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1. INTRODUCTION

The analysis of local Lie algebras [14] has brought to light a new kind
of geometric structures that encompass both contact and locally conformal
symplectic ones. The new geometric structures exhibit the well-known Jacobi
manifolds [11, 19, 7]. Globally, these were initially defined via a pair (lately
addressed [33] as a Jacobi pair) consisting of a bi-vector and a vector field
subject to two consistency conditions that make use of the Schouten bracket
associated with the Gerstenhaber algebra of multi-vector fields. These condi-
tions can be expressed as a Maurer-Cartan-like equation [24, 33] with respect
to an appropriately modified Schouten bracket, which shows that Jacobi pair
generalizes in some sense Poisson structure. Also, the Jacobi pair organizes
the R-vector space of smooth functions as a Lie algebra (with respect to the
well-known Jacobi bracket) but not a Poisson one.

It is worth mentioning that the previous structure, via the associated Ja-
cobi bracket, has recently found many applications in mathematical physics,
namely in the canonical approach of non-autonomous Hamiltonian systems
[38, 34], in the integrability of Hamiltonian systems on odd-dimensional man-
ifolds [36, 17, 18] as well as in the geometric reformulation of non-equilibrium
thermodynamics [2].

A joint generalization of the previous structures comes from their ‘twist’
[24] (at the level of the Jacobi identity for the Jacobi bracket) by a 2-form
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and its de Rham differential. The obtained twisted Jacobi manifolds (man-
ifolds equipped with twisted Jacobi pairs) enjoy the main features of Jacobi
manifolds: i) their characteristic distributions are completely integrable, with
twisted cooriented contact structures on the odd dimensional leaves and twisted
locally conformal symplectic structures on the even dimensional leaves [25] and
ii) they are in one-to-one correspondence with homogeneous twisted Poisson
manifolds, where the background 3-form is exact [24].

Recently, with the twisted Jacobi pair notion in mind, a more generous
structure has been proposed [5]. This concept starts with a pair consisting of
a bi-vector and a vector field and adds a ‘background’ (that spoils the Jacobi
identity for the Jacobi bracket) comprising a 3-form together with a 2-form.
The arbitrariness of the 3-form shows that this new structure (called Jacobi
structure with background) encompasses the twisted Jacobi one. In addition,
it enjoys the main features of the Jacobi and twisted Jacobi pairs, i.e. i) their
characteristic distributions are completely integrable, with twisted cooriented
contact structures on the odd dimensional leaves and locally conformal sym-
plectic structures with background on the even dimensional leaves [5] and ii)
they are in one-to-one correspondence with homogeneous Poisson manifolds
with background, where the background 3-form is no longer closed [5].

The reformulation of the consistency conditions corresponding to Jacobi
pairs in terms of Maurer-Cartan-like equations [33] can be done also for twisted
and Jacobi pairs with background [24, 5]. These reformulations make use of a
Gerstenhaber-Jacobi structure based on the Schouten bracket in the Gersten-
haber algebra of multivector fields. These results together with the algebraic
characterisations of Lie and Jacobi algebroids [9, 10] enforced the line-bundle
versions [33, 4] of the previous ‘pairs’. Within this global setting, the ‘pairs’
are nothing but the trivial line-bundle versions of the corresponding Jacobi-like
bundles [21, 33, 4].

The present paper is organized into five sections as follows. In Section 2,
starting with the Jacobi pair concept, we do a brief review of twisted Jacobi
pairs exhibiting their main properties concerning integrability and correspon-
dence with homogeneous Poisson structures. Section 3 is dedicated to the main
aspects of Jacobi pairs with background including here the relationship with
the twisted Jacobi ones. In Section 4, we reformulate the consistency conditions
defining the Jacobi-like structures in terms of Maurer-Cartan-like equations.
This developing exhibits, for each kind of Jacobi-like pair, a corresponding
Jacobi algebroid. With these results at hand, in Section 5 we consistently in-
troduce the global formulation of Jacobi-like pairs, namely the Jacobi-like line
bundles.



3 Twisted Jacobi versus Jacobi with background structures 459

2. FROM JACOBI TO TWISTED JACOBI PAIRS

The local structure of the local Lie algebras with one-dimensional fibers
[14] has put into evidence a geometric structure that encompasses both (coori-
entable) contact and locally conformal symplectic structures. The systematics
of this new structure has been initially done [19] in terms of a bi-vector and a
vector field on the smooth manifold M , Π and E respectively,

Π ∈ X2(M), E ∈ X1(M),

subject to the conditions

(1) 1
2 [Π,Π] + E ∧Π = 0, [E,Π] = 0.

Previously, we denoted by(
X•(M) :=

m⊕
k=0

Xk(M),∧

)
the graded, graded commutative and associative algebra of smooth multi-vector
fields over the manifold M . This can be naturally organized [20] as a Gersten-
haber algebra with respect to the Schouten bracket [•, •].

Definition 2.1. Let M be a smooth manifold. A pair (Π, E) consisting of
a bi-vector and a vector field that enjoys (1) is said to be a Jacobi pair. In this
context, the manifold M is called a Jacobi manifold.

In order to exemplify the previous concept, we first make some specifica-
tions. We denote by (

Ω•(M) :=

m⊕
k=0

Ωk(M),∧

)
the graded and graded commutative algebra of smooth forms over the manifold
M . This is naturally endowed with de Rham differential, d, and it is dual to the
previous Gerstenhaber algebra. Moreover, we adopt here the conventions from
[20] concerning the wedge products, interior products and pairings between
Ωp(M) and Xp(M). In addition, we make the notation for the degree zero
components of the previous graded algebras

Ω0(M) = X0(M) = F(M) := C∞(M).

In fact, as a clue for the subsequent approaches, both Schouten bracket
and de Rham differential [•, •] and d respectively are equivalent [9, 10] to the
Lie algebroid (TM →M, [•, •] , idTM ) with [•, •] the standard Lie crochet.

Remember here that a Lie algebroid is a vector bundle A→M equipped
with a Lie algebra structure [•, •] on the R-vector space of smooth sections Γ(A)
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which is a skew-symmetric, first-order bi-differential operator on the F(M)-
module Γ(A), i.e. there exists the vector bundle map ρ : A→ TM such that

[α, fβ] = (ρ(α)f)β + f [α, β] , α, β ∈ Γ(A), f ∈ F(M).

The previous statement envisaging the ‘essence’ of Schouten bracket and de
Rham differential becomes obvious in the light of the result below [9, 10].

Theorem 2.2. Let A → M be a vector bundle. Then the following data
are equivalent:

1. a Lie algebroid structure, ([•, •] , ρ), on A→M ;

2. a Gerstenhaber algebra structure, [•, •]A, on the graded algebra
(Γ (∧•A) ,∧);

3. a homological degree 1 graded derivation, dA, of the graded algebra
(Γ (∧•A∗) ,∧), with A∗ →M the dual vector bundle associated with the starting
one.

Example 2.3. By its very definition [35] a Poisson manifold is a manifold
M endowed with a Poisson structure, i.e. a bi-vector Π ∈ X2(M) that enjoys

(2) [Π,Π] = 0,

with [•, •] the Schouten bracket in X•(M). Comparing (2) with (1) it results
that a Poisson structure Π displays the Jacobi pair (Π, E = 0).

Example 2.4. Let M be an odd-dimensional smooth manifold, dimM =
2m + 1. The smooth 1-form θ ∈ Ω1(M) (the well-kown contact 1-form) that
exhibits the volume form

(3) µθ := θ ∧ (dθ)m 6= 0,

generates the maximally non-integrable hyperplane distribution

Kθ := Ker θ

known as the coorientable contact distribution. Such a structure displays [34]
a Jacobi pair (Πθ, Eθ) defined via

(4) 〈df ∧ dg,Πθ〉 := 〈dθ,Xf ∧Xg〉, Eθ := Xf=1,

where Xf is the unique solution to the equations

(5) iXf θ = f, iXfdθ = −df + (iEθdf) θ,

with i• the right interior product by p-vectors [20].
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Example 2.5. Let M be an even-dimensional smooth manifold, dimM =
2m. A pair of forms (Ω, α) consisting of a non-degenerate 2-form Ω ∈ Ω2(M)
and a closed 1-form α ∈ Ω1(M), dα = 0, which is subject to the condition

(6) dΩ + α ∧ Ω = 0

is said to be a locally conformal symplectic structure. This pair entails the
Jacobi one

(
Π(Ω,α), E(Ω,α)

)
, where

(7) 〈df ∧ dg,Π(Ω,α)〉 := 〈Ω,Ω]df ∧ Ω]dg〉, E(Ω,α) := Ω]α.

Previously, we denoted by Ω] : T ∗M → TM the inverse of the vector bundle
isomorphism

Ω[ : TM → T ∗M, Ω[X := −iXΩ,

i.e. Ω]Ω[ = idTM .

The previous examples suggest that there exists a more profound con-
nection between Jacobi pairs and coorientable contact/ locally conformal sym-
plectic structures. In order to identify it, remember that for the very special
Jacobi pair (Π, E = 0) (see Example 2.3), the bivector Π ∈ X2(M) generates
the well-known characteristic distribution CΠ := Im Π], where we denoted by
Π] the vector bundle morphism

Π] : T ∗M → TM, Π]µ := −jµΠ,

with j• the left interior product of multi-vector fields by p-forms [20]. The main
feature of characteristic distribution stands in its completely integrability [35],
having as characteristic leaves symplectic submanifolds of the base manifold
M .

In the generic situation of a Jacobi pair (Π, E) on the smooth manifold
M , the standard approach of the characteristic distribution makes use of the
Lie algebra structure

(8) {•, •} : F(M)×F(M)→ F(M), {f, g} := iΠ (df ∧ dg)+iE (fdg − gdf)

over the R-vector space F(M). This is a skew-symmetric, first-order differential
operator in each entry (with respect to the F(M)-module structure of F(M)),
i.e. for any f ∈ F(M),

(9) F(M) 3 g 7→ ∆fg := {f, g} ∈ F(M),

is a first-order differential operator of symbol

(10) Xf := Π]df + fE.

The vector field (10) is the well-known Hamiltonian vector field associated with
the smooth function f ∈ F(M).
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In the light of the Lie algebra structure (8), the first-order differential
operator (9) verifies

(11) [∆f ,∆g] = ∆{f,g}, f, g ∈ F(M),

i.e. f 7→ ∆f is a Lie algebra morphism from (F(M), {•, •}) to (D(RM ), [•, •]),
where D(RM ) is the set of the first-order differential operators [16] associated
with the trivial line bundle RM := R ×M → M . Previously, we denoted by
[•, •] the standard commutator of the R-linear operators. As an immediate
consequence of (11), it results that the R-algebra of Hamiltonian vector fields
is involutive under the Lie crochet, i.e.

(12) [Xf , Xg] = X{f,g}, f, g ∈ F(M).

By definition, the characteristic distribution associated with the consid-
ered Jacobi pair is the smooth distribution generated by the Hamiltonian vector
fields (10)

(13)
(
C(Π,E)

)
x

:= 〈{(Xf )x : f ∈ F(M)}〉 ⊆ TxM, x ∈M.

The characteristic distribution (13) is said to be transitive if at each point
it coincides with the tangent space. Regarding the characteristic distribution
corresponding to a Jacobi pair, there exists two strong results [11, 34] listed
below.

Theorem 2.6. If a Jacobi pair (Π, E) on a smooth manifold M is tran-
sitive then M is either a locally conformal symplectic manifold (see Example
2.5) or a coorientable contact one (see Example 2.4).

Theorem 2.7. The characteristic distribution of a Jacobi pair is com-
pletely integrable [31, 32] with the characteristic leaves either locally conformal
symplectic manifolds or coorientable contact ones.

Remark 2.8. The integrability of the characteristic distribution associ-
ated with a Jacobi pair has been elegantly solved in an algebraic language. Pre-
cisely, it has been shown that the graph of the Jacobi pair is just a Dirac-Jacobi
structure [37] in the Courant-Jacobi algebroid E1(M) := (TM×R)⊕(T ∗M×R)
[39].

At the end of this section, we focus on a version of a Jacobi-like pair (see
Definition 2.1) which is ‘twisted’ via a 2-form [24].

Definition 2.9. Let M be a smooth manifold. A pair (Π, E) ∈ X2(M)×
X1(M) is said to be twisted by the 2-form ω ∈ Ω2(M) if it verifies

(14) 1
2 [Π,Π]+E∧Π = Π]dω+Π]ω∧E, [E,Π] = −

(
Π]iEdω + Π]iEω ∧ E

)
.

Shortly, the structure ((Π, E), ω) that enjoys (14) is said to be a twisted Jacobi
pair.
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Example 2.10. By its very definition a twisted Poisson manifold, also
known as Poisson manifold with a (closed) 3-form background [30], is a mani-
fold M equipped with a pair (Π, φ) ∈ X2(M)× Ω3(M) that verifies

(15) dφ = 0 and 1
2 [Π,Π] = Π]φ.

In the light of the first equation in (15) it results that (at least locally) φ =
dω. In this context, the twisted Poisson manifold (Π,dω) exhibits the twisted
Jacobi pair ((Π, E = 0), ω). It is worth-noticing that ’twisting’ of the Poisson
structures initially arose in physics in the context of string theory [15], but their
integrability has been proved in [30] in the framework of a φ-closedness-based
Courant algebroid structure on the ‘fat’ tangent bundle TM ⊕ T ∗M .

Example 2.11. Let M be an odd-dimensional smooth manifold, dimM =
2m+ 1. The pair (θ, ω) consisting of a 1-form θ and a 2-form ω is said to be a
twisted cooriented contact structure if

µ(θ,ω) := θ ∧ (dθ + ω)m

is a volume form. This structure defines the twisted Jacobi pair((
Π(θ,ω), E(θ,ω)

)
, ω
)
, where E(θ,ω) is the twisted Reeb vector field, i.e. the

unique vector field that enjoys

iE(θ,ω)
θ = 1, iE(θ,ω)

(dθ + ω) = 0

and

(16) 〈df ∧ dg,Π(θ,ω)〉 := 〈dθ,Xf ∧Xg〉.

In definition (16), we denoted by Xf the twisted-contact Hamiltonian vector
field associated with the smooth function f ∈ F(M), i.e. the unique solution
to the equations

(17) iXf θ = f, iXf (dθ + ω) = iE(θ,ω)
(df ∧ θ) .

Example 2.12. Let M be an even-dimensional smooth manifold. The pair
(Ω, α), with Ω a non-degenerate 2-form and α a closed 1-form, is said to be a
locally conformal symplectic structure twisted by ω ∈ Ω2(M) if

(18) d (Ω− ω) + α ∧ (Ω− ω) = 0.

Associated with the considered twisted locally conformal symplectic structure,
there exists the unique twisted Jacobi pair

((
Π(Ω,α), E(Ω,α)

)
, ω
)

with the pair(
Π(Ω,α), E(Ω,α)

)
defined in (7).

Like in the standard Jacobi pairs situation, the connection between twisted
Jacobi pairs and twisted cooriented contact/ locally conformal symplectic ones
is more profound [24, 25, 26] as we are going to sketch in the sequell. In or-
der to do this, we consider the twisted Jacobi pair ((Π, E), ω) on the smooth
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manifold M and implement the bracket (8) on the R-vector space of smooth
functions F(M). This is manifestly R-linear and skew-symmetric, but it no
longer verifies the Jacobi identity

Jac {f, g, h} = iΠ]dω+Π]ω∧E (df ∧ dg ∧ dh)

− iΠ]iEdω+Π]iEω∧E (fdg ∧ dh+ gdh ∧ df + hdf ∧ dg) ,(19)

where

Jac {f, g, h} := {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}, f, g, h ∈ F(M)

is the well-known Jacobiator. Due to the fact that structure (8) is a first-order
differential operator in each entry, the Hamiltonian derivations (9) remain valid
in the considered twisted context and, moreover, their symbols (10). Unlike
the non-twisted case where f 7→ Xf is an R-Lie algebras morphism, here

[Xf , Xg]−X{f,g} = Π]iXf∧Xgdω − (LEf) Π]iXgω + (LEg) Π]iXfω

+
(
iXf∧Xgω

)
E,(20)

[Xf , E] +XLEf = Π]
(
iXf∧Edω − (LEf) iEω

)
+
(
iXf∧Eω

)
E.(21)

Following the line of Jacobi pairs, we introduce the characteristic distri-
bution associated with the considered twisted Jacobi pair via

(22)
(
C((Π,E),ω)

)
x

:= 〈{(Xf )x : f ∈ F(M)}〉 ⊆ TxM, x ∈M,

which, in the light of (20)–(21), is involutive. Maintaining the transitivity
definition, the characteristic distribution corresponding to a twisted Jacobi
pair enjoys two strong properties [24, 25, 26] listed below.

Theorem 2.13. If a twisted Jacobi pair ((Π, E), ω) on a smooth manifold
M is transitive then M is either a twisted locally conformal symplectic manifold
(see Example 2.12) or a twisted coorientable contact one (see Example 2.11).

Theorem 2.14. The characteristic distribution of a twisted Jacobi pair is
completely integrable [31, 32] with the characteristic leaves either twisted locally
conformal symplectic manifolds or twisted coorientable contact ones.

Remark 2.15. As in the special situation ((Π, E = 0), ω) (see Example
2.10) the algebraic solution to the integrability problem makes use of the
fact that the characteristic distribution corresponding to a twisted Jacobi pair
((Π, E), ω) is just a Dirac-Jacobi structure in the Courant-Jacobi algebroid
E1(M)ω [24] (that comes from the Courant-Jacobi algebroid E1(M) via twist-
ing the Courant bracket by ω ).
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3. RELAXING TWISTED JACOBI: JACOBI PAIRS WITH
BACKGROUND

In this section, we introduce a new structure [5] which comes as a ‘relaxed’
version of twisted Jacobi pairs (see Definition 2.9). This new concept enjoys the
integrability and the correspondence with ‘homogeneous’ Poisson structures
but it does not exhibit a nice algebroid-based expression just as its ‘source’
– twisted Jacobi pair. Recently, this new concept has found applications in
gauged sigma-models physics with non-closed 3-forms [3].

Definition 3.1. A pair ((Π, E) , (φ, ω)) consisting of

Π ∈ X2(M), E ∈ X1(M), φ ∈ Ω3(M), ω ∈ Ω2(M)

which satisfies the ‘compatibility’ conditions

(23)
1

2
[Π,Π] + E ∧Π = Π]φ+ Π]ω ∧ E, [E,Π] = −

(
Π]iEφ+ Π]iEω ∧ E

)
is called a Jacobi pair (Π, E) with background (φ, ω).

Remark 3.2. Inspecting Definitions 2.9 and 3.1, it is clear that any twisted
Jacobi pair ((Π, E), ω) is just the Jacobi pair with background ((Π, E), (dω, ω)).

Example 3.3. In the light of Example 2.10, we introduce the notion of
Poisson manifold with a 3-form background [1], as being the manifold M en-
dowed with a pair (Π, φ) ∈ X2(M)× Ω3(M) that verifies

(24) 1
2 [Π,Π] = Π]φ.

Comparing (23) with (24) it results that a Poisson structure with background
(Π, φ) displays the family of Jacobi pairs with background ((Π, E = 0), (φ, ω)).

Example 3.4. Let’s consider the four-dimensional smooth manifold R4

with the global coordinates x =
(
x1, x2, x3, x4

)
and the real smooth functions

f, e ∈ F
(
R4
)

among which f is nowhere vanishing, f2 > 0, and e depends
only on the first two coordinates, e = e

(
x1, x2

)
. We introduce the geometric

objects

Π =
1

f
(∂1 ∧ ∂4 + ∂2 ∧ ∂3) , E = − 1

f
((∂1e) ∂4 + (∂2e) ∂3) ,(25)

φ = (df − fde) ∧ (x2 ∧ dx3 + dx1 ∧ dx4), ω = 0.(26)

Direct computations show that the geometric objects (25) and (26) verify the
relations (23) which means that ((Π, E), (φ, ω)) is a Jacobi pair with back-
ground.
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Example 3.5. Let’s consider again the four-dimensional smooth manifold
R4 with the global coordinates x =

(
x1, x2, x3, x4

)
and the smooth functions

f , g, h, and e on R4 among which f , and e verify the same restrictions as in
the previous example. Construct the bi-vector and vector fields as in (25) and

φ =
[
(∂3h∂2e+ ∂4f) dx2 + (∂3h∂1e− ∂3f) dx1

]
∧ dx3 ∧ dx4

+
[
(−∂2f + f (x) ∂2e− ∂1h∂2e+ ∂2h∂1e) dx4

+
(
∂1f + ∂3f̃∂2e

)
dx3
]
∧ dx1 ∧ dx2,

(27)

ω = f (x) dx2 ∧ dx3 +
(
∂3f̃
)

dx3 ∧ dx1 + g (x) dx1 ∧ dx2 + dh ∧ dx4.(28)

In formulas (27) and (28) f̃ stands for an arbitrary smooth function that
verifies ∂4f̃ = f . By direct computation it can be checked that the pair
((Π, E), (φ, ω)) given in (25), (27), and (28) satisfies the compatibility con-
ditions (23), i.e. it is a Jacobi pair with background. Simple computations
show that the 2-form ω is non-trivial while the 3-form is closed but

φ 6= dω.

Examples 3.4 and 3.5 exhibit a non-degenerate bivector which is common
for twisted locally conformal symplectic structures. This suggests that such
symplectic-like structures might be implemented in the present background
context.

Example 3.6. Let M be an even-dimensional smooth manifold and (Ω, α)
be a pair of forms with Ω a non-degenerate 2-form and α a closed 1-form. Let
ω be an arbitrary 2-form on the same smooth manifold. By means of these
geometric objects, we introduce the 3-form

(29) φ := dΩ + α ∧ (Ω− ω).

With these specification at hand, we call a locally conformal symplectic struc-
ture (Ω, α) with background (φ, ω) the structure ((Ω, α), (φ, ω)) satisfying (29).
By direct computation, it can be shown that

((
Π(Ω,α), E(Ω,α)

)
, (φ, ω)

)
, with

the pair
(
Π(Ω,α), E(Ω,α)

)
defined in (7), is a Jacobi pair with background [5].

In the light of definition (29), it is obvious that the locally conformal
symplectic structure with background ((Ω, α), (φ = dω, ω)) is just the twisted
one ((Ω, α), ω).

Regarding coorientable twisted contact structures on odd-dimensional
base manifolds (see Example 2.11), by using Remark 3.2, it is clear that they
generate Jacobi pairs with background.

Following the integrability line for the previous kinds of Jacobi-like struc-
tures, we consider a generic Jacobi pair with background ((Π, E), (φ, ω)) on
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the smooth manifold M and we define bracket (8). This is manifestly R-linear
and skew-symmetric, but no longer verifies the Jacobi identity

Jac {f, g, h} =− iXf∧Xg∧Xhφ+ (LEf)iXg∧Xhω

+ (LEg)iXh∧Xfω + (LEh)iXf∧Xgω.
(30)

Bracket (8) is a derivation in each entry, which displays the Hamiltonian
derivations (9) and their symbols, the Hamiltonian vector fields (10). In the
Jacobi with background context, as in the twisted case, due to (30) it results
that the R-vector space of Hamiltonian vector fields is no longer a Lie algebra
with respect to the standard Lie crochet [5]
(31)
[Xf , Xg]−X{f,g} = Π]iXf∧Xgφ−(LEf) Π]iXgω+(LEg) Π]iXfω+

(
iXf∧Xgω

)
E.

At this stage, we define the characteristic distribution corresponding to the
considered Jacobi pair with background by

(32)
(
C((Π,E),(φ,ω))

)
x

:= 〈{(Xf )x : f ∈ F(M)}〉 ⊆ TxM, x ∈M.

By direct computations one infers

(33) [Xf , E] +XLEf = −Π]
(
iE∧Xfφ+ (LEf) iEω

)
−
(
iE∧Xfω

)
E,

which, together with result (31), prove that the characteristic distribution (32)
is involutive. Maintaining the transitivity definition, the characteristic dis-
tribution corresponding to a Jacobi pair with background enjoys two strong
properties [5] listed below.

Theorem 3.7. If a Jacobi pair with background ((Π, E), (φ, ω)) on a
smooth manifold M is transitive then M is either a locally conformal sym-
plectic manifold with background (see Example 3.6) or a twisted coorientable
contact one (see Example 2.11).

Theorem 3.8. The characteristic distribution of a Jacobi pair with back-
ground is completely integrable [31, 32] with the characteristic leaves either
locally conformal symplectic manifolds with background or twisted coorientable
contact ones.

At this point, it seems somehow surprising the ’lack’ of the contact struc-
tures with background. This is elucidated by the ’gauge’ theorem [5] that
offers the freedom degree in the choice of the forms φ and ω once the geometric
objects Π and E are fixed.

Theorem 3.9. Let M be a smooth manifold and ((Π, E), (φi, ωi)), i = 1, 2
be two transitive Jacobi pairs with background on the base manifold M . The
following alternative holds:
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1. If M is even-dimensional then there exists a 2-form ω, such that

(34) ω1 = ω2 + ω, φ1 = φ2 − ω ∧Π[E;

2. If M is odd-dimensional then

(35) ω1 = ω2, φ1 = φ2.

The previous discussion on various kinds of Jacobi structures reveals their
complete integrability in a broader sense of Stefan and Sussmann [31, 32].

At the end of this section, we shall briefly address the ‘Poissonization’
of the previous Jacobi-like structures. This problem comes naturally from the
perspective of Examples 2.3, 2.10 and 3.3, which show that to any Poisson,
twisted Poisson and Poisson with background structure we can associate a
Jacobi, twisted Jacobi, and Jacobi pair with background, respectively. The
‘reverse’ correspondence can be done by ‘oxidation’ of the base manifold with
an extra-dimension.

Proposition 3.10. Let M be a smooth manifold and M̃ := M ×R be its
trivially one-dimension extension. Denoting by τ the additional coordinate on
M̃ , then the following are true:

• If (Π, E) is a Jacobi pair on M then Π̃ := e−τ (Π + ∂τ ∧ E) is a homo-
geneous Poisson structure on M̃ [34] with the homogeneity vector field Z̃ = ∂τ ,
i.e. LZ̃Π̃ = −Π̃.

• If ((Π, E), ω) is a twisted Jacobi pair on M then
(

Π̃, φ̃ := d(eτω)
)

is a

twisted (exact) homogeneous Poisson structure on M̃ [24] with the homogeneity
vector field Z̃ = ∂τ , i.e. LZ̃Π̃ = −Π̃ and LZ̃ φ̃ = φ̃.

• If ((Π, E), (φ, ω)) is a Jacobi pair with background on M then(
Π̃, φ̃ := eτ (φ+ ω ∧ dτ)

)
is a homogeneous Poisson structure with background

on M̃ [5] with the same homogeneity vector field as in the previous homoge-
neous Poisson structures.

4. JACOBI-LIKE PAIRS AS DISTINGUISHED ELEMENTS OF
A JACOBI ALGEBROID

In this part, we address the algebraic machinery behind the Jacobi struc-
tures under attention. The strategy is standard, i.e. starting from a Lie alge-
broid whose contravariant description is the natural situs for Jacobi-like pairs
(Π, E), one constructs a Gerstenhaber-Jacobi structure with respect to which



13 Twisted Jacobi versus Jacobi with background structures 469

various kinds of Jacobi-like pairs (Π, E) are ‘Maurer-Cartan’ elements. This is
a milestone for the general line bundle setting of a Jacobi-like structure that
is to be done in the next section.

The realm X2(M)⊕X1(M) of the pair (Π, E), (Π, E) ∈ X2(M)×X1(M) '
X2(M) ⊕ X1(M), combined with the vector bundle isomorphism ∧2(TM ×
R) ' (∧2TM) ⊕ (TM) exhibit the Lie algebroid (TM × R, [[·, ·]], ρ) as being
the natural situs for a pair consisting of a bivector and a vector field (Π, E).
Previously, the Lie algebra structure on Γ(TM × R) ' X1(M)⊕F(M) reads

(36) [[(X, f), (Y, g)]] := ([X,Y ] , X(g)− Y (f)),

while the anchor ρ is just the projection on the first factor, ρ(X, f) := X.
With previous Lie algebroid at hand, by means of Theorem 2.2, we ex-

plore its contravariant formulation. This consists of the Gerstenhaber algebra
(Γ (∧•(TM × R)) ,∧, [[•, •]]), where, in the light of the F(M)-module isomor-
phism Γ

(
∧p+1(TM × R)

)
' Xp+1(M)× Xp(M), the structure reads

(P,Q) ∧ (R,S) = (P ∧Q,P ∧ S − (−)rQ ∧R),

[[(P,Q), (R,S)]] = ([P,R] , [P, S] + (−)r [Q,R]) ,

with (P,Q) ∈ Xp+1(M) × Xp(M) and (R,S) ∈ Xr+1(M) × Xr(M) arbitrary
homogeneous elements.

Direct computation shows that only the second relation in (1) can be
naturally obtained in terms of the previous bracket

[[(Π, E), (Π, E)]] = ([Π,Π] , 2 [Π, E]).

This result excludes the previous Lie algebroid as the natural situs for the
considered Jacobi-like pairs. In order to identify the right Lie algebroid, we
modify [12, 13] the previous bracket such that the new bracket captures the
left-hand side in expressions (1), (14) and (23). For doing so, we employ the
covariant characterization of the considered Lie algebroid, which, in the light
of Theorem 2.2, it consists of the de Rham complex (Γ (∧•(T ∗M × R)) ,∧,d)
where

(37) (ω, θ) ∧ (ρ, µ) = (ω ∧ ρ, ω ∧ µ− (−)rθ ∧ ρ), d(ω, θ) = (dω,−dθ),

with (ω, θ) ∈ Ωp+1(M)×Ωp(M) and (ρ, µ) ∈ Ωr+1(M)×Ωr(M). Previously, we
used the vector bundle isomorphism ∧p+1(T ∗M×R) ' (∧p+1T ∗M)⊕(∧pT ∗M)
(that displays Γ

(
∧p+1(T ∗M × R)

)
' Ωp+1(M)⊕Ωp(M) ' Ωp+1(M)×Ωp(M)

as isomorphisms of modules over F(M)).
At this point, the 1-cocycle (0, 1) ∈ Γ(T ∗M × R) ' Ω1(M) × F(M),

d(0, 1) = 0, allows the construction [24] of the R-linear map

(38) d(0,1) (ω, α) := (dω, ω − dα) , (ω, α) ∈ Ωk (M)× Ωk−1 (M) ,
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which is a homological degree 1 derivation covering d (see the last formula in
(37)) acting on the module Γ (∧•(T ∗M × R)) over the graded, graded com-
mutative and associative exterior algebra (Γ (∧•(T ∗M × R)) ,∧). According
to general results [9, 10], the previous de Rham complex exhibits a Jacobi
algebroid structure ([[·, ·]], ρ,∇) on the pair of vector bundles (TM × R,RM ),
RM := R×M →M , with

(39) (X, f) 7→ ∇(X,f)•, ∇(X,f)h = Xh+ fh, h ∈ Γ(RM ) = F(M).

At this stage, we introduce the Jacobi algebroid concept (also known as
a Lie algebroid with a 1-cocycle [12, 13]) and its algebraic characterisation
[33, 9, 10]. Let L→M be a line bundle (a vector bundle with one-dimensional
fibers). Particularizing the general construction in [16] to the considered line
bundle, one identifies the Lie algebroid structure ([•, •]L , ρL) on the vector
bundle DL → M with the fiber at x ∈ M , (DL)x, consisting of R-linear
operators δ : Γ (L)→ Lx, which enjoy the existence of tangent vectors ξ ∈ TxM
such that

δ (fα) = (ξf)α (x) + f (x) δα, α ∈ Γ (L) , f ∈ F (M) .

The F(M)-module of sections in the vector bundle DL → M , Γ (DL), co-
incides with the F(M)-module of the derivations [16] in the considered line
bundle, Γ (DL) = D (L), i.e. the sections are R-linear maps ∆ : Γ (L)→ Γ (L),
which display the vector fields X∆ ∈ X1 (M) (the well-known symbol of the
derivation) such that

∆ (fα) = (X∆f)α+ f∆α, α ∈ Γ (L) , f ∈ F (M) .

The Lie algebroid structure on DL→M , ([•, •]L , ρL), consists of the standard
derivative commutator, [∆,∆′]L = ∆∆′ − ∆′∆, while the anchor returns the
symbol, ρL(∆) = X∆. In the literature, (DL→M, [•, •]L , ρL) is addressed as
the Atiyah algebroid associated with the line bundle L→M .

With this preparation at hand, we are able to introduce and algebraically
characterize the Jacobi algebroids.

Definition 4.1. Let (A,L) be a pair consisting in a vector bundle A→M
and a line bundle L→M . A Jacobi algebroid structure on the specified pair is
a triplet ([•, •] , ρ,∇), where ([•, •] , ρ) is a Lie algebroid structure on the vector
bundle A→M and ∇ is a flat A-connection on the line bundle L→M , i.e. it
is a vector bundle morphism whose F(M)-module map expression ∇ : Γ(A)→
D(L) is an R-Lie algebra map that enjoys ρL ◦ ∇ = ρ.

Following the line of Theorem 2.2 an algebraic characterization of the
Jacobi algebroid structures was done [33, 10].
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Theorem 4.2. Let (A,L) be a pair consisting in a vector bundle A→M
and a line bundle L → M . Denoting by AL := A ⊗ L∗ the total space of the
vector bundle A⊗M L∗, the following ingredients are equivalent:

1. a Jacobi algebroid structure, ([•, •] , ρ,∇), on the pair (A,L);

2. a Gerstenhaber-Jacobi algebra structure,
(

[•, •]A,L , X
(A,L)
•

)
, on the

graded A •A,L := Γ (∧•AL)-module L •A,L := Γ (∧•AL ⊗ L) [1];

3. a homological degree 1 graded derivation, dA,L covering dA, acting on
the graded Ã •A := Γ (∧•A∗)-module L̃ •A,L := Γ (∧•A∗ ⊗ L).

In the light of Theorem 4.2, the pair
(
Γ (∧•(T ∗M × R)) ,d(0,1)

)
consisting

of the module Γ (∧•(T ∗M × R)) over the graded, graded commutative and as-
sociative algebra (Γ(∧•(T ∗M×R)),∧) and the homological degree 1 derivation
d(0,1) covering de Rham differential d (see the second relation in (37)) exhibits
the Jacobi algebroid structure ([[·, ·]], ρ,∇) on the pair (TM × R,RM ) and it
is equivalent to the Gerstenhaber-Jacobi algebra structure

(
[[·, ·]](0,1),X(0,1)

)
on

the module Γ (∧•(TM × R)) over the graded, graded commutative and asso-
ciative algebra (Γ (∧•(TM × R)) ,∧), where

(P,Q) ∧ (R,S) = (P ∧Q,P ∧ S − (−)rQ ∧R),

with (P,Q) ∈ Xp+1(M)×Xp(M) and (R,S) ∈ Xr+1(M)×Xr(M) homogeneous
elements. Using again the F(M)-module isomorphisms Γ

(
∧p+1(TM × R)

)
'

Xp+1(M) ⊕ Xp(M) ' Xp+1(M) × Xp(M) (that come from the vector bundle
isomorphisms ∧p+1(TM×R) ' (∧p+1TM)⊕(∧pTM) ' (∧p+1TM)×(∧pTM)),
the Gerstenhaber-Jacobi bracket reads

[[(P,Q), (R,S)]](0,1) := ([P,R]− p (−)r P ∧ S + rQ ∧R, [P, S]

+ (−)r [Q,R]− (p− r)Q ∧ S) ,

while the derivative representation

X(0,1) : Γ (∧•(T ∗M × R))→ Der (Γ (∧•(T ∗M × R)))

acts [4] on homogenous elements as

(P,Q) 7→ X(0,1)
(P,Q), X(0,1)

(P,Q)(P̃ , Q̃) = [[(P,Q), (P̃ , Q̃)]](0,1) − (Q ∧ P̃ , Q ∧ Q̃).

At the end of this section, by means of the previous results concerning
the Jacobi algebroid structure ([[·, ·]], ρ,∇) on the pair (TM × R,RM ), we are
able to ‘compress’ the consistency conditions (1), (14) and (23) satisfied by cor-
responding Jacobi-like pairs. First, the pair (Π, E) is a homogeneous element
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from the previous Gerstenhaber-Jacobi algebra, (Π, E) ∈ Γ
(
∧2(TM × R)

)
,

which is subject to

(40) [[(Π, E), (Π, E)]](0,1) := ([Π,Π] + 2Π ∧ E, 2 [Π, E]) .

Comparing the previous result to the consistency conditions (1) it results that
the pair (Π, E) is a Jacobi one if and only if

(41) [[(Π, E), (Π, E)]](0,1) = 0.

Regarding the twisted situation, in the light of (40) it is clear that the
[[·, ·]](0,1)-expression for the equations (14) is non-homogeneous. In order to
identify the needed expression, we use the isomorphism of vector bundles
Γ
(
∧2(TM × R)

)
'
(
Γ
(
∧2(T ∗M × R)

))∗
that allows the construction of the

F(M)-module morphism

(42) (Π, E)] : Γ(T ∗M × R)→ Γ(TM × R), (β, f) 7→ (Π]β + fE,−iEβ).

Extending by linearity the previous F(M)-module morphism, consistency con-
ditions (14) associated with a twisted Jacobi pair can be compactly written
as

(43) 1
2 [[(Π, E), (Π, E)]](0,1) = (Π, E)]

(
d(0,1)(ω, 0)

)
.

Proceeding in the same manner as in the twisted case, by direct compu-
tation [5] it can be shown that the consistency conditions fulfilled by a Jacobi
pair with background (23) are equivalent to

(44) 1
2 [[(Π, E), (Π, E)]](0,1) = (Π, E)](φ, ω).

Definition (38) of the homological derivation of degree 1 in the module
Γ (∧•(T ∗M × R)), d(0,1) allows to conclude that a Jacobi pair with background
is a twisted one if and only if (φ, ω) ∈ Γ

(
∧3(T ∗M × R)

)
is closed, i.e.

d(0,1)(φ, ω) = 0 ⇔ φ = dω.

5. JACOBI-LIKE STRUCTURES IN THE LINE BUNDLE
SETTING

In this section we investigate the line bundle formulations of the analyzed
Jacobi-like structures. As we shall see, this approach is more ‘invariant’ than
the previous pair-like formulation.

A clue for the line bundle setting comes from the Jacobi algebroid struc-
ture ([[·, ·]], ρ,∇) on the pair (TM × R,RM ). Here, the vector bundle TM × R
coincides with the vector bundle of the derivations corresponding to the trivial
line bundle, TM ×R = DRM , while the flat connection ∇ is obvious (see (39))
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nothing but the tautological representation of the Lie algebroid ([[·, ·]], ρ) on the
trivial line bundle RM [16].

The previous argument suggests that the natural situs of a Jacobi-like line
bundle is the Jacobi algebroid structure ([•, •]L , ρL,∇L) on the pair (DL,L)
associated with the line bundle L → M . Here, the flat connection ∇L is just
the tautological representation of DL, i.e.

D(L) 3 � 7→ (∇L)� := � ∈ D(L).

Invoking Theorem 4.2, the contravariant formulation of the previous Jacobi
algebroid consists of the Gerstenhaber-Jacobi algebra structure(

[•, •] := [•, •]DL,L, X• := X
(DL,L)
•

)
on the graded Γ (∧•DLL)-module

Γ (∧•DLL ⊗ L) [1] ,

with DLL := DL ⊗ L∗. This abstract structure can be cast into a more
operational one by means of the vector bundle isomorphism [23]

(45)
(
J1L

)∗ ⊗ L ' DL ⇔ DLL := DL⊗ L∗ ' J1L :=
(
J1L

)∗
,

where J1L→M is the first-order jet bundle [29] associated with the line bundle
L→M . Result (45) further yields [23] the graded algebra isomorphisms

(46) Γ (∧•DLL) ' Γ (∧•J1L) ' Diff •1 (L;RM ) ,

where the degree k homogeneous subspace Diff k
1 (L;RM ) consists in the R

multi-linear applications

�̃ : Γ (L)× · · · × Γ (L)→ F (M) , �̃ (e1, . . . , ek) ∈ F (M) ,

that are skew-symmetric and first-order differential operators in each argument.
‘Tensorising’ the isomorphisms (46) by the module Γ(L) one immediately

gets

Γ (∧•DLL ⊗ L) [1] ' D•L [1] := Diff •1 (L;L) [1]

⇔ Γ
(
∧kDLL ⊗ L

)
' Dk+1L, k ≥ −1

(47)

where the degree (k+1) homogeneous subspace Dk+1L consists in the R-multi-
linear applications

� : Γ(L)× · · · × Γ(L)→ Γ(L), � (e1, . . . , ek+1) ∈ Γ(L),

that are skew-symmetric and first-order differential operators in each argument.
At this stage, we replaced the abstract module Γ (∧•DLL ⊗ L) over the

abstract graded, graded commutative and associative algebra Γ (∧•DLL) with
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the Diff •1 (L;RM )-module D•L of L-valued multi-derivations. Obviously, the
left action of Diff •1 (L;RM ) on D•L reduces to wedge product, i.e.(

4̃ ∧�
)

(e1, . . . , ek+l+1)

=
∑

σ∈S(k,l+1)

(−)σ 4̃
(
eσ(1), . . . , eσ(k)

)
�
(
eσ(k+1), . . . , eσ(k+l+1)

)
,

for arbitrary homogeneous elements 4̃ ∈ Diff k
1 (L;RM ) and � ∈ Dl+1L. Previ-

ously, we denoted by S (k, l + 1) the subset of (k, l + 1) un-shuffle permutations
in S (k + l + 1) i.e. those permutations σ that satisfy σ(1) < · · · < σ(k) and
σ(k + 1) < · · · < σ(k + l + 1). Moreover, the pair (Diff •1 (L;RM ) ,D•L) has
a natural Gerstenhaber-Jacobi algebra structure ([[•, •]],X•) as follows. The
graded Lie algebra structure on D•L, [[•, •]], can be written in terms of the
Gerstenhaber inner multiplication [10]

� ◦ 4 (e1, . . . , ek+l+1) :=∑
σ∈S(l+1,k)

(−)σ �
(
4
(
eσ(1), . . . , eσ(l+1)

)
, eσ(l+2), . . . , eσ(k+l+1)

)
as

(48) [[�,4]] := (−)kl� ◦ 4 −4 ◦�, � ∈ Dk+1L,4 ∈ Dl+1L.

In order to introduce the derivative representation of the module D•L on the
graded algebra Diff •1 (L;RM ), X•, we define the symbol map

(49) σ� (f) (e1, . . . , ek) e := � (fe, e1, . . . , ek)− f� (e, e1, . . . , ek) ,

where
� ∈ Dk+1L, f ∈ F (M) , e, e1, . . . , ek ∈ Γ (L) .

It is worth noticing that the symbol in the above, σ� (f) (e1, . . . , ek) is just a
smooth function on the manifold M because

σ� (f) (e1, . . . , ek) ∈ Γ (L∗ ⊗ L) ' F (M) ,

and moreover σ� (f) ∈ Diff k
1 (L;RM ). With these specifications at hand, the

derivative representation reads

X�

(
4̃
)

(e1, . . . , ek+l)

= (−)k(l−1)
∑

σ∈S(l,k)

(−)σ σ�

(
4̃
(
eσ(1), . . . , eσ(l)

)) (
eσ(l+1), . . . , eσ(l+k)

)
−

∑
σ∈S(k+1,l−1)

(−)σ 4̃
(
�
(
eσ(1), . . . , eσ(k+1)

)
, eσ(k+2), . . . , eσ(k+l)

)
.(50)

Invoking again Theorem 4.2, the covariant expression of the Jacobi alge-
broid structure ([•, •]L , ρL,∇L) on the pair (DL,L) consists of the homological
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degree 1 graded derivation dL := dDL,L covering dDL that acts on the graded
module Ω •L := Γ (∧• (DL)∗ ⊗ L) over the graded, graded commutative and as-
sociative algebra Γ (∧•(DL)∗). In literature [28], de Rham complex (Ω •L,dL)
is known as der-complex associated with the line bundle L → M and, mean-
while, the homogeneous elements of the module Ω •L are called L-valued Atiyah
forms. Regarding the homological derivation dL, it acts on the homogeneous
elements of the der-complex as

〈dLe,�〉 := �e, e ∈ Γ (L) ,� ∈ D (L) ,(51)

dL (ω̃ ∧ ω) = dDLω̃ ∧ ω + (−)k ω̃ ∧ dLω, ω̃ ∈ Γ
(
∧k(DL)∗

)
, ω ∈ Ω •L.(52)

Remark 5.1. The homological derivation enjoys two strong properties: i)
it is acyclic and ii) it agrees with the first-order prolongation. Although the
meaning of acyclicity is clear, the agreement with the first-order prolongation
has to be understood in terms of the isomorphisms (45) that exhibit the L-
pairing between DL and J1L expressed by the bi-linear non-degenerate map

(53) 〈•, •〉 : D(L)× Γ(J1L)→ Γ(L), 〈�, j1e〉 := �e,

which is well-defined as the F(M)-module Γ(J1L) is generated [29] by Im j1.
By j1, j1 : Γ(L)→ Γ(J1L), we denoted the first-order prolongation [29] which
is known to be a first-order differential operator. In the light of (53) it results
that

〈dLe,�〉 = 〈�, j1e〉, e ∈ Γ(L),� ∈ D(L),

which means the announced agreement.

With all of these aspects of line bundles in mind, we are able to close
this paper with the line bundle formulation of the previous Jacobi/ Jacobi-like
structures.

Jacobi bundles. Let L → M be a line bundle. By its very defini-
tion [21], a Jacobi structure on the considered line bundle is an R-Lie algebra
structure on Γ (L), {•, •}, which is a derivation in both of its arguments,

{•, e} ∈ D(L), e ∈ Γ(L).

It is worth noticing that such a structure is nothing but a local Lie algebra one
[14] on the line bundle L → M . With these specifications, let’s fix the termi-
nology. By definition, a Jacobi bundle is a line bundle endowed with a Jacobi
structure, (L→M, {•, •}) while a Jacobi manifold is a manifold equipped with
a Jacobi bundle over it.

The previous definition places the Jacobi structures into the realm of
Jacobi algebroid structure ([•, •]L , ρL,∇L) associated with the pair (DL,L).
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Indeed, if {•, •} is a skew-symmetric bi-differential operator on Γ(L) then there
exists a unique J ∈ D2L such that

(54) J (e1, e2) = {e1, e2}, e1, e2 ∈ Γ(L).

Direct computation done by means of (54) gives

(J ◦ J) (e1, e2, e3) ={{e1, e2}, e3}+ {{e2, e3}, e1}
+ {{e3, e1}, e2} := −Jac{e1, e2, e3},

(55)

which further exhibits
[[J, J ]] = 2Jac{e1, e2, e3}.

The last equality shows that a Jacobi structure {•, •} is completely captured by
the bi-differential operator J ∈ D2L that verifies the Maurer-Cartan equation

(56) [[J, J ]] = 0.

So, from now on, a Jacobi bundle is addressed in terms of the pair (L→M,J)
with J a bi-differential operator, J ∈ D2L, satisfying (56).

When the line bundle is trivial, L = RM , the sections in the line bundle
Γ(RM ) are just the smooth functions, F(M), the structure {•, •} coincides with
(8) and the bi-differential operator reduces to the Jacobi pair, J = (Π, E). This
proves that Jacobi pairs are in one-to-one correspondence with trivial Jacobi
bundles.

Let (L→M,J) be a Jacobi bundle. By means of the isomorphisms (47),
the bi-differential operator J ∈ D2L exhibits (via the fact that the module
Γ(J1L) is generated by Im j1 ) the element Ĵ ∈ Γ

(
∧2J1L⊗ L

)
via

(57) 〈Ĵ , j1e1 ∧ j1e2〉 = J (e1, e2) , e1, e2 ∈ Γ(L)

which further displays the morphism of F(M)-modules

(58) Ĵ ] : Γ
(
J1L

)
→ D(L), Ĵ ](j1e1)e2 := J (e1, e2) , e1, e2 ∈ Γ(L).

This morphism allows the introduction of a smooth distribution on the base
manifold

(59) KJ := Im
(
ρL ◦ Ĵ ]

)
,

known as the characteristic distribution of the considered Jacobi bundle. It is
worth noticing that in trivial line bundle situation, the vector bundle morphism
coming from (58) is just (42). By definition, the considered Jacobi bundle is
said to be transitive if the characteristic distribution coincides, at each point of
the base manifold, with the corresponding tangent space to the base manifold

(60) (KJ)x = TxM, x ∈M

or, equivalently, the vector bundle map ρL ◦ Ĵ ] : J1L→ TM is surjective.
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Example 5.2. By its very definition, a locally conformal symplectic struc-
ture (lcs) on a given line bundle L → M is a pair (∇, ω) consisting of a
representation ∇ of the tangent Lie algebroid TM →M on the considered line
bundle and a non-degenerate L-valued 2-form ω ∈ Ω2(M ;L) := Γ(∧2T ∗M⊗L)
which is closed with respect to the homological degree 1 derivation d∇ associ-
ated with the Jacobi algebroid structure ([•, •] , idTM ,∇) on the pair (TM,L)
(see the third statement in Theorem 4.2)

d∇ω = 0.

Associated with the lcs structure (∇, ω) we introduce the Jacobi structure
J(∇,ω) ∈ D2L via
(61)
J(∇,ω) : Γ(L)×Γ(L)→ Γ(L), J(∇,ω)(e1, e2) := 〈ω,Xe1∧Xe2〉, e1, e2 ∈ Γ(L),

where

(62) Xe := ω] (d∇e) , e ∈ Γ(L).

with ω] the inverse of the vector bundle isomorphism

(63) ω[ : TM → T ∗M ⊗ L, ω[X := −iXω.
Example 5.3. A contact structure over a smooth manifold (necessarily

odd-dimensional) M is a hyperplane distribution H ⊂ TM which is maximally
non-integrable i.e. its curvature

(64) ωH : H×H → L := TM/H, ωH (X,Y ) := [X,Y ] mod H
is non-degenerate, i.e., the linear map

ω[H : Γ(H)→ Γ(H∗ ⊗ L), 〈ω[HX,Y 〉 := −ωH (X,Y )

is invertible.
It is worth noticing that a given contact structure can be interpreted in

a dual view via the canonical projection

θ ∈ Ω1(M ;L) := Γ(T ∗M ⊗ L), 〈θ,X〉 := X mod H.
Previously, θ is the well-known contact 1-form with the curvature precisely ωH,
〈ωH, X ∧ Y 〉 = 〈θ, [X,Y ]〉.

In this context, there exists the decomposition of R-vector spaces X1(M) =
XH ⊕ Γ(H), where XH is the R-Lie subalgebra

(65) X ∈ XH ⇔ [X,Γ(H)] ⊂ Γ(H),

of the R-Lie algebra X1(M) whose elements are the well-known Reeb vector
fields [6](or contact vector fields [33]). With these specifications at hand, we
define the Jacobi structure JH ∈ D2L by

JH(e1, e2) := 〈ωH, Xe1 ∧Xe2〉, e1, e2 ∈ Γ(L)
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with Xe the Hamiltonian vector field associated with e ∈ Γ(L), i.e. the unique
solution Xe ∈ XH enjoying 〈θ,Xe〉 = e.

A deep analysis [6, 33] of the characteristic distribution corresponding to
a given Jacobi bundle showed that it enjoys similar results to those listed in
Theorems 2.6 and 2.7.

Theorem 5.4. If a Jacobi structure J ∈ D2L on the line bundle L→M
is transitive then M is either a locally conformal symplectic structure (if the
base manifold is even-dimensional) or a contact one (if the base manifold is
odd-dimensional) on the same line bundle.

Theorem 5.5. The characteristic distribution of a Jacobi structure J ∈
D2L on the line bundle L → M is completely integrable [31, 32] with the
characteristic leaves equipped with transitive Jacobi structures induced by J .

It is worth noticing that integrability Theorem 5.5 is algebraically proved
by associating a Jacobi algebroid to the considered Jacobi bundle. We syn-
thesize here the argumentation from [6, 33]. The Jacobi structure J organizes
J1L as a Lie algebroid with respect to[

j1e1, j
1e2

]
J

:= j1J (e1, e2) , ρJ(j1e) := Xe,

where Xe is the symbol (the well-known Hamiltonian vector field) of the Hamil-
tonian derivation associated with the section e ∈ Γ(L), 4e ∈ D(L),

(66) 4e(e1) := J (e, e1) , e1 ∈ Γ(L),

i.e. Xe := ρ (4e). Moreover, the Lie algebroid
(
J1L, [•, •]J , ρJ

)
enjoys a

natural representation on the line bundle L,

∇J : J1L→ DL, ∇Jj1e := 4e.

This is guaranteed by the axiom (56) which is equivalent to [4e1 ,4e2 ] =
4{e1,e2}. With these specifications at hand, it is clear that the Jacobi bun-
dle (L→M,J) is transitive if and only if the associated Jacobi algebroid(
J1L,L, [•, •]J , ρJ ,∇J

)
is transitive.

Twisted Jacobi bundles. In this part, following the prescriptions (14),
or, equivalently (43), we introduce the concept of twisted Jacobi bundle.

Definition 5.6. A twisted Jacobi bundle is a triple (L→M,J,Ω) consist-
ing of a line bundle L→M , a first-order bi-differential operator J ∈ D2L and
an L-valued Atiyah 2-form Ω ∈ Ω2

L that verify the consistency condition

(67) [[J, J ]] = 2
(
∧3Ĵ ]

)∗
dLΩ,
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where by ∧3Ĵ ] we mean the linear extension of module map (58),

∧3 Ĵ ] : Γ
(
∧3J1L

)
→ Γ

(
∧3DL

)
,

∧3 Ĵ ](j1e1, j
1e2, j

1e3) := Ĵ ](j1e1) ∧ Ĵ ](j1e2) ∧ Ĵ ](j1e3).

As in the trivial line bundle situations (see Sections 2 and 3), we maintain
here definitions (59) and (60) for the characteristic distribution and transitivity
respectively.

Example 5.7. A twisted locally conformal symplectic structure on a given
line bundle L→M is a pair ((∇, ω) , ω̂) consisting of a representation ∇ of the
tangent Lie algebroid TM → M on a line bundle and two L-valued 2-forms
ω, ω̂ ∈ Ω2(M ;L) among which ω is non-degenerate and verifies the consistency
condition

(68) d∇ (ω − ω̂) = 0.

Previously, by d∇ we denoted the homological degree 1 derivation associated
with the Jacobi algebroid structure ([•, •] , idM,∇) on the pair (TM,L) (see the
third statement in Theorem 4.2). The given twisted locally conformal symplec-
tic structure exhibits the twisted Jacobi bundle

(
L→M,J((∇,ω),ω̂),Ω((∇,ω),ω̂)

)
where J((∇,ω),ω̂) is defined in (61) while Ω((∇,ω),ω̂) := dL(∧2ρL)∗ω̂.

Example 5.8. A twisted contact structure on a manifold M consists of
a hyperplane distribution H ⊂ TM and an L-valued 2-form Ω ∈ Ω2

L, L :=
TM/H, such that

(69) ω := ωH + Ω|H ∈ Γ
(
∧2H∗ ⊗ L

)
is non-degenerate. In (69), ωH is the curvature (64) of the considered hy-
perplane distribution H. This displays the transitive twisted Jacobi bundle(
L→M,J(H,Ω),Ω

)
where J(H,Ω) is defined in terms of the Hamiltonian vector

fields exhibited by the non-degenerate L-valued 2-form (69) [4].

Extending the terminology adopted for Jacobi manifolds, we say that a
given smooth manifold M is a twisted Jacobi one if it is the base manifold for a
twisted Jacobi bundle. At this point, there exist two strong results concerning
the twisted Jacobi bundles [24, 25, 4].

Theorem 5.9. Let (L→M,J,Ω) be a transitive twisted Jacobi bundle.
Then the following alternative holds.

• If the base manifold is even-dimensional then the considered Jacobi
bundle is equivalent to a twisted locally conformal symplectic structure on the
same line bundle.
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• If the base manifold is odd-dimensional then the considered Jacobi bun-
dle is equivalent to a twisted contact structure displaying the same line bundle.

Theorem 5.10. The characteristic distribution of a twisted Jacobi bundle
(L→M,J,Ω) is completely integrable [31, 32] with the characteristic leaves
equipped with transitive twisted Jacobi structures induced by (J,Ω).

It is worth mentioning that the proof of the integrability Theorem 5.10
was initially done in the trivial line bundle case. That made use of the ω-twisted
Courant-Jacobi algebroid structure on the omni-Lie algebroid associated with
the trivial line bundle DRM = (TM × R) ⊕ (T ∗M × R), related to which,
graphĴ ] = (Π, E)] is a Dirac-Jacobi subbundle. Recent results concerning
Dirac-Jacobi bundles [37] allowed a direct algebraic proof of the integrability
Theorem 5.10 [4] in the general line bundle setting. Here, the omni-Lie alge-
broid becomes DL = DL ⊕ J1L while its Ω-twisted Courant-Jacobi algebroid
structure consists in the Dorfman-like bracket

[[(�1, µ1), (�2, µ2)]]Ω :=
(

[�1,�2],L(DL,L)
�1

µ2 − ι(DL,L)
�2 Lµ1

+〈LΩ,�1 ∧�2 ∧ •〉
)
,

the non-degenerate metric 〈〈(�1, µ1), (�2, µ2)〉〉 := 〈�1, µ2〉+ 〈�2, µ1〉 and the
vector bundle morphism

pD : DL⊕ J1L→ DL, pD(�, µ) := �.

Previously, by 〈•, •〉 we denote the L-pairing between DL and J1L given in
(53). Due to the fact that graphĴ ] is a Dirac-Jacobi subbundle in DL =
DL ⊕ J1L it results the integrability of the characteristic distribution for the
considered twisted Jacobi bundle.

Jacobi bundles with background. Here, using the ‘pattern’ followed
in Section 3, we ‘relax’ the previous concept (see Definition 5.6) by incorpo-
rating arbitrary Atiyah 3-forms.

Definition 5.11. A Jacobi bundle with a background 3-form, shortly a
Jacobi bundle with background, is a triple (L→M,J,Φ) consisting in a line
bundle L→M , a first-order bi-differential operator J ∈ D2L and an L-valued
Atiyah 3-form Φ ∈ Ω3

L that verify the consistency condition

(70) [[J, J ]] = 2
(
∧3Ĵ ]

)∗
Φ.

Remark 5.12. Using the acyclicity of the homological degree 1 derivation
dL it results that twisted Jacobi bundles are nothing but Jacobi bundles with
background equipped with closed L-valued Atiyah 3-forms, dLΩ = 0.
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As in the trivial line bundle situations (see Sections 2 and 3), we maintain
here definitions (59) and (60) for the characteristic distribution and transitivity
respectively.

Example 5.13. A locally conformal symplectic structure with background

on a given line bundle L → M is a pair
(

(∇, ω) ,
(
ω̂, φ̂

))
consisting in a

representation ∇ of the tangent Lie algebroid TM →M on a line bundle, two
L-valued 2-forms ω, ω̂ ∈ Ω2(M ;L) among which ω is non-degenerate and an
L-valued 3-form ψ̂ ∈ Ω3(M ;L) that verify the consistency condition

(71) d∇ (ω − ω̂) = ψ̂,

where d∇ is the homological degree 1 derivation associated with the Jacobi
algebroid structure ([•, •] ,∇) on the pair (TM,L) (see the third statement in
Theorem 4.2). Associated with the considered lcs-like structure, there exists

the Jacobi structure with background
(
J((∇,ω),(ω̂,ψ̂)),Ψ((∇,ω),(ω̂,ψ̂))

)
[4] on the

same line bundle L→M , where J((∇,ω),(ω̂,ψ̂)) is given in (61) and

Ψ((∇,ω),(ω̂,ψ̂)) = dL
(
∧2ρL

)∗
ω̂ +

(
∧3ρL

)∗
ψ̂.

At this point, we mention the main properties of the Jacobi bundles with
background [4].

Theorem 5.14. Let (L→M,J,Ψ) be a transitive Jacobi bundle with
background. Then the following alternative holds.

• If the base manifold is even-dimensional then the considered Jacobi
bundle is equivalent to a locally conformal symplectic structure with background
on the same line bundle.

• If the base manifold is odd-dimensional then the considered Jacobi bun-
dle is equivalent to a twisted contact structure displaying the same line bundle.

Theorem 5.15. The characteristic distribution of a Jacobi bundle with
background (L→M,J,Ψ) is completely integrable [31, 32] with the character-
istic leaves equipped with transitive Jacobi structures with background induced
by (J,Ψ).

To conclude with, the Jacobi structures with background enjoy the main
features of twisted Jacobi structures, i.e. i) their characteristic distributions
are completely integrable, with twisted cooriented contact structures on the
odd dimensional leaves and locally conformal symplectic structures with back-
ground on the even dimensional leaves and ii) they are in one-to-one corre-
spondence with homogeneous Poisson manifolds with background, where the
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background 3-form is no longer closed. Contrary to twisted Jacobi structures,
the ones with background do not display of an algebraic correspondence with
the famous Dirac-Jacobi structures.
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