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1. INTRODUCTION

Let {ψt}t≥0 be a one-parameter family consisting of continuous mappings
defined on a domain D in a Banach space X. Assume that this family depends
on the parameter t continuously. It may happen that if one assumes some
additional structure of the family, it will be differentiable with respect to t.
For instance, the following result is well-known and can be found in various
books and textbooks (see, for example, [2, 7]).

Theorem 1.1. Let {Tt}t≥0 be a strongly continuous semigroup of linear
operators on a Banach space X.

(a) The mapping t 7→ Ttx is differentiable with respect to t whenever x belongs
to a dense subspace of X.

(b) It is differentiable for all x ∈ X if and only if the semigroup {Tt}t≥0 is
uniformly continuous.

The most natural object for generalizations of this theorem is semigroups
of non-linear operators. In this way, its first assertion was generalized to semi-
groups of nonlinear contractions defined on nonexpansive retracts of X and on
closed convex sets (see [9] and references therein).

Concerning the second assertion (that is, the differentiability of semi-
groups of nonlinear operators everywhere on their domains), it was proved by
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Reich and Shoikhet in [10] (see also [11, 7] for more details and relevant re-
sults) that a semigroup of holomorphic self-mappings of a bounded domain in
a Banach space is differentiable with respect to the parameter t if and only if
it is T -continuous (see Definition 2.1 below). Recently this fact was extended
to semigroups of non-holomorphic mappings in [3].

Another far-reaching generalization of Theorem 1.1 consists of considera-
tion families of nonlinear mappings values of which are linear operators. In this
note we deal with semicocycles over semigroups. The reader can be referred
to the book [1], where cocycles are assumed to be differentiable with respect
to t and hence are associated with linear nonautonomous dynamical systems.
In [8], the differentiability of semicocycles with respect to the time-parameter
was established in the one-dimensional complex case. In the recent papers
[4, 5], we studied the differentiability of semicocycles defined on a domain D
of a Banach space X and taking values in a Banach algebra. The continuity
of semicocycles there was assumed in the sense of the algebra norm what is
analogous to the uniform continuity and is stronger than the strong continuity
required in Definition 2.3; see also [1]. Thus, the differentiability results in
[4, 5] play a role of assertion (b) of Theorem 1.1.

The main result of this note (Theorem 3.1) is a generalization of asser-
tion (a) in Theorem 1.1 to semicocycles defined on a domain D and taking
values in L(Y ). It states that under mild conditions for every point x ∈ D
there is a dense subspace of Y such that the semicocycle restricted on this sub-
space is differentiable with respect to t. Our approach is, in a sense, reminiscent
of the proof of the mentioned assertion (a); see, for example, [2].

2. MAIN NOTIONS

In this section we recall some notions and notations used in the paper.
Throughout the paper we denote by X and Y two (real or complex)

Banach spaces. Let D ⊂ X and Ω ⊂ Y be domains (connected open sets).
The set of all mappings that are continuous (respectively, smooth) on D and
take values in Ω is denoted by C(D,Ω) (respectively, C1(D,Ω)). If the Banach
spacesX and Y are complex, a mapping F : D → Y is said to be holomorphic in
D if it is Fréchet differentiable at each point x ∈ D. The set of all holomorphic
mappings in D with values in Ω is denoted by Hol(D,Ω).

By C(D) (respectively, C1(D) or Hol(D)) we denote the set of all contin-
uous (respectively, smooth or holomorphic) self-mappings of D. Each one of
these sets is a semigroup with respect to composition operation.

We will need some different types of continuity for arbitrary families of
mappings {ft}t≥0 ⊂ C(D, Y ) and relations between them.
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Definition 2.1. The family {ft}t≥0 ⊂ C(D, Y ) is said to be

• jointly continuous (JC, for short) if for every (t0, x0) ∈ [0,∞)×D
lim

t→t0,x→x0
ft(x) = ft0(x0);

• uniformly jointly continuous (UJC, for short) if for every t0 ≥ 0 and
x0 ∈ D there exists a neighborhood U of x0 such that ft(x)→ ft0(x) as
t→ t0, uniformly on U ;

• locally uniformly continuous (T -continuous, for short) if for every t0 ≥ 0
and for every subset D1 strictly inside D,

sup
x∈D1

‖ft(x)− ft0(x)‖Y → 0 as t→ t0.

Notice that for the case where X is finite-dimensional, uniform joint con-
tinuity and local uniform continuity coincide with uniform continuity on com-
pact subsets. There are examples of JC families that are not UJC as well as
examples of UJC families that are not T -continuous (see [5]).

We now define the main objects of our interest in this paper.

Definition 2.2. A jointly continuous family F = {Ft}t≥0 ⊂ C(D) is called
a one-parameter continuous semigroup (semigroup, for short) on D if the fol-
lowing properties hold:

(i) Ft+s = Ft ◦ Fs for all t, s ≥ 0;
(ii) lim

t→0+
Ft(x) = x for all x ∈ D.

If the semigroup F = {Ft}t≥0 ⊂ C(D) is differentiable with respect to
the time parameter t, namely, if the strong limit

f(x) = lim
t→0+

1

t
(Ft(x)− x)

exists uniformly on subsets strictly inside D, then the mapping u defined by
u(t, x) = Ft(x), (t, x) ∈ [0,∞)×D, solves the Cauchy problem

(1)


du(t, x)

dt
= f(u(t, x))

u(0, x) = x ∈ D.
As we have already mentioned a semigroup F ⊂ Hol(D) is differentiable if and
only if it is T -continuous ([10], see also [11]). If F = {Ft}t≥0 ⊂ C1(D) and
both F and {F ′t}t≥0 are T -continuous, then F is differentiable with respect to
t, see [3].

Assume that a semigroup F = {Ft}t≥0 ⊂ C(D), D ⊂ X, is given. It can
be extended to a family G = {Gt}t≥0 ⊂ C(D × Y ) such that Gt(x, y) =
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(Ft(x),Γt(x)y), where each Γt(x) is a bounded linear operator on Y . A semi-
group constructed by this way is called a linear skew-product semiflow [1]. It
turns out that G is a semigroup if and only if the family of linear operators
{Γt}t≥0 forms a semicocycle in the sense of the next definition.

Definition 2.3. A jointly continuous family {Γt}t≥0 ⊂ C(D, L(Y )) is
called a strongly continuous semicocycle (semicocycle, for short) over F if the
following properties hold:

(a) the chain rule: Γt(Fs(x))Γs(x) = Γt+s(x) for all t, s ≥ 0 and x ∈ D;

(b) lim
t→0+

Γt(x)y = y for every x ∈ D and y ∈ Y .

It is clear that a linear skew-product semiflow G = {Gt}t≥0 defined by
Gt(x, y) = (Ft(x),Γt(x)y) is differentiable with respect to t if and only if both
families {Ft}t≥0 and {Γt}t≥0 are.

Specifying Definition 2.1, we say that a semicocycle {Γt}t≥0 is UJC if for
every y ∈ Y the family {Γt(x)y}t≥0 is UJC with respect to x and t.

To complete this section, we remind that the definition of semicocycles
appeared in [4, 5] is slightly different. Namely, a family {Γt}t≥0 ⊂ C(D,A),
where A is a unital Banach algebra, was called there a semicocycle over F if
it satisfies the chain rule (condition (a) in Definition 2.3) and condition

(b’) lim
t→0+

Γt(x) = 1A for every x ∈ D,

instead of condition (b). Obviously, Definition 2.3 describes a wider class of
objects.

3. SMOOTH SEMICOCYCLES

Assume that a semigroup F ⊂ C(D) is given and a semicocycle {Γt}t≥0
over F is smooth in the sense that Γt ∈ C1(D, L(Y )) for any t ≥ 0.

For x ∈ D and τ ≥ 0, we denote by Ωτ (x) the maximal subspace of Y
such that the mapping t 7→ Γt(x)y, y ∈ Ωτ (x), is right-differentiable at t = τ .
In the next lemma we show that for every fixed x, these subspaces Ωτ (x) grow
as τ increases.

Lemma 3.1. Let {Γt}t≥0 ⊂ C1(D, L(Y )) be a semicocycle over a semi-
group F = {Ft}t≥0 ⊂ C(D). For all t1, t2 ≥ 0 with t1 + t2 > 0 we have

(1) Ωt2(x) ⊆ Ωt1+t2(x) = {y : Γt1(x)y ∈ Ωt2(Ft1(x))} .

In particular, Ω0(x) ⊆ Ωt(x) = {y : Γt(x)y ∈ Ω0(Ft(x))} for all t > 0.
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Proof. Take non-negative t1 and t2 with t1 + t2 > 0 and positive s and
consider the quotient 1

s [Γt1+t2+s(x)− Γt1+t2(x)]. By the chain rule we get

1

s
[Γt1+t2+s(x)− Γt1+t2(x)] =

1

s
[Γt1(Ft2+s(x))− Γt1(Ft2(x))] Γt2+s(x)

+
1

s
Γt1(Ft2(x)) [Γt2+s(x)− Γt2(x)] .

Since Γt is smooth, the limit as s→ 0+ of the first summand in the right-hand
side exists. Therefore y ∈ Ωt2(x) (that is that the limit of the second summand
exists) implies y ∈ Ωt1+t2(x). Hence, the first part of (1) (the inclusion) follows.

On the other hand,

1

s
[Γt1+t2+s(x)− Γt1+t2(x)] =

1

s
[Γt2+s(Ft1(x))− Γt2(Ft1(x))] Γt1(x),

which implies y ∈ Ωt1+t2(x) ⇔ Γt1(x)y ∈ Ωt2(Ft1(x)). The proof is complete.

Now we ready to prove the main result of this note.

Theorem 3.1. Let a semigroup F = {Ft}t≥0 ⊂ C(D) be generated by

f ∈ C(D, X). Assume that {Γt}t≥0 ⊂ C1(D, L(Y )) is a UJC semicocycle
over F such that for every y ∈ Y , the family {Γt′[f ]y}t≥0 is JC on [0,∞)×D.
Then for every x ∈ D, {Ωt(x)}t≥0 is a growing (as t increases) family of dense
subspaces of Y . Defining

B(x)y =
d

dt
Γt(x)y

∣∣∣∣
t=0

, y ∈ Ω0(x),

we have Γt(x)y is the unique solution to the evolution problem
dv(t, x)

dt
= B(Ft(x))v(t, x)

v(0, x) = y ∈ Ω0(x).

Proof. Fix an arbitrary point x ∈ D. We have to show that the limit

B(x)y := lim
s→0+

Bs(x)y, where Bs(x) :=
1

s
(Γt(x)− IdY ) ,

exists on a dense subspace of Y . In other words, the subspace Ω0(x) is dense
in Y .

Step 1. Choosing neighborhoods of x and t. Since {Γt}t≥0 is
UJC, for every y ∈ Y and t ≥ 0 there is a neighborhood U of x such that
Γσ(x̃)y → Γt(x̃)y as σ → t, uniformly with respect to x̃ ∈ U . Consequently, for
every y ∈ Y, t ≥ 0 and ε > 0 there are a positive number δ1 and a neighborhood
U of x such that

(2) ‖Γσ(x̃)y − Γt(x)y‖ < ε
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whenever x̃ ∈ U and |t− σ| < δ1. Moreover, decreasing U and δ1 if needed, we
can state that ‖Γσ ′(x̃)[f(x̃)]y‖ ≤ K for all x̃ ∈ U and |t− σ| < δ1.

Since the semigroup {Ft}t≥0 is differentiable, it satisfies the Cauchy prob-
lem (1). Therefore there is δ2 > 0 such that the Cauchy problem has a
well-defined solution u(t, x) ∈ D for all t > −δ2. In this case we can de-
fine xs = u(−s, x), s ∈ (0, δ2), and then x = Fs(xs). Therefore the chain rule
implies that Γs(x)Γσ(xσ) = Γs+σ(xσ). Furthermore, decreasing δ2 if needed,
we can assume that xs ∈ U as s ∈ (0, δ2).

Step 2. Dense subspaces of Y . Let δ = min{δ1, δ2} and denote

Mt(x) :=

∫ t

0
Γσ(xσ)dσ, t ∈ (0, δ).

Then by (2),∥∥∥∥1

t
Mt(x)y − y

∥∥∥∥ ≤ 1

t

∫ t

0
‖Γσ(xσ)y − y‖ dσ ≤ 1

t

∫ t

0
εdσ = ε.

This means that every point y ∈ Y can be approximated by 1
tMt(x)y. In other

words, for every x ∈ D, the union ∪t>0Mt(x)Y is dense in Y .
Step 3. Subspaces Ω0(x). Now take t, s ∈

(
0, δ2
)

so that t+ s < δ and
calculate using the chain rule:

Bs(x)Mt(x) =
1

s
(Γs(x)− Idy)

∫ t

0
Γσ(xσ)dσ

=
1

s

∫ t

0
(Γs+σ(xσ)− Γσ(xσ)) dσ

=
1

s

[∫ t+s

s
Γτ (xτ−s)dτ −

∫ t

0
Γσ(xσ)dσ

]
=

1

s

[∫ t+s

s
(Γτ (xτ−s)− Γτ (xτ )) dτ

+

∫ t+s

s
Γσ(xσ)dσ −

∫ t

0
Γσ(xσ)dσ

]
.

We intend to show that for every y ∈ Y the points Mt(x)y lie in the domain
of B(x), that is, the limit lim

s→0+
Bs(x)Mt(x)y exists. Notice that,∫ t+s

s
Γσ(xσ)dσ −

∫ t

0
Γσ(xσ)dσ =

∫ t+s

t
Γσ(xσ)dσ −

∫ s

0
Γσ(xσ)dσ.

Therefore, ∥∥∥∥1

s

[∫ t+s

s
Γσ(xσ)y dσ −

∫ t

0
Γσ(xσ)y dσ

]
− Γt(xt)y + y

∥∥∥∥
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≤ 1

s

[∫ t+s

t
‖Γσ(xσ)y − Γt(xt)y‖ dσ +

∫ s

0
‖Γσ(xσ)y − y‖ dσ

]
.

As we have mentioned, xσ ∈ U . Thus, due to (2), the last expression is less
than 2ε, hence tends to zero as s→ 0+.

Let us now consider lim
s→0+

1
s

t+s∫
s

[Γτ (xτ−s)y − Γτ (xτ )y] dτ . Since xτ−s =

Fs(xτ ), one can easily see using (2) that the limit coincides with

lim
s→0+

∫ t

0

1

s
[Γτ (Fs(xτ ))y − Γτ (xτ )y] dτ.

The integrand in this integral tends to Γτ
′(xτ )[f(xτ )]y for every τ ∈ [0, t]. It

follows from compactness of [0, t] that for sufficiently small s and all τ ∈ [0, t],
we have 1

s ‖Γτ (Fs(xτ ))y − Γτ (xτ )y‖ ≤ 2K, where K was defined on Step 1.
Therefore, by Lebesgue’s Dominated Convergence Theorem, the limit exists
and equals

∫ t
0 Γτ

′(xτ )[f(xτ )]y dτ. Thus for every t ∈ (0, δ2), the image of Mt(x)
is contained in Ω0(x). Summarizing Steps 2 and 3, we conclude that Ω0(x) is
a dense subspace of Y .

Step 4. Completion of the proof. It follows from Lemma 3.1 with
t2 = 0, that Ωt(x) contains Ω0(x) that in turn contains the image Mτ (x)Y for
sufficiently small τ . Moreover, by the second part of Lemma 3.1 and its proof,

d

dt
Γt(x)y =

d

ds
Γs(Ft(x))

∣∣∣∣
s=0

Γt(x)y,

which completes the proof.

Simple examples of semicocycles are ones independent of x (see, for exam-
ple, [4]–[6]). Such semicocycles coincide with strongly continuous semigroups of
linear operators acting on Y . Therefore, Theorem 3.1 generalizes assertion (a)
of Theorem 1.1.

As an immediate consequence of Theorem 3.1, we get a generation con-
dition for a linear skew-product semiflow.

Corollary 3.1. Let a semigroup F = {Ft}t≥0 ⊂ C(D) be generated by

f ∈ C(D, X). Assume that {Γt}t≥0 ⊂ C1(D, L(Y )) is a UJC semicocycle over
F , such that for every y ∈ Y , the family {Γt′[f ]y}t≥0 is JC on [0,∞) × D.
Then the linear skew-product semiflow G = {Gt}t≥0 defined by Gt(x, y) =
(Ft(x),Γt(x)y) is differentiable with respect to t for (x, y) belonging to the set
{(x, y) : x ∈ D, y ∈ Ω0(x)}, which is dense in D × Y .

Another result concerning the differentiability of linear skew-product semi-
flows can be obtain using Theorem 4.1 in [3]. One can see that hypothesis in
Corollary 3.1 are weaker than those in the mentioned theorem. In addition, if
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a smooth semicocycle {Γt}t≥0 is continuous with respect to the norm of L(Y )
then the mapping t 7→ Γt(x)y is differentiable for all y ∈ Y and not only
on dense subspaces (see [5]). In this case, the linear skew-product semiflow
G = {Gt}t≥0 is also differentiable for all (x, y) ∈ D × Y .
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