hq2 − E9 − E10, E9 ↔ Hq2 − E10,

E10 ↔ Hq2 − E9, E11 ↔ E13, E12 ↔ E14,

σ
(2)
12 : α

(2)
1 ↔ α

(1)
2 , α̌

(2)
1 ↔ α̌

(2)
2 ,

H2 ↔ H3, E13 ↔ E15, E14 ↔ E16,

σ(12) : α
(1)
i ↔ α

(2)
i , α̌

(1)
i ↔ α̌

(2)
i ,

H1 ↔ H3, H2 ↔ H4,

Ei ↔ Ei+8 (for i = 1, 2, . . . , 8).

with the action on H2(Xa,Z) given by (11), where we omit writing the un-
changed variables. It is easy to see that each one satisfies Condition (a) and
(b) for a Cremona isometry.
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Theorem 5.2. The extended affine Weyl group W̃ (A
(1)
2 + A

(1)
2 ) acts on

the family of the space of initial conditions XA such that each element w acts
as a linear transformation on the set of parameters A = C8 and as a pseudo
isomorphisms from Xa to Xw(a) for generic a ∈ A.

Proof. It is enough to give realisation of the generators as birational map-
pings on

(q1, p2, q2, p1; a
(1)
0 , a

(1)
1 , a

(1)
2 , a

(2)
0 , a

(2)
1 , a

(2)
2 ; b(1), b(2)) ∈ C14.

The following list gives such realisation:

w
α
(1)
0

: q1 ↔
q21 + q1p1 − b(1)q1 − a(1)0

q1 + p1 − b(1)
, p1 ↔

p21 + q1p1 − b(1)p1 + a
(1)
0

q1 + p1 − b(1)
,

a
(1)
0 ↔ −a

(1)
0 , a

(1)
1 ↔ a

(1)
0 + a

(1)
1 , a

(1)
2 ↔ a

(1)
0 + a

(1)
2

w
α
(1)
1

: q1 ↔ q1 − a(1)1 p−11 ,

a
(1)
0 ↔ a

(1)
0 + a

(1)
1 , a

(1)
1 ↔ −a

(1)
1 , a

(1)
2 ↔ a

(1)
1 + a

(1)
2

w
α
(1)
2

: p1 ↔ p1 + a
(1)
2 q−11 ,

a
(1)
0 ↔ a

(1)
0 + a

(1)
2 , a

(1)
1 ↔ a

(1)
1 + a

(1)
2 , a

(1)
2 ↔ −a

(1)
2

w
α
(2)
0

: q2 ↔
q22 + p2q2 − b(2)q2 − a(2)0

q2 + p2 − b(2)
, p2 ↔

p22 + p2q2 − b(2)p2 + a
(2)
0

q2 + p2 − b(2)
,

a
(2)
0 ↔ −a

(2)
0 , a

(2)
1 ↔ a

(2)
0 + a

(2)
1 , a

(2)
2 ↔ a

(2)
0 + a

(2)
2

w
α
(2)
1

: q2 ↔ q2 − a(2)1 p−12 ,

a
(2)
0 ↔ a

(2)
0 + a

(2)
1 , a

(2)
1 ↔ −a

(2)
1 , a

(2)
2 ↔ a

(2)
1 + a

(2)
2

w
α
(2)
2

: p2 ↔ p2 + a
(2)
2 q−12 ,

a
(2)
0 ↔ a

(1)
2 + a

(2)
2 , a

(2)
1 ↔ a

(2)
1 + a

(2)
2 , a

(2)
2 ↔ −a

(2)
2

and

σ
(1)
01 : p1 ↔ −q1 − p1 + b(1), a

(1)
0 ↔ −a

(1)
1 , a

(1)
1 ↔ −a

(1)
0 , a

(1)
2 ↔ −a

(1)
2

σ
(1)
12 : q1 ↔ p1, a

(1)
0 ↔ −a

(1)
0 , a

(1)
1 ↔ −a

(1)
2 , a

(1)
2 ↔ −a

(1)
1

σ
(2)
01 : p2 ↔ −q2 − p2 + b(2), a

(2)
0 ↔ −a

(2)
1 , a

(2)
1 ↔ −a

(2)
0 , a

(2)
2 ↔ −a

(2)
2

σ
(2)
12 : q2 ↔ p2, a

(2)
0 ↔ −a

(2)
0 , a

(2)
1 ↔ −a

(2)
2 , a

(2)
2 ↔ −a

(2)
1

σ(12) : q1 ↔ q2, p1 ↔ p2,

a
(1)
i ↔ a

(2)
i , (for i = 0, 1, 2), b(1) ↔ b(2).
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For these computations we used a factorisation formula proposed in [7] for
two-dimensional case, which also works well in the higher dimensional case.

The pull-back action ϕ∗ on the root lattice is

(α
(j)
0 , α

(j)
1 , α

(j)
2 ) 7→ (α

(j+1)
1 + α

(j+1)
2 ,−α(j+1)

2 , α
(j+1)
0 + α

(j+1)
2 )(23)

for j = 1, 2 mod 2, and written by the generators as

ϕ = σ(12) ◦ w
α
(2)
1

◦ σ(2)12 ◦ σ
(2)
01 ◦ wα(1)

1

◦ σ(1)12 ◦ σ
(1)
01 .(24)

Its action on the variables becomes(
q1, p2, q2, p1; a

(1)
0 , a

(1)
1 , a

(1)
2 , a

(2)
0 , a

(2)
1 , a

(2)
2 ; b(1), b(2)

)
7→
(
− p2 − q2 + b(2) − a

(2)
2

q2
, q1,−q1 − p1 + b(1) − a

(1)
2

q1
, q2;(25)

a
(2)
1 + a

(2)
2 ,−a(2)2 , a

(2)
0 + a

(2)
2 , a

(1)
1 + a

(1)
2 ,−a(1)2 , a

(1)
0 + a

(1)
2 ; b(2), b(1)

)
,

which is the non-autonomous version of ϕ. The action (ϕ2)∗ on the root lattice
is a translation as

(α
(j)
0 , α

(j)
1 , α

(j)
2 ) 7→ (α

(j)
0 , α

(j)
1 − δ

(j), α
(j)
2 + δ(j))(26)

for j = 1, 2.

Case A
(1)
5 . Let XA denote a family of the space of initial conditions

XA := {X a | a = (a0, a1, a2, a3, a4, a5; b1, b2) ∈ C8}.
Let us define root vectors αi and co-root vectors (i = 0, . . . , 5) as

α0 = Hq1 +Hp2 − E3,4,9,10, α1 = Hq2 − E15,16, α2 = Hp2 − E5,6,
α3 = Hp1 +Hq2 − E1,2,11,12, α4 = Hq1 − E7,8, α5 = Hp1 − E13,14

(27)

and

α̌0 = hp1 + hq2 − e1,2,3,4, α̌1 = hp2 − e15,16, α̌2 = hq2 − e5,6,
α̌3 = hq1 + hp2 − e9,10,11,12, α̌4 = hp1 − e7,8, α̌5 = hq1 − e13,14.

(28)

Then, the pairing 〈αi, α̌j〉 induces the affine root system of type A
(1)
5 with

the null vectors δ = 2Hq1,p1,q2,p2 − E1,...,16 and the null co-root vector δ̌ =
2hq1,p1,q2,p2 − e1,...,16. The Cartan matrix and the Dynkin diagram are

2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
−1 0 0 0 −1 −2


α0

α1 α2 α3 α4 α5

.



444 A. S. Carstea 26

Let W̃ (A
(1)
5 ) denote the extended affine Weyl group Aut(A

(1)
5 ) nW (A

(1)
5 ).

We define the action of the simple reflection wαi on the Néron-Severi
bilattice as (22). The group of Dynkin automorphisms is generated by

σ01 :α0 ↔ α1, α2 ↔ α5, α3 ↔ α4, α̌0 ↔ α̌1, α̌2 ↔ α̌5, α̌3 ↔ α̌4,

Hq2 ↔ Hp2 , Hq1 ↔ Hp1,q2 − E1,2, Hq2 ↔ Hq1,p2 − E9,10,

E1 ↔ Hp2 − E10, E2 ↔ Hp2 − E9, E3 ↔ E15, E4 ↔ E16,

E5 ↔ E13, E6 ↔ E14, E7 ↔ E11, E8 ↔ E12,

E9 ↔ Hp1 − E2, E10 ↔ Hp1 − E1,

σ12 : α0 ↔ α3, α1 ↔ α2, α4 ↔ α5, α̌0 ↔ α̌3, α̌1 ↔ α̌2, α̌4 ↔ α̌5,

Hq1 ↔ Hp1 , Hq1 ↔ Hp2 ,

E1 ↔ E9, E2 ↔ E10, E3 ↔ E11, E4 ↔ E12,

E5 ↔ E15, E6 ↔ E16, E7 ↔ E13, E8 ↔ E14,

with the action on H2(Xa,Z) given by (11).

Theorem 5.3. The extended affine Weyl group W̃ (A
(1)
5 ) acts on the fam-

ily of the space of initial conditions XA such that each element w acts as a linear
transformation on the set of parameters A = C8 and as a pseudo-isomorphisms
from Xa to Xw(a) for generic a ∈ A.

Proof. The following list gives realisation of the generators as birational
mappings on

(q1, p1, q2, p2; a0, a0, a1, a2, a3, a4, a5; b1, b2) ∈ C14.

wα0 : p1 ↔
(q1 + p2 − b1)p1 − a0

q1 + p2 − b1
, q2 ↔

(q1 + p2 − b1)q2 + a0
q1 + p2 − b1

,

a5 ↔ a0 + a5 a0 ↔ −a0, a1 ↔ a0 + a1,

wα1 : p2 ↔ p2 − a1q−12 ,

a0 ↔ a0 + a1, a1 ↔ −a1, a2 ↔ a1 + a2

wα2 : q2 ↔ q2 + a2p
−1
2 ,

a1 ↔ a1 + a2, a2 ↔ −a2 a3 ↔ a2 + a3,

wα3 : q1 ↔
(q2 + p1 − b2)q1 + a3

q2 + p1 − b2
, p2 ↔

(q2 + p1 − b2)p2 − a3
q2 + p1 − b2

,

a2 ↔ a2 + a3 a3 ↔ −a3, a4 ↔ a3 + a4,

wα4 : p1 ↔ p1 − a4q−11 ,

a3 ↔ a3 + a4, a4 ↔ −a4, a5 ↔ a4 + a5,

wα5 : q1 ↔ q1 + a5p
−1
1 ,
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a4 ↔ a4 + a5, a5 ↔ −a5 a0 ↔ a0 + a5,

σ01 : q1 ↔ −q2 − p1 + b2, p1 ↔ p2, q2 ↔ −q1 − p2 + b1,

a0 ↔ −a1, a2 ↔ −a5, a3 ↔ −a4, b1 ↔ b2,

σ12 : q1 ↔ p1, p2 ↔ q2,

a0 ↔ −a3, a1 ↔ −a2, a4 ↔ −a5, b1 ↔ b2

The pull-back action of ϕ∗ on the root lattice is

(α0, . . . , α5) 7→ (α1 + α2, α3 + α4,−α4, α4 + α5, α0 + α1,−α1)(29)

and written by the generators as

ϕ = wα5 ◦ wα2 ◦ σ01 ◦ σ12.(30)

Its action on the variables becomes

(q1, p1, q2, p2; a0, a1, a2, a3, a4, a5; b1, b2)

7→
(
− q1 − p2 + b1 +

a1
q2
, q2,−q2 − p1 + b2 +

a4
q1
, q1;(31)

a1 + a2, a3 + a4,−a4, a4 + a5, a0 + a1,−a1; b1, b2
)
,

which is the non-autonomous version of ϕ. It is easy to see that (ϕ4)∗ is a
translation on the root lattice as

ϕ4 : (α0, . . . , α5) 7→ (α0, . . . , α5) + δ(0, 1,−1, 0, 1,−1).

Remark 5.4. It is highly nontrivial to find the root basis. For example,
since the difference of decomposition of the anti-canonical divisor between the

A
(1)
2 + A

(1)
2 case and the A

(1)
5 case is just exchange of Hq1 and Hq2 , for the

A
(1)
2 +A

(1)
2 variety, the A

(1)
5 root system with the basis:

α0 = Hq2 +Hp2 − E3,4,9,10, α1 = Hq1 − E15,16, α2 = Hp2 − E5,6,
α3 = Hp1 +Hq1 − E1,2,11,12, α4 = Hq2 − E7,8, α5 = Hp2 − E13,14

α̌0 = hp1 + hq1 − e1,2,3,4, α̌1 = hp2 − e15,16, α̌2 = hq1 − e5,6,
α̌3 = hq2 + hp2 − e9,10,11,12, α̌4 = hp1 − e7,8, α̌5 = hq2 − e13,14.

.

also satisfies Condition (a) and (b) for Cremona isometries. However, it does
not satisfy Condition (c). Actually, wα1 acts to an effective divisor E16 as

E16 7→ Hq1 −E15, but Hq1 −E15 is not effective. Similarly, for the A
(1)
5 variety,

the A
(1)
2 +A

(1)
2 root system with the basis:

α
(1)
0 = Hq2 +Hp1 − E1,2,3,4, α

(1)
1 = Hp1 − E5,6, α

(1)
2 = Hq1 − E7,8,

α
(2)
0 = Hp2 +Hq1 − E9,10,11,12, α

(2)
1 = Hp2 − E13,14, α

(2)
2 = Hq2 − E15,16
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α̌
(1)
0 = hq2 + hp1 − e1,2,3,4, α̌

(1)
1 = hq2 − e5,6, α̌

(1)
2 = hp1 − e7,8,

α̌
(2)
0 = hq1 + hp2 − e9,10,11,12, α̌

(2)
1 = hq1 − e13,14, α̌

(2)
2 = hp2 − e15,16

.

also satisfies Condition (a) and (b), but does not satisfy (c).

6. 4D NON-CONFINING SYSTEM

Let us consider System (5) on the projective space (P1)4. In the following,
we aim to obtain a four-dimensional rational variety by blowing-up procedure
such that the birational map (5) is lifted to an algebraically stable map on the
variety.

Let I(ϕ) denote the indeterminacy set of ϕ. It is known that the mapping
ϕ is algebraically stable if and only if there does not exist a positive integer k
and a divisor D on X such that

ϕ(D \ I(ϕ)) ⊂ I(ϕk),(32)

i.e. the image of the generic part of a divisor by ϕn is included in the indeter-
minate set ([3, 1], Proposition 2.3 of [8]). see Section 2 of [8] for notations and
related theories used here).

The notion of singularity series of dynamics studied by Grammaticos-
Ramani and their collaborators is closely related to our procedure. Let us start
with a hyper-plane x2 = 1 + ε, where ε is a small parameter for considering
Laurent series expression, and apply ϕ, then we have a “confined” sequence of
Laurent series:

· · · →(x
(0)
0 , x

(0)
1 , 1 + ε, x

(0)
3 )→ (1, x

(0)
3 ,−hε−1, (1 + hx

(0)
3 )ε−2)

→(−hε−1, (1 + hx
(0)
3 )ε−2, hε−1,−(1 + hx

(0)
3 )ε−2)

→(hε−1,−(1 + hx
(0)
3 )ε−2, 1, x

(3)
4 )→ (1, x

(5)
1 , x

(0)
0 , x

(5)
3 )→ · · · ,(33)

where x
(k)
i ’s are complex constants and only the principal term is written for

each entry and a hyper-surface x2 = 0 is contracted to lower-dimensional vari-
eties and returned to a hyper-surface x0 = 0 after 4 steps. We can also find a
cyclic sequence:

(x
(0)
0 , x

(0)
1 , ε−1, x

(0)
3 )→ (ε−1, x

(0)
3 ,−ε−1,−x(0)1 − x

(0)
3 )

→(ε−1,−x(0)1 − x
(0)
3 , x

(0)
0 , x

(0)
1 )→ (x

(0)
0 , x

(0)
1 , ε−1, x

(3)
3 ): returned,(34)

where a hyper-surface x2 =∞ is contracted to lower-dimensional varieties and
returned to the original hyper-surface after 3 steps, and an “anti-confined”
sequence:

· · · →

((
−1 +

h

(x
(0)
0 − 1)2

)
ε−1, x

(−1)
1 , x

(−1)
2 , ε−1

)
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→(x
(0)
0 , ε−1, x

(0)
2 , x

(0)
3 )→ (x

(0)
2 , x

(0)
3 , x

(1)
2 , ε−1)

→

(
x
(1)
2 , ε−1, x

(2)
2 ,

(
−1 +

h

(x
(0)
2 − 1)2

)
ε−1

)
→ · · · .,(35)

where a lower dimensional variety is blown-up to a hyper-surfaces x1 =∞ and
contracted to a lower dimensional variety after 2 steps.

In the following, in order to avoid anti-confined patterns, we consider
P2× P2 instead of (P1)4. Although there is a possibility that the anti-confined
pattern can be resoluted by some blowing-down procedure, it is not easy to
find the actual procedure on the level of coordinates.

The coordinate system of P2×P2 is (x0 : x1 : 1, x2 : x3 : 1), and thus the
local coordinate systems essentially consist of 3× 3 = 9 charts:

(x0, x1, x2, x3), (y0, y1, x2, x3), (z0, z1, x2, x3),

(x0, x1, y2, y3), (y0, y1, y2, y3), (z0, z1, y2, y3),

((x0, x1, z2, z3), (y0, y1, z2, z3), (z0, z1, z2, z3),

where yi’s and zi’s are

(yi, yi+1) = (x−1i , x−1i xi+1) and (zi, zi+1) = (xix
−1
i+1, x

−1
i+1)

for i = 0, 2. Then, both the cyclic sequence (34) and the anti-confined sequence

(35) starting with x
(0)
i = ε−1 do not appear, but another cyclic sequence

(x
(0)
0 , x

(0)
1 , ε−1, c(0)ε−1)→ (ε−1, c(0)ε−1,−ε−1,−c(0)ε−1)

→(−ε−1,−c(0)ε−1, x(0)0 , x
(0)
1 )→ (x

(0)
0 , x

(0)
1 , ε−1, c(0)ε−1): returned(36)

appears, where c(0) is also a complex constant.
In order to resolute the singularity appeared in Sequences (33) and (36),

we blow up the rational variety along the sub-varieties to which some divisor
is contracted to. For Sequences (33), we have three such sub-varieties whose
parametric expressions are

V1 :(x0, x1, z2, z3) = (P, 1, 0, 0)

V2 :(z0, z1, z2, z3) = (0, 0, 0, 0)

V3 :(z0, z1, x2, x3) = (0, 0, P, 1),

where P is a C-valued parameter (independent to another sub-variety’s), while
for Sequences (36) we have a sub-variety

V4 :(z0, z1, z2, z3) = (P, 0, P, 0).

That is, the subvariety V1 is the Zariski closure of

{(x0, x1, x2, x3) = (P, 1, 0, 0) | P ∈ C}



448 A. S. Carstea 30

and V4 is that of of {(x0, x1, x2, x3) = (P, 0, P, 0) | P ∈ C} and so forth.
Since V4 includes V2, we have the option of blowing-up order. In the two

dimensional case, resolution is unique and the order is not a matter. But in the
higher dimensional case, it affects sensitively to the resulting varieties. Since
we only care on the level of codimension one, the order of blow-ups does not
affect the algebraical stability in some cases. But the following results were
not obtained in a straightforward manner but by trial and error.

We can resolute the singularity around V1 by the following five blowups:

C1 :(x0, x1, z2, z3) = (1, P, 0, 0)

← (s1, t1, u1, v1) := (x0 − 1, x1, z2(x0 − 1)−1, z3(x0 − 1)−1),

C2 :(s1, t1, u1, v1) = (0, P,Q, 0)

← (s2, t2, u2, v2) := (s1, t1, u1, v1s
−1
1 ),

C3 :(s2, t2, u2, v2) = (0, P,−h(1 + hP )−1, Q)

← (s3, t3, u3, v3) := (s2, t2, (u2 + h(1 + ht2)
−1)s−12 , v2),

C4 :(s3, t3, u3, v3) = (0, P,Q, (1 + hP )−1)

← (s4, t4, u4, v4) := (s3, t3, u3, (v3 − (1 + ht3)
−1)s−13 ),

C5 :(s4, t4, u4, v4) = (0, P,Q, (1 + hP )−2)

← (s5, t5, u5, v5) := (s4, t4, u4, (v4 − (1 + ht4)
−2)s−14 ),

where only one of the coordinate systems is written for each blowup. Similarly,
we can resolute the singularity around V3 by the following five blowups:

C6 :(z0, z1, x2, x3) = (0, 0, 1, P )

← (s6, t6, u6, v6) := (x2 − 1, x3, z0(x2 − 1)−1, z1(x2 − 1)−1),

C7 :(s6, t6, u6, v6) = (0, P,Q, 0)

← (s7, t7, u7, v7) := (s6, t6, u6, v6s
−1
6 ),

C8 :(s7, t7, u7, v7) = (0, P,−h(1 + hP )−1, Q)

← (s8, t8, u8, v8) := (s7, t7, (u7 + h(1 + ht7)
−1)s−17 , v7),

C9 :(s8, t8, u8, v8) = (0, P,Q, (1 + hP )−1)

← (s9, t9, u9, v9) := (s8, t8, u8, (v8 − (1 + ht8)
−1)s−18 ),

C10 :(s9, t9, u9, v9) = (0, P,Q, (1 + hP )−2)

← (s10, t10, u10, v10) := (s9, t9, u9, (v9 − (1 + ht9)
−2)s−19 ).

We need three blowups for V4:

C11 :(z0, z1, z2, z3) = (0, 0, 0, 0)

← (s11, t11, u11, v11) := (z0, z1z
−1
0 , z2z

−1
0 , z3z

−1
0 ),
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C12 :(s11, t11, u11, v11) = (P, 0, 1, 0)

← (s12, t12, u12, v12) := (s11, t11, (u11 − 1)t−111 , v11t
−1
11 ),

C13 :(s12, t12, u12, v12) = (P, 0, Q,−1)

← (s13, t13, u13, v13) := (s12, t12, u12, (v12 + 1)t−112 ),

where C11 corresponds to V2, while C12 and C13 corresponds to V4. We need
additional four blowups for V2:

C14 :(s13, t13, u13, v13) = (0, 0, 1 + h, 0)

← (s14, t14, u14, v14) := (s13t
−1
13 , t13, (u13 − 1− h)t−113 , v13t

−1
13 ),

C15 :(s14, t14, u14, v14) = (P, 0,−2Q− Ph−1, Q)

← (s15, t15, u15, v15) := (s14, t14, v14, (u14 + 2v14 + s14h
−1)t−114 ),

C16 :(s15, t15, u15, v15) = (P, 0,−Ph−1, Q)

← (s16, t16, u16, v16) := (s15, t15, (u15 + s15h
−1)t−115 , v15),

C17 :(s16, t16, u16, v16) = (P, 0, Q, 2−1Q+ (1 + h)h−1P )

← (s17, t17, u17, v17) := (s16, t16, u16, (v16 − 2−1u16 − (1 + h)h−1s16)t
−1
16 ).

The exceptional divisor Ei of i-th blowup is described in the local chart as

Ei : si = 0, (i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14)

Ei : ti = 0, (i = 12, 13, 15, 16, 17).

Let us denote the total transform (with respect to blowups) of the di-
visors (hyper-surfaces) c0x0 + c1x1 + a = 0 and c2x2 + c3x3 + b by Ha and
Hb respectively, where (c0 : c1 : a) and (c2 : c3 : b) are constant P2 vectors.
We also denote the total transform of the i-th exceptional divisor by Ei. Let
us write their classes modulo linear equivalence as Ha, Hb and Ei. Then, the
Picard group of this variety X becomes a Z-module:

Pic(X ) =ZHa ⊕ ZHb ⊕
17⊕
i=1

ZEi.(37)

Theorem 6.1. The map (5) is lifted to an algebraically stable map on the
rational variety obtained by blow-ups along Ci, i = 1, 2, . . . , 17, from P2 × P2.

Proof. The algebraic stability can be checked as follows. In the present
case, the indeterminate set I(ϕ) is given by

I(ϕ) = ϕ−1(E6 − E7) ⊂ E11,

while the condition that the dimension of ϕ(D \ I(ϕ)) is at most two implies
D = E1 − E2 and ϕ(D \ I(ϕ)) = ϕ(E1 − E2) ⊂ E11. It can be checked that
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ϕ(E1−E2) and I(ϕk), k = 1, 2, 3, . . . , are different two-dimensional subvarirties
in E11, and hence (32) can not occur.

The class of proper transform of Ei is

Ei − Ei+1 (i = 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16)

Ei (i = 5, 10, 17), E11 − E15.

Since the defining function of the hyper-surface z1 = 0 takes zero with multi-
plicities
0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2 on Ei (i = 1, . . . , 17), it is decomposed as

Ha =Proper transform

+ (E6 − E7) + 2(E7 − E8) + 2(E8 − E9) + 2(E9 − E10) + 2E10
+ (E11 − E14) + (E12 − E13) + (E13 − E14) + 2(E14 − E15)
+ 2(E15 − E16) + 2(E16 − E17) + 2E17,

where each class enclosed in parentheses determines a prime divisor uniquely
(we called such a class deterministic [7]). Hence the class of its proper transform
is Ha−E6−E7−E11−E12. Similarly, the defining function of the hyper-surface
x2 − 1 = 0 takes zero with multiplicities 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,
1 on Ei, and therefore the class of its proper transform is Hb − E1 − E6 − E11.
Along the same line, the proper transform of z3 = 0 can be computed as
Hb − E1 − E2 − E11 − E12.

Using these data, we can compute the pull-back action of Mapping ϕ (5)
on the Piacard group. For example, the pull-back of E1 is (x̄1, z̄2, z̄3) = (0, 0, 0),
whose “common factor” on each local coordinate system is x2− 1, s6, s7, s8 or
s9. Thus, we have

ϕ(E1) =(H2 − E1 − E6 − E11) +

9∑
i=6

(Ei − Ei+1)

=H2 − E1 − E10 − E11.

Along the same line, we have the following proposition.

Proposition 6.2. The pull-back ϕ∗ of Mapping (5) is a linear action on
the Picard group given by

Ha → Hb,
Hb → Ha + 3Hb − 2E1 − 3E11 − E6,7,9,10,12,13,14,
E1 → Hb − E1,10,11, E2 → Hb − E1,9,11, E3 → Hb − E1,7,9,11 + E8,
E4 → Hb − E1,7,11, E5 → Hb − E1,6,11,
E6 → E14, E7 → E14, E8 → E15, E9 → E16, E10 → E17,
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E11 → E1,11 − E14, E12 → Hb − E1,11,13, E13 → Hb − E1,11,12,
E14 → E2, E15 → E3, E16 → E4, E17 → E5,

where Ei1,...,ik denotes Ei1 + · · · + Eik . The Jordan blocks of the corresponding
matrix are

1, −1, 1
1
3 (3× 3 blocks),

1 1 0
0 1 1
0 0 1

 ,


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 .
In particular, the degree of the mapping ϕn grows quadratically with respect to
n.

Corollary 6.3. The degree of ψn for the 3-dimensional map ψ (8) also
grows quadratically with respect to n.

Proof. Let us denote the initial values as

(x0, x1, x2, x3) = (x
(0)
0 , x

(0)
1 , x

(0)
2 , x

(0)
3 ).

Map ψn is obtained by substituting x3 = h(x0, x1, x2) to

ϕn : x
(n)
i = f

(n)
i (x0, x1, x2, x3), i = 0, 1, 2,

where h and fi’s are some rational functions. Hence the degree of x
(n)
i ’s

with respect to x0, x1, x2 are bounded from the above by (degree of h) ×
(degree of f

(n)
i ). Since the degree of f

(n)
i ’s are quadratic with respect to n,

the degree of x
(n)
i ’s are at most quadratic. On the other hand, since ψ is a

QRT map with respect to x0 and x2, its degree with regarding x1 as a constant

grows quadratically [38], hence the degree of x
(n)
i ’s are at least quadratic.

The proper transforms of the conserved quantities I1 and I2 are

I1 : 2Ha + 2Hb − 2E1 − 2E6 − 4E11 − E2,4,7,9,12,13,14,16
I2 : 2Ha + 2Hb − 3E11 − E1,2,4,5,6,7,9,10,12,13,14,16,17,

which are preserved by ϕ∗.

We can consider the inverse problem.

Proposition 6.4. Hyper-surfaces whose class is 2Ha+2Hb−2E1−2E6−
4E11−E2,4,7,9,12,13,14,16 are given by C0+C1I1 = 0 with (C0 : C1) ∈ P1 and C1 6=
0. Hyper-surfaces whose class is 2Ha + 2Hb − 3E11 − E1,2,4,5,6,7,9,10,12,13,14,16,17
are given by C0 + C1I1 + C2I2 = 0 with (C0 : C1 : C2) ∈ P2 and C2 6= 0.



452 A. S. Carstea 34

Thus, we can compute invariants by using the action of the system ϕ on
the Picard group.

Proof. The proof is straightforward but tedious. For example, the defin-
ing polynomials of a curve of the class 2Ha + 2Hb − 2E1 − 2E6 − 4E11 −
E2,4,7,9,12,13,14,16 can be written as

f(x0, x1, x2, x3) :=
∑

i0, i1, i2, i3 ≥ 0
i0 + i1 + i2 + i3 ≤ 2

ai0i1i2i3x
i0
0 x

i1
1 x

i2
2 x

i3
3 ,

z22f(x0, x1, z2z
−1
3 , z−13 ) around E1,

z20f(z0z
−1
1 , z−11 , x2, x3) around E5,

z20z
2
2f(z0z

−1
1 , z−11 , z2z

−1
3 , z−13 ) around E11.

The coefficients are determined so that defining polynomial takes zero with
multiplicity 2, 3, 3, 4, 4, 2, 3, 3, 4, 4, 4, 1, 2, 7, 7, 8, 8 on Ei’s; which verifies
the claim.

7. CONCLUSIONS

In this paper we investigated three integrable 4-dimensional mappings
and constructed the space of initial conditions on the level of pseudo-auto/iso-
morphisms and algebraically stable maps.

The deautonomised version of the first mapping has the symmetry group

is A
(1)
2 + A

(1)
2 affine Weyl group. This situation can be easily generalised to

X
(1)
l +X

(1)
m affine Weyl group, where X

(1)
l and X

(1)
m are affine Weyl subgroups

in E
(1)
8 appearing in Sakai’s classification of two-dimensional discrete Painlevé

equations, i.e. X = A,D,E ,l,m = 0, 1, 2, 3, 4, 5, 6, 7, 8. In this case the variety
is almost the direct product of generalised Halphen surfaces de- scribed by
Sakai in his classification. Here, it is allowed that additive, multiplicative and
elliptic difference systems are mixed but independently for 2 + 2 variables.

The second mapping was obtained just by switching two terms in the first
mapping, but this simple surgery generates a variety with a different type sym-
metry. On the level of cohomology, the only difference is the decompositions
of the anti-canonical divisors as (18) and (19). Moreover, their symmetries are
closely related with each other. We expect that there are many such “twin”
phenomena.

The third mapping is rather a new one in the sense that is obtained from
the travelling wave reduction of a supersymmetric lattice equations where the
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corresponding Grassmann algebra has only two generators. The interesting
fact is that, even though the mapping is not-confining, the complexity growth
is quadratic a fact which is new. Anyway since there are no theorems about
the behaviour of integrable four dimensional mappings we expect that there
are many such systems.
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(1)
l . Funkcial.

Ekvac. 41 (1998), 483–503.

[27] K. Okamoto, Sur les feuilletages associs aux quations du second ordre points critiques
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