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The asymptotic behavior of the sequence of solutions for some families of tor-
sional creep-type problems, subject to the homogenous Dirichlet boundary con-
ditions has been a very active field of investigation throughout the years. In this
survey we present several results in the field.
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1. INTRODUCTION

The goal of this paper is to collect some known results related with the
asymptotic behavior of the sequence of solutions for some families of torsional
creep-type problems. We will start our survey by presenting results on the clas-
sical torsional creep problems, and we will continue with the case of problems
involving variable exponent growth conditions, the case of inhomogeneous tor-
sional creep problems, some torsional creep problems involving rapidly growing
operators in divergence form, the case of anisotropic torsional creep problems
including the cases of inhomogeneous operators or operators involving rapidly
growing growth conditions. Finally, we will present some results regarding the
convergence of the sequence of solutions for a family of eigenvalue problems
which can be related with the previous results.

Notations. Throughout this paper Ω will stand for an open and bounded
subset of the Euclidean space RN , having smooth boundary denoted by ∂Ω.
We will also denote the Euclidean norm on RN by | · |N .

2. CLASSICAL TORSIONAL CREEP PROBLEMS

For each real number p ∈ (1,∞) we consider the family of problems

(2.1)

{
−∆pu = 1 in Ω,
u = 0 on ∂Ω,
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where ∆p is the p-Laplace operator, i.e. ∆pu = div(|∇u|p−2
N ∇u). In the case

when N = 2 this family of equations has been proposed by Kachanov [21]
to describe the behavior under torsion of a prismatic bar with cross section
Ω ⊂ R2 for an extended period of time at high temperature which is assumed
to be constant. This physical phenomenon is called torsional creep. A simple
application of the Direct Method in the Calculus of Variations assures the
existence of a unique (weak) solution up ∈ W 1,p

0 (Ω) of problem (2.1), for each
p ∈ (1,∞). As explained in [22] (see also [2]), several facts on elastic-plastic
torsion theory suggested that necessarily up converges in some sense to the
distance function to the boundary of Ω with respect to the Euclidean norm
| · |N , i.e. δ(x) := infy∈∂Ω |x− y|N , for each x ∈ Ω. The first results supporting
this conjecture are due to L. E. Payne & G. A. Philippin who proved in [24]
that

(2.2) lim
p→∞

∫
Ω
up dx→

∫
Ω
δ dx .

The convergence from (2.2) was improved by T. Bhattacharya, E. DiBenedetto,
& J. Manfredi [2] and B. Kawohl [22] who showed that, actually,

(2.3) up converges uniformly to δ in Ω, as p→∞ .

Note that in [2] the authors showed the above uniform convergence by using
an approach based on the theory of viscosity solutions of PDE’s (see, e.g. [6]
for an introduction to the theory of viscosity solutions). Particularly, it was
observed that the limit problem of the family of equations (2.1), as p→∞, is
given by

(2.4)

{
min{|∇u|N − 1,−∆∞u} = 0 in Ω,
u = 0 on ∂Ω ,

which possesses as unique (viscosity) solution (see R. Jensen [18] and P. Juuti-
nen [19]) the distance function to the boundary of Ω (here ∆∞u := 〈D2u∇u,∇u〉
stands for the∞-Laplace operator). In connection with the discussion concern-
ing the torsional creep problems, the limiting problem (2.4) models the perfect
plastic torsion. On the other hand, independently and simultaneously, in [22]
the author obtained the uniform convergence given in (2.3) with the use of
variational arguments and maximum principles.

3. TORSIONAL CREEP PROBLEMS INVOLVING VARIABLE
EXPONENT GROWTH CONDITIONS

The results obtained in Section 2 were generalised by M. Pérez-Llanos
& J. D. Rossi in [26] to the case of PDE’s involving variable exponent growth
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conditions. In order to make precise the results from [26] let us, first, introduce,
for each continuous function p : Ω→ (1,∞), the p(·)-Laplace operator, defined
by

∆p(·)u := div(|∇u|p(·)−2
N ∇u) .

Next, assume that pn : Ω → (1,∞) is a sequence of sufficiently smooth func-
tions, such that pn(x) converges uniformly to infinity in Ω and the limits

(3.1) lim
n→∞

∇ ln pn(x) = ξ(x) & lim sup
n→∞

maxΩ pn
minΩ pn

≤ k, for some k > 0 ,

exist. Further, using the sequence of functions {pn} defined above we construct
the family of equations

(3.2)

{
−∆pn(·)u = 1 in Ω,

u = 0 on ∂Ω .

Applying again the Direct Method in the Calculus of Variations it can be

obtained the existence of a unique (weak) solution un ∈W 1,pn(·)
0 (Ω) of problem

(3.2), for each positive integer n (see, e.g. the book by L. Diening et al. [11]
for an introduction in the theory of variable exponent analysis, including the

definition and properties of the variable exponent Sobolev spaces W
1,p(·)
0 (Ω)).

Under conditions (3.1) it was established that

(3.3) un converges uniformly to δ in Ω, as n→∞ .

The approach proposed in [26] combined the theory of viscosity solutions with
variational techniques in order to obtain the uniform convergence from (3.3).

Note that the results from this section generalise the results from Section
2 since in the particular case when we take pn(x) = pn, for each x ∈ Ω and
each positive integer n in (3.2), where pn is a sequence of real numbers from
(1,∞) converging to ∞, as n→∞, we recover problem (2.1) with p = pn.

4. INHOMOGENEOUS TORSIONAL CREEP PROBLEMS

The results obtained in Section 2 were generalised by M. Bocea and the
third author of this survey in [3] to the case of PDE’s involving inhomogeneous
differential operators which can be studied in the context of Orlicz-Sobolev
spaces (see, e.g. the books of R. Adams [1] or P. Harjulehto & P. Hasto [16]
for an introduction to the theory of Orlicz-Sobolev spaces). In order to recall
the results from [3] let {φn}n≥1 be a sequence of functions, where for each
positive integer n, φn : R→ R is an odd, increasing homeomorphisms of class
C1 satisfying

(4.1) 0 < φ−n − 1 ≤ tφ
′
n(t)

φn(t)
≤ φ+

n − 1 <∞, ∀ t ≥ 0,
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for some constants φ−n and φ+
n with 1 < φ−n ≤ φ+

n <∞,

(4.2) φ−n →∞ as n→∞,

and such that

(4.3) there exists a real constant β > 1, such that φ+
n ≤ βφ−n , for all n ≥ 1 .

Next, using the sequence of functions {φn}n≥1 defined above we construct the
family of equations

(4.4)

{
−div

(
φn(|∇u|N )
|∇u|N ∇u

)
= φn(1) in Ω,

u = 0 on ∂Ω .

Note that in the particular case when φn(t) = |t|pn−2t, where pn is a sequence
of real numbers from (1,∞) converging to ∞, as n → ∞, the problem (4.4)
reduces to problem (2.1) with p = pn. However, the framework proposed in
this section allows a great deal of additional flexibility in terms of the operators
appearing in the family of problems (4.4). We indicate below several examples
of functions φn : R → R for which our assumptions (4.1), (4.2), and (4.3) are
valid. For more details, the reader is referred to [5, Examples 1-3, p. 243] (see
also [29]).

1) φn(t) = |t|n−2t+ |t|2n−2t, with n > 1. Then φ−n = n and φ+
n = 2n;

2) φn(t) = log(1 + |t|p)|t|n−2t, with n, p > 1. In this case φ−n = n, and
φ+
n = n+ p;

3) φn(t) = |t|n−2t
log(1+|t|) if t 6= 0, φn(0) = 0, with n > 2. In this case it turns

out that φ−n = n− 1 and φ+
n = n.

As in the case of Sections 2 and 3 the Direct Method in the Calculus of Vari-
ations can be used to get the existence of a unique (weak) solution vn ∈
W 1,Φn

0 (Ω) of problem (4.4), for each positive integer n (here Φn stands for the

antiderivative of φn and W 1,Φn
0 (Ω) denotes the corresponding Orlicz-Sobolev

space where problem (4.4) is analysed). Using two different approaches (one
based on a Γ-convergence argument – see, e.g., the books by A. Braides [4] and
G. Dal Maso [7] and the papers by E. De Giorgi [8] and E . De Giorgi & T.
Franzoni [9] for an introduction to the topic - and another based on the theory
of viscosity solutions) in [3] it is proved that under assumptions (4.1), (4.2),
and (4.3),

(4.5) vn converges uniformly to δ in Ω, as n→∞ .
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5. TORSIONAL CREEP PROBLEMS INVOLVING RAPIDLY
GROWING OPERATORS IN DIVERGENCE FORM

The study from Section 4 was carried on by the first and the third authors
of this survey in [12] to the case of a family of equations which involve rapidly
growing operators in divergence form. More precisely, for each positive integer
n, let us take

(5.1) φn(t) := pn|t|pn−2te|t|
pn
, ∀ t ∈ R ,

where pn ∈ (1,∞) are given real numbers such that limn→∞ pn = +∞ and
consider the family of equations (4.4) in this new context. Note that this case
is not covered by the study from Section 4, since simple computations show
that for each integer positive n, we have

sup
t>0

tφ
′
n(t)

φn(t)
= +∞ ,

if φn is given by (5.1), and, thus, there does not exist any constant φ+
n ∈ (1,∞),

for which condition (4.1) holds true. Moreover, this new case also possesses
other difficulties related to the properties of the function spaces where the
problem is analysed, with the definition of a variational solution for problem
(4.4) in the new context and with the analysis of the “passage to the limit”,
which requires a more careful treatment.

In order to explain the function space framework which was used in this
new context, let us denote, for each positive integer n, by Φn : R → R the
antiderivative of φn, given by

Φn(t) :=

∫ t

0
φn(s) ds = e|t|

pn − 1 .

Next, we denote by W 1,Φn(Ω) the corresponding Orlicz-Sobolev space which is
constructed with the aid of function Φn. Note that this is not a reflexive Banach
space but it is a Banach space relatively (sequentially) compact with respect
to a weak? topology. Further, in order to obtain an adequate function space
where to analyse problem (4.4), we have to take into account the boundary
condition. For that reason, we define the linear space

Xn := W 1,Φn(Ω) ∩
(
∩q>1W

1,q
0 (Ω)

)
.

It can be shown that Xn endowed with the same norm as W 1,Φn(Ω) is a
closed subspace of W 1,Φn(Ω) and that, if {uk} ⊂ Xn is a bounded sequence
in W 1,Φn(Ω) (that means with respect to the norm on W 1,Φn(Ω)), then {uk}
contains a subsequence which converges in the sense of the weak? topology to
some u ∈ Xn.
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The Euler-Lagrange functional associated to problem (4.4) is In : Xn →
R, defined by

In(u) :=
1

φn(1)

∫
Ω

Φn(|∇u|N ) dx−
∫

Ω
u dx.

If In was smooth on Xn, then one could use the common definition of a weak
solution of equation (4.4). Unfortunately, in the framework of Section 5, the
functional In is not smooth on Xn. Indeed, even if the functional gn : Xn → R,
defined by

gn(u) :=

∫
Ω
u dx ,

belongs to C1(Xn,R), and we have

〈g′n(u), v〉 =

∫
Ω
v dx, ∀ u, v ∈ Xn ,

the functional hn : Xn → R, given by

hn(u) :=
1

φn(1)

∫
Ω

Φn(|∇u|N ) dx ,

does not belong to C1(Xn,R). However, hn possesses some remarkable prop-
erties, namely, it is convex, weakly∗ lower semicontinuous, and coercive. To
overcome the drawback of the fact that In 6∈ C1(Xn,R), one could work with
the following reformulation of problem (4.4) as a variational inequality

(5.2)

{
hn(v)− hn(un)− 〈g′n(un), v − un〉 ≥ 0, ∀ v ∈ Xn

un ∈ Xn .

This type of definition is commonly used when the Euler-Lagrange functional
associated to the equation, fails to be smooth, but it is the sum between a
convex, proper and lower semicontinuous function and a function of class C1.
This method is underlined by A. Szulkin [28]. According to the terminology
from [28], we refer to a solution of (5.2) as being a critical point of In. We will
also call un a variational solution of problem (4.4). Now, the main result of
this section can be formulated.

Theorem 5.1. Problem (4.4), with φn given by relation (5.1), has a
unique variational solution for each positive integer n, provided that pn ∈
[2,∞), which is nonnegative in Ω, say un. Moreover, under the supplementary
assumption that limn→∞ pn =∞, the sequence {un} ⊂ Xn converges uniformly
in Ω to δ.

The existence of un from the above theorem is obtained by exploring the
properties of the function space Xn and the properties of the functional In,
while the uniform convergence is mainly based on a Γ-convergence argument.
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6. ANISOTROPIC TORSIONAL CREEP PROBLEMS

6.1. Classical anisotropic torsional creep problems

Let L, M and N be three positive integers such that L + M = N . For
each ξ ∈ RN we write ξ = (x, y) ∈ RL×RM with x = (x1, ..., xL) ∈ RL and y =
(y1, ..., yM ) ∈ RM . Moreover, we denote by | · |L, | · |M and | · |N , the Euclidean
norms in RL, RM and RN , respectively. Furthermore, for ξ1 = (x, y) ∈ RN and
ξ2 = (x̃, ỹ) ∈ RN with x, x̃ ∈ RL and y, ỹ ∈ RM we define the “anisotropic
Euclidean norm” on RN as

]ξ1 − ξ2[1:= |x− x̃|L + |y − ỹ|M .

On the other hand, for a sufficiently smooth function u defined on an open
subset of RN we will use the following notations

∇xu :=

(
∂u

∂x1
, ...,

∂u

∂xL

)
, ∇yu :=

(
∂u

∂y1
, ...,

∂u

∂yM

)
, ∇u := (∇xu,∇yu) .

For each positive integer n, consider the family of equations

(6.1)

{
−divx(|∇xu|pn−2

L ∇xu)− divy(|∇yu|qn−2
M ∇yu) = 1, in Ω,

u = 0, on ∂Ω,

where pn and qn are two sequences of real numbers diverging to infinity, as
n → ∞. For each integer n we denote by un the unique (weak) solution of
(6.1). It was proved by A. Di Castro, M. Pérez-Llanos, & J. M. Urbano in [10]
and T. Ishibashi & S. Koike in [17, Section 6] (see also the work by M. Pérez-
Llanos [25] for a variable exponent version of the problem) that un converges
uniformly in Ω, as n → ∞, to a distance function that takes into account
the anisotropy of the problem, i.e. the anisotropic distance function to the
boundary of Ω with respect to the norm ] · [1, defined as δ1 : Ω → [0,∞),
determined by

δ1(ξ) = inf
η∈∂Ω

]ξ − η[1, ∀ ξ ∈ Ω .

More precisely, it was proved that δ1 is the unique (viscosity) solution of the
limit problem, as n → ∞, of the family of problems (6.1) identified to be
precisely

(6.2)

{
max{|∇xu|L, |∇yu|M} = 1 in Ω,
u = 0 on ∂Ω .

6.2. Inhomogeneous anisotropic torsional creep problems

In [23] the third author of this paper in collaboration with M. Pérez-
Llanos studied the asymptotic behaviour of the solutions for the family of
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problems

(6.3)

{
−divx

(
φn(|∇xu|L)
φn(1)|∇xu|L∇xu

)
− divy

(
ψn(|∇yu|M )
ψn(1)|∇yu|M∇yu

)
= 1, in Ω,

u = 0, on ∂Ω,

as n → ∞, when for each integer n ≥ 1, the mappings φn, ψn : R → R were
assumed to be odd, increasing homeomorphisms of class C1 satisfying

(6.4) N − 1 < φ−n − 1 ≤ tφ
′
n(t)

φn(t)
≤ φ+

n − 1 <∞, ∀ t ≥ 0

(6.5) N − 1 < ψ−n − 1 ≤ tψ
′
n(t)

ψn(t)
≤ ψ+

n − 1 <∞, ∀ t ≥ 0

for some constants φ−n , ψ−n , φ+
n , ψ+

n with N < φ−n ≤ φ+
n < ∞ and N < ψ−n ≤

ψ+
n <∞,

(6.6) φ−n →∞ and ψ−n →∞ as n→∞,
and such that there exists a real constant β > 1 for which

(6.7) φ+
n ≤ βφ−n and ψ+

n ≤ βψ−n , ∀ n ≥ 1 .

The main result obtained in [23] was the following:

Theorem 6.1. Assume that hypotheses (6.4), (6.5), (6.6), and (6.7)
hold. Then for each positive integer n problem (6.3) has a unique positive
solution un and the sequence {un} converges uniformly in Ω to δ1.

Note that problem (6.1) represents a particular case of problem (6.3),
obtained when φn = |t|pn−2t and ψn = |t|qn−2t. Consequently, the results from
[23] complement all the former works highlighted above in this section of the
paper by analysing problem (6.3), which, due to its anisotropic nature, could
represent a torsion that twists the material depending on the direction of the
variables.

6.3. Anisotropic torsional creep problems involving rapidly growing
differential operators

The results from [23] were further complemented with the study of the
last author of this paper from [27]. More precisely, the asymptotic behavior of
the solutions for the family of problems (6.3) was studied in the case when

(6.8) φn(t) := pn|t|pn−2te|t|
pn
, ∀ t ∈ R

and

(6.9) ψn(t) := qn|t|qn−2te|t|
qn
, ∀ t ∈ R ,
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where {pn} and {qn} are two sequences of real numbers such that

1 < pn ≤ qn <∞, ∀ n ≥ 1 ,

and
lim
n→∞

pn = +∞ ,

and

lim sup
n→∞

ln(qn)

pn
<∞ .

Note that this case is not covered by the study from [23], since simple compu-
tations show that for each integer n ≥ 1 we have

sup
t>0

tφ
′
n(t)

φn(t)
= +∞ and sup

t>0

tψ
′
n(t)

ψn(t)
= +∞,

if φn is given by (6.8) and ψn is given by (6.9), and thus, there do not exist
any constants φ+

n , ψ
+
n ∈ (1,∞) for which conditions (6.4) and (6.5) hold true.

The main result from [27] is given by the following theorem.

Theorem 6.2. Problem (6.3), with φn and ψn given by relations (6.8)
and (6.9), has a unique variational solution for each integer n ≥ 1, provided
that 2 ≤ pn ≤ qn < ∞, which is nonnegative in Ω, say vn. Moreover, under
the supplementary assumptions that lim

n→∞
pn = ∞ and lim sup

n→∞

ln(qn)
pn

< ∞, the

sequence {vn} converges uniformly in Ω to δ1.

7. CONVERGENCE OF THE SEQUENCE OF SOLUTIONS FOR
A FAMILY OF EIGENVALUE PROBLEMS

In this section we present a result obtained by three of the authors of this
survey in [13] and motivated by the results presented above in this paper. More
precisely, for each positive integer n let us consider the family of eigenvalue
problems

(7.1)


−∆2nu = µu, in Ω,
u = 0, on ∂Ω,
||u||L2(Ω) = 1 .

We say that µ ∈ R is an eigenvalue of problem (7.1), if there exists
un ∈W 1,2n

0 (Ω)\{0}, with ‖un‖L2(Ω) = 1, such that

(7.2)

∫
Ω
|∇un|2n−2

N ∇un∇v dx = µ

∫
Ω
unv dx ,
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for all v ∈W 1,2n
0 (Ω). The function un from the above definition will be called

an eigenfunction corresponding to the eigenvalue µ.

The goal here will be to show that in the case when µ1(n) is the lowest
eigenvalue of problem (7.1) the sequence of corresponding eigenfunctions, un,
converges uniformly to a certain limit that will be identified. More precisely,
the main result of this section is given by the following theorem.

Theorem 7.1. For each integer n ≥ 1, we define

(7.3) µ1(n) := inf
u∈W 1,2n

0 (Ω)\{0}

∫
Ω
|∇u|2nN dx(∫
Ω
u2 dx

)n .
Then µ1(n) is a positive real number which gives the lowest eigenvalue of prob-
lem (7.1). Letting un be a corresponding positive eigenfunction, the sequence
{un} converges uniformly in Ω to ‖δ‖−1

L2(Ω)
δ.

Without presenting the detailed proof of Theorem 7.1 we point out the
strategy to prove the theorem (for the complete proof see [13]). First, it can
be checked that for each positive integer n, the quantity µ1(n) is the lowest
eigenvalue of problem (7.1) with the corresponding eigenfunction a positive
minimizer of µ1(n), say un. Next, using similar ideas as those developed by
Juutinen, Lindqvist, & Manfredi in [20] it can be shown that there exists a
subsequence of un which converges uniformly in Ω to a limiting function, say
u∞. Further, we can be identify the limiting equation which has as a viscosity
solution function u∞. Finally, using a maximum principle introduced by Jensen
in [18] it can be concluded that u∞ = ‖δ‖−1

L2(Ω)
δ.

Remark 1. We want to point out the fact that the result of Theorem 7.1
can be also related with the study of the asymptotic behavior of the sequence
of principal eigenfunctions of the p-Laplace operator, as p → ∞. We describe
below that result.

For each real number p ∈ (1,∞) we consider the eigenvalue problem for
the p-Laplace operator, −∆p, with homogeneous Dirichlet boundary condi-
tions, i.e.

(7.4)

{
−∆pu = λ|u|p−2u in Ω,
u = 0 on ∂Ω.

For each p ∈ (1,∞), one can show the existence of a principal eigenvalue of
problem (7.4), λ1(p), i.e. the smallest of all possible eigenvalues λ, which can
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be characterised from a variational point of view in the following manner

λ1(p) := inf
u∈C∞0 (Ω)\{0}

∫
Ω
|∇u|pN dx∫
Ω
|u|p dx

.

Moreover, its corresponding (principal) eigenfunctions are minimizers of λ1(p)
that do not change sign in Ω. If for each p ∈ (1,∞), we let up > 0 be
an eigenfunction corresponding to the eigenvalue λ1(p), then there exists a
subsequence of {up} which converges uniformly in Ω, as p→∞, to a nontrivial
and nonnegative solution, defined in the viscosity sense, of the limiting problem

(7.5)

{
min{|∇u|N − Λ∞u,−∆∞u} = 0 in Ω,
u = 0 on ∂Ω,

where ∆∞u := 〈D2u∇u,∇u〉 stands for the ∞-Laplace operator and

Λ∞ := ‖δ‖−1
L∞(Ω)

(see, Juutinen, Lindqvist, & Manfredi [20] or Fukagai, Ito, & Narukawa [14]).
Note that δ is not always a viscosity solution of (7.5), but, in the particular
case when Ω is a ball it turns out that δ is the only viscosity solution of
(7.5). However, for general domains Ω the convergence of the entire sequence
up to a unique limit, as p → ∞, is an open question. It is interesting that
in the case of the family of eigenvalue problems (7.1) the entire sequence of
eigenfunctions converges uniformly in Ω to ‖δ‖−1

L2(Ω)
δ for any open and bounded

domain Ω ⊂ RN .

Remark 2. We note that the result from this section was extended by the
second author of this survey in [15] in the following context. Let p ∈ (1,∞)
be a fixed real number and for each integer n > N consider the eigenvalue
problem

(7.6)


−∆pnu = ν|u|p−2u, in Ω,
u = 0, on ∂Ω,
‖u‖Lp(Ω) = 1 .

We say that ν ∈ R is an eigenvalue of problem (7.6), if there exists
vn ∈W 1,pn

0 (Ω)\{0}, with ‖vn‖Lp(Ω) = 1, such that

(7.7)

∫
Ω
|∇vn|pn−2

N ∇vn∇w dx = ν

∫
Ω
|vn|p−2vnw dx ,

for all w ∈W 1,pn
0 (Ω). The function vn from the above definition will be called

an eigenfunction corresponding to the eigenvalue ν. It can be shown the fol-
lowing result.
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Theorem 7.2. For each integer n > N , we define

(7.8) ν1(n) := inf
v∈W 1,pn

0 (Ω)\{0}

∫
Ω
|∇v|pnN dx(∫

Ω
|v|p dx

)n .
Then ν1(n) is a positive real number which gives the lowest eigenvalue of prob-
lem (7.6). Letting vn be a corresponding positive eigenfunction, the sequence
{vn} converges uniformly in Ω to ‖δ‖−1

Lp(Ω)δ.
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