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In this paper we survey recent results on Loewner theory and approximation
properties of univalent mappings on the Euclidean unit ball Bn in Cn. We
present recent applications of the Andersén-Lempert theorem, concerning the
locally uniform approximation of biholomorphic mappings of starlike domains
in Cn onto Runge domains by automorphisms of Cn (n ≥ 2), in the study of
the following geometric properties of univalent mappings on the Euclidean unit
ball Bn: convexity, starlikeness, spirallikeness, parametric representation and
embedding into univalent subordination chains. We consider density results and
characterizations of these geometric properties through automorphisms of Cn,
when n ≥ 2. We also consider density results for families of normalized star-
like, spirallike, convex, and mappings with parametric representation on Bn, by
smooth quasiconformal diffeomorphisms of Cn. On the other hand, we consider
the following question: under which conditions is a normalized univalent map-
ping on Bn (n ≥ 2), up to a normalized automorphism of Cn, spirallike (or
starlike, respectively convex)? This question was first studied by Arosio, Bracci
and Wold for convex mappings, by using a smooth boundary assumption, while
the authors of the present paper extended their work under lower boundary
assumptions, by considering also the case of spirallike mappings.
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1. INTRODUCTION

The first extension of the theory of Loewner chains on the Euclidean unit
ball in Cn is due to Pfaltzgraff [30]. Next, Poreda [33] studied the parametric
representation on the unit polydisc in Cn. Moreover, Poreda [34] obtained
certain results regarding the subordination chains and the Loewner differential
equation on the unit ball of a complex Banach space.

The results in [14], related to the compactness of the Carathéodory family
and the compact family of mappings that have parametric representation, with
respect to an arbitrary norm on Cn, motivated further investigations of the
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Loewner chains in several complex variables. The authors in [10] and [15]
studied the Loewner differential equations with respect to a linear operator A,
observing that the spectrum of A plays an essential role in the development of
the theory. Further results in this direction were obtained by Arosio [2] and
Voda [40].

A general extension of the theory of Loewner chains given in [3, 6] led
to the interesting connection between the subordination chains and the Runge
property, pointed out by Arosio, Bracci and Wold in [4]. Meanwhile, the
interest in the study of extremal problems associated with Loewner chains in
Cn grew, see [16]. Schleißinger [38] used the Runge property to prove certain
Kirwan–Pell type results conjectured in [16]. Further results in this direction,
using control theory, were obtained in [7, 17,18,37].

On the other hand, Arosio, Bracci and Wold used the Runge property
in [5] to apply the Andersén-Lempert theorem [1] in the study of the mappings
that embed into certain Loewner chains. The Andersén-Lempert theorem says
that every biholomorphic mapping from a starlike domain in Cn onto a Runge
domain in Cn can be approximated locally uniformly by automorphisms of
Cn, for n ≥ 2. Taking into account the above ideas, one may ask: what
happens when the biholomorphic mapping approximated by automorphisms of
Cn has certain geometric properties, like starlikeness, spirallikeness, convexity,
parametric representation, etc.? In this survey we present some answers to this
question, mainly given in [5, 22–24].

2. PRELIMINARIES

Let Cn be the space of n complex variables z = (z1, . . . , zn) with the
Euclidean inner product 〈z, w〉 =

∑n
j=1 zjwj and the Euclidean norm ‖z‖ =

〈z, z〉1/2. Also, let Bn be the Euclidean unit ball in Cn and let B1 = U be the
unit disc. Un denotes the unit polydisc in Cn. Let L(Cn) be the space of linear
operators from Cn into Cn with the standard operator norm, and let In be the
identity in L(Cn).

We denote by H(Bn) the family of holomorphic mappings from Bn into Cn

with the standard topology of locally uniform convergence. If f ∈ H(Bn), we
say that f is normalized if f(0) = 0 and Df(0) = In. Let S(Bn) be the subset
of H(Bn) consisting of all normalized univalent (biholomorphic) mappings on
Bn.

We use the following notations related to an operator A ∈ L(Cn) (cf. [36]):

m(A) = min{<〈A(z), z〉 : ‖z‖ = 1},
k+(A) = max{<λ : λ ∈ σ(A)},
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where σ(A) is the spectrum of A, and k+(A) is the upper exponential index
(Lyapunov index) of A. In all of the results presented in this survey that
involve an operator A ∈ L(Cn), we have the assumption that m(A) > 0. Note
that the condition k+(A) < 2m(A) implies m(A) > 0.

Remark 2.1. If A ∈ L(Cn) with m(A) > 0, then ( [10, Lemma 2.1]; see
also [15]):

‖etAu‖ ≥ em(A)t and ‖e−tAu‖ ≤ e−m(A)t, t ≥ 0, ‖u‖ = 1.

Definition 2.2. Let A ∈ L(Cn) be such that m(A) ≥ 0. The following
subfamily of H(Bn) is a generalization to Cn of the Carathéodory family on U
(see e.g. [39]):

NA =
{
h ∈ H(Bn) : h(0) = 0, Dh(0) = A, <〈h(z), z〉 ≥ 0, z ∈ Bn

}
.

This family plays basic roles in geometric function theory in higher di-
mensions (see e.g. [19, 39]). The compactness of the family NA, which was
proved in [15] and essentially in [14] (cf. [24]), plays an essential role in the
Loewner theory in Cn (cf. [30, 34]), especially in the the study of extremal
problems (see [7, 16–18,37,38]).

Remark 2.3. Let A ∈ L(Cn) be such that m(A) ≥ 0. Then NA is a
compact subset of H(Bn).

Next, we recall the definition of spirallikeness with respect to a given
operator A ∈ L(Cn) with m(A) > 0 (see [39]).

Definition 2.4. Let A ∈ L(Cn) be such that m(A) > 0. A mapping
f ∈ S(Bn) is said to be spirallike with respect to A (denoted by f ∈ ŜA(Bn))
if f(Bn) is a spirallike domain with respect to A, i.e. e−tAf(Bn) ⊆ f(Bn), for
all t ≥ 0.

The following result due to Suffridge [39] provides a necessary and suffi-
cient condition of spirallikeness for locally biholomorphic mappings on Bn.

Proposition 2.5. Let A ∈ L(Cn) be such that m(A) > 0, and let f ∈
H(Bn) be a normalized and locally biholomorphic mapping. Then f ∈ ŜA(Bn)
iff there exists h ∈ NA such that Df(z)h(z) = Af(z), for all z ∈ Bn.

We denote by S∗(Bn) the family of normalized starlike (i.e. In-spirallike)
mappings on Bn. Moreover, K(Bn) denotes the family of mappings in S(Bn)
with convex image.
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3. CARATHÉODORY MAPPINGS AND SUBORDINATION
CHAINS

In this section we present two important tools that are used in the proofs
of the results presented in the following sections: the Carathéodory mapping
and the subordination chain. Also, we point out an essential relation between
them.

Definition 3.1. Let J ⊆ [0,∞) be an interval. A mapping h : Bn×J → Cn

is called a Carathéodory mapping on J with values in NA if the following
conditions hold:

(i) h(·, t) ∈ NA, for all t ∈ J ;

(ii) h(z, ·) is measurable on J , for all z ∈ Bn.

Let C(J,NA) be the family of Carathéodory mappings on J with values
in NA.

A mapping h ∈ C([0,∞),NA) is also called a Herglotz vector field (cf. [6],
[10]).

Next, we recall the notion of normalized subordination chain (see [15];
cf. [30]).

Definition 3.2. A mapping f : Bn× [0,∞)→ Cn is called a subordination
chain if f(·, t) ∈ H(Bn), f(0, t) = 0, for t ≥ 0, and for all t ≥ s ≥ 0 there is a
holomorphic Schwarz mapping vs,t : Bn → Bn, called the transition mapping
associated with f , such that f(z, s) = f(vs,t(z), t) for z ∈ Bn.

A subordination chain f is said to be univalent if f(·, t) is a univalent
mapping on Bn, for all t ≥ 0.

A subordination chain f is said to be A-normalized if Df(0, t) = etA

for t ≥ 0, where A ∈ L(Cn) with m(A) > 0. Moreover, f is said to be
normal if {e−tAf(·, t)} is a normal family inH(Bn). An In-normalized univalent
subordination chain is said to be a Loewner chain (or a normalized univalent
subordination chain).

If f : Bn × [0,∞)→ Cn is a univalent subordination chain,
⋃

t≥0 f(Bn, t)
denoted by R(f) is called the Loewner range of f . We note that every normal
A-normalized univalent subordination chain has range Cn, for A ∈ L(Cn) with
m(A) > 0 (cf. the proof of [10, Theorem 3.1]).

In this survey, the following family of univalent mappings on Bn that can
be embedded as the first elements into univalent subordination chains with
range Cn has a central role.

Definition 3.3. Let A ∈ L(Cn) be such that m(A) > 0. We denote by
S1
A(Bn) the family of all mappings f ∈ S(Bn) for which there is an A-normalized



5 A survey on Loewner chains and approximation results 713

univalent subordination chain L with range R(L) = Cn such that f = L(·, 0).
If A = In, the family S1

In
(Bn) is denoted by S1(Bn) (see e.g. [5]).

Definition 3.4. (see e.g. [6,10]) Let A ∈ L(Cn) be such that m(A) > 0 and
let h ∈ C([0,∞),NA). Let f : Bn × [0,∞)→ Cn be such that f(·, t) ∈ H(Bn),
f(0, t) = 0, for t ≥ 0, and f(z, ·) is locally absolutely continuous on [0,∞)
locally uniformly with respect to z ∈ Bn. If f satisfies the Loewner differential
equation

(3.1)
∂f

∂t
(z, t) = Df(z, t)h(z, t), z ∈ Bn, a.e. t ≥ 0,

then f is called a standard solution of (3.1) associated to h.

In the next proposition, we point out the connection between a standard
solution (and thus implicitly a Carathéodory mapping) and a subordination
chain (see [2, 3, 10,19,24,40]).

Proposition 3.5. Let A ∈ L(Cn) be such that m(A) > 0. Then the
following statements hold:

(i) If f is an A-normalized univalent subordination chain, then there exists
h ∈ C([0,∞),NA) such that f is a standard solution of (3.1) associated to h.

(ii) Conversely, let h ∈ C([0,∞),NA). Then there exists an A-normalized
univalent subordination chain f that is a standard solution of (3.1) associated to
h. Moreover, if g is another standard solution of (3.1) associated to h, then g is
a subordination chain and there exists a holomorphic mapping Φ : R(f)→ Cn

such that g = Φ ◦ f .

Remark 3.6. Let A ∈ L(Cn) be such that k+(A) < 2m(A) and h ∈
C([0,∞),NA). Then there exists a unique normal A-normalized univalent sub-
ordination chain f that is a standard solution of (3.1) associated to h, and it
is called the canonical solution of (3.1) (see [10] and [20]).

4. REACHABLE FAMILIES AND A-PARAMETRIC
REPRESENTATION

We consider the definition of the reachable families of the Loewner equa-
tion. These families have been studied from a control-theoretic point of view
in e.g. [16], [17], [18] and [37].

Definition 4.1. Let J = [0, T ] with T > 0 or J = [0,∞) and let A ∈ L(Cn)
be such that m(A) > 0. For every h ∈ C(J,NA), let v = v(z, t;h) be the unique
locally absolutely continuous solution on J of the initial value problem

(4.1)
∂v

∂t
= −h(v, t), a.e. t ∈ J, v(z, 0;h) = z,
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for all z ∈ Bn. Also, for T ∈ (0,∞), let

R̃T (idBn ,NA) =
{
eTAv(·, T ;h) : h ∈ C([0, T ],NA)

}
,

be the time-T -reachable family of (4.1).

Next, we present the family of mappings that have parametric represen-
tation (see [14] and [15]), which can be viewed as the time-infinity-reachable
family (see e.g. [17]).

Definition 4.2. Let A ∈ L(Cn) be such that m(A) > 0. Also, let f ∈
H(Bn) be a normalized mapping. We say that f has A-parametric representa-
tion if there exists a mapping h ∈ C([0,∞),NA) such that

f = lim
t→∞

etAv(·, t)

locally uniformly on Bn, where v(z, ·) is the unique locally absolutely continuous
solution on [0,∞) of the initial value problem

dv

dt
= −h(v, t), a.e. t ≥ 0, v(z, 0) = z,

for all z ∈ Bn. Let S0
A(Bn) be the family of mappings which have A-parametric

representation on Bn (see [15]). In the case A = In, let S0(Bn) = S0
In

(Bn)
be the family of mappings with the usual parametric representation on Bn

(see [14]).

The following proposition given in [24] (see [17], in the case k+(A) <
2m(A)) establishes a connection between reachable families and univalent sub-
ordination chains and also the family of mappings that have parametric repre-
sentation.

Proposition 4.3. Let T > 0 and A ∈ L(Cn) be such that m(A) > 0.
Then the following statements hold:

(i) ϕ ∈ R̃T (idBn ,NA) if and only if there is an A-normalized univalent
subordination chain L such that L(·, 0) = ϕ, and L(·, t) = etAidBn, for t ≥ T
(see [24, Proposition 3.3]).

(ii) R̃T (idBn ,NA) is a subfamily of S0
A(Bn) and it is compact in H(Bn)

(see [24, Remark 3.2, Proposition 3.4]).

Remark 4.4. Let A ∈ L(Cn) be such that k+(A) < 2m(A) and let ϕ ∈
S(Bn). Then ϕ ∈ S0

A(Bn) if and only if there exists a normal A-normalized
univalent subordination chain L such that L(·, 0) = ϕ (see [10], [14] and [15]).
This implies, in view of Proposition 3.5 and Remark 3.6, that f ∈ S1

A(Bn) if
and only if there exists a normalized automorphism Φ of Cn such that Φ ◦ f ∈
S0
A(Bn).
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5. DENSITY RESULTS WITH AUTOMORPHISMS OF Cn

We consider the following families:

A(Cn) =
{

Φ : Φ is a normalized automorphism of Cn
}
,

A(Bn) =
{

Φ
∣∣
Bn : Φ ∈ A(Cn)

}
,

SR(Bn) =
{
f ∈ S(Bn) : f(Bn) is Runge

}
,

where A ∈ L(Cn) is such that m(A) > 0. For n = 1 we note that S0(U) =
S1(U) = SR(U) = S(U) and A(U) = {idU}. In higher dimensions, the following
relations between the families S1

A(Bn), A(Bn) and SR(Bn) hold (see [5] and [24,
Proposition 4.6]).

Proposition 5.1. Let n ≥ 2 and A ∈ L(Cn) be such that m(A) > 0.
Then

A(Bn) ⊂ S1
A(Bn) ⊂ SR(Bn) = A(Bn).

For the first inclusion, one can construct an A-normalized subordination
chain with range Cn using a normalized automorphism (see [5], for A = In).
The second inclusion is due to [21, Theorem 5.1] and [9, Satz 17-19] (see
also [4]). Finally, the above equality is a consequence of the Andersén-Lempert
theorem [1], which states that if a biholomorphic mapping on a starlike do-
main has a Runge image then it can be approximated locally uniformly by
automorphisms of Cn (this result was extended for certain spirallike domains
by Hamada [21], by applying [13, Theorem 1.1]).

Using Proposition 5.1, we make the next remark.

Remark 5.2. Let A ∈ L(Cn) be such that m(A) > 0.
(i) ŜA(Bn) ( S1

A(Bn), because every f ∈ ŜA(Bn) embeds as a first element
into an A-normalized subordination chain L given by L(z, t) = etAf(z), z ∈
Bn, t ≥ 0, which has the range Cn (see [10, Lemma 2.1]; see also Remark 2.1).
In particular, ŜA(Bn) ⊆ SR(Bn) (cf. [21, Theorem 3.1]), S∗(Bn) ⊆ SR(Bn)
(cf. [11, Proposition 1]) and also K(Bn) ⊆ SR(Bn).

(ii) By Proposition 4.3 (i) and a similar argument, we deduce that

R̃T (idBn ,NA) ⊆ S1
A(Bn) ⊆ SR(Bn), ∀T ∈ [0,∞).

By Definition 4.2 and Proposition 4.3 (ii), S0
A(Bn) =

⋃
T>0 R̃T (idBn ,NA), and

thus S0
A(Bn) ⊆ SR(Bn) (cf. [38, Theorem 2.3]).

Taking into account the density result given in Proposition 5.1 and the
above remark, the authors in [22] and [24] considered the following question:

Question 5.3. Let F ⊆ S(Bn) be one of the subfamilies of SR(Bn) given
in Remark 5.2. Then does the equality F = F ∩A(Bn) hold when n ≥ 2?
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Clearly, when n = 1 this equality does not hold, because A(B1) = {idB1}.
Moreover, we shall point out that the equality may fail if we replace the Eu-
clidean unit ball Bn with the unit polydisc Un, even when n ≥ 2.

The following results were obtained in [24]. Theorems 5.4 and 5.5 below
provide positive answers to the above question.

Theorem 5.4. Let n ≥ 2 and A ∈ L(Cn) be such that m(A) > 0. Then

ŜA(Bn) = ŜA(Bn) ∩ A(Bn).

In particular,
S∗(Bn) = S∗(Bn) ∩ A(Bn).

Theorem 5.5. If n ≥ 2, then K(Bn) = K(Bn) ∩ A(Bn).

The proofs of the above theorems are based on the density of the au-
tomorphisms previously mentioned and the analytic characterizations of the
spirallike mappings, respectively the convex mappings (see e.g. [19, Chapter 6]
and [39]). In contrast with Theorem 5.5, the following proposition from [24]
holds in view of the characterization of the convex mappings on the polydisc
(see e.g. [19, Theorem 6.3.2]).

Proposition 5.6. K(Un) ∩ A(Un) = {idUn} ( K(Un), for all n ≥ 1.

Taking into account Theorems 5.4 and 5.5, the analogous density result
for the family S0

A(Bn) has been considered in [22] and [24], for n ≥ 2 and
A ∈ L(Cn) with m(A) > 0 (cf. [26] and [38], for A = In). However, in this
general case, we do not know if S0

A(Bn) is a compact subfamily of H(Bn)
(see [40] for a related discussion), therefore we present the next density result
for the closure of this family.

Theorem 5.7. Let n ≥ 2 and A ∈ L(Cn) be such that m(A) > 0. Then

S0
A(Bn) = S0

A(Bn) ∩ A(Bn).

Remark 5.8. If k+(A) < 2m(A), then S0
A(Bn) is compact (see [15, Theo-

rem 2.15] and [10, Remark 2.8]; see also [14] for A = In), and thus

S0
A(Bn) = S0

A(Bn) ∩ A(Bn), ∀n ≥ 2.

The above result was first obtained in [24, Theorem 4.11] in the case A is a
nonresonant operator (see e.g. [2], [40]), by using the one-to-one correspondence
between the mappings in ŜA(Bn) and the mappings in NA (see [24, Remark
2.15]):

NA =
{
h ∈ H(Bn) : h(z) =

(
Df(z)

)−1
Af(z), z ∈ Bn, for some f ∈ ŜA(Bn)

}
.

The above equality is based on a result due to Voda [40, Remark 3.2] (cf. [39]
for A = In).
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In [22], the authors managed to prove the above theorem in the general
case, when A ∈ L(Cn) satisfies m(A) > 0, by adapting a variational result
due to Bracci, Graham, Hamada, Kohr [7] for A-normalized univalent subordi-
nation chains (see [18, Theorem 4.1] for A-normalized univalent subordination
chains with k+(A) < 2m(A); see also [22, Theorem 3.1]), which essentially says
the following: if f embeds as a first element of an A-normalized univalent sub-
ordination chain L that satisfies certain regularity assumptions, then, for every
fixed T > 0, L(·, 0) + g embeds as a first element of an A-normalized univalent
subordination chain L̃ such that L̃(·, t) = L(·, t), t ≥ T , for all g ∈ H(Bn) with
g(0) = 0, Dg(0) = 0, supz∈Bn ‖g(z)‖ ≤ ε, supz∈Bn ‖Dg(z)‖ ≤ ε and sufficiently
small ε > 0.

Using the above approach forA-normalized univalent subordination chains,
we were able to prove Theorem 5.7, and also we obtained the following den-
sity result for reachable families [22, Theorem 3.3], which was initially proved
in [24, Theorem 4.9] when A is a nonresonant linear operator.

Theorem 5.9. Let n ≥ 2, T > 0 and A ∈ L(Cn) be such that m(A) > 0.
Then

R̃T (idBn ,NA) = R̃T (idBn ,NA) ∩ A(Bn).

6. DENSITY RESULTS WITH SMOOTH QUASICONFORMAL
DIFFEOMORPHISMS OF Cn

Next, we consider the families:

Q(Cn) =
{

Φ : Φ is a quasiconformal homeomorphism from Cn onto Cn
}
,

Q(Bn) =
{

Φ
∣∣
Bn : Φ ∈ Q(Cn)

}
,

Q∞(Cn) =
{

Φ ∈ Q(Cn) : Φ is a smooth diffeomorphism
}
,

Q∞(Bn) =
{

Φ
∣∣
Bn : Φ ∈ Q∞(Cn)

}
,

where Φ : Cn → Cn is said to be smooth if it is of class C∞ on Cn. A
homeomorphism Φ : Cn → Cn is said to be quasiconformal (see e.g. [25];
see also e.g. [19] and the references therein) if it is differentiable a.e., ACL
(absolutely continuous on lines) and there exists K > 0 such that

‖D(Φ; z)‖2n ≤ K|detD(Φ; z)|, for a.e. z ∈ Cn,

with D(Φ; z) denoting the real Jacobian matrix of Φ.
The authors in [22] studied the following question: do Theorems 5.4, 5.5,

5.7 and 5.9 hold if we replace A(Bn) with Q∞(Bn)? A clue regarding the
answer is given by the following subfamily of S0(Bn), which was studied in
e.g. [25] (see also [19] and the references therein):

R(Bn) =
{
f ∈ H(Bn) : f(0) = 0, Df(0) = In, ‖Df(z)− In‖ ≤ 1, z ∈ Bn

}
.
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We note that R(Bn) 6⊆ Q(Bn) (see [22, Remark 1.3 (i)]). However, for f ∈
R(Bn) and r ∈ (0, 1), the mapping fr given by fr(z) = 1

rf(rz), z ∈ Bn, belongs

to R(Bn)∩Q(Bn), by [25, Corollary 4.2]. Hence, R(Bn) = R(Bn) ∩Q(Bn). In
fact, taking a look at the proof of [22, Proposition 1.2], we have

R(Bn) = R(Bn) ∩ A(Bn) ∩Q(Bn), n ≥ 2.

In order to find the answer to our question, we shall take a closer look
at the family A(Bn) ∩ Q∞(Bn). One may suspect that A(Cn) ∩ Q∞(Cn) is
sufficiently large to ensure the density of A(Bn) ∩ Q∞(Bn) in SR(Bn), when
n ≥ 2. Unfortunately, this is not the case, in view of the result of Marden and
Rickman [28]:

Remark 6.1. If n ≥ 2, then A(Cn) ∩Q∞(Cn) = {idCn}.

However, it turns out that A(Bn) ⊂ Q∞(Bn). To point this out, we
consider the family

I∞(Bn) =
{

Φ
∣∣
Bn : Φ is a smooth diffeomorphism from Cn onto Cn such that

Φ
∣∣
Cn\K = idCn\K ,K is a compact subset of Cn

}
.

Clearly, I∞(Bn) ⊂ Q∞(Bn). A result given in [29] by Palais implies that
(cf. [22, Proposition 2.25]) A(Bn) ⊂ I∞(Bn).

We conclude that the following theorems hold (see [22]), even when n = 1.

Theorem 6.2. Let A ∈ L(Cn) be such that m(A) > 0. Then

ŜA(Bn) = ŜA(Bn) ∩ I∞(Bn) = ŜA(Bn) ∩Q∞(Bn).

In particular,

S∗(Bn) = S∗(Bn) ∩ I∞(Bn) = S∗(Bn) ∩Q∞(Bn).

Also,
K(Bn) = K(Bn) ∩ I∞(Bn) = K(Bn) ∩Q∞(Bn).

Theorem 6.3. Let A ∈ L(Cn) be such that m(A) > 0. Then

S0
A(Bn) = S0

A(Bn) ∩ I∞(Bn) = S0
A(Bn) ∩Q∞(Bn)

and

R̃T (idBn ,NA)=R̃T (idBn ,NA) ∩ I∞(Bn)=R̃T (idBn ,NA) ∩Q∞(Bn), ∀T > 0.

7. SPIRALSHAPELIKE, STARSHAPELIKE AND
CONVEXSHAPELIKE MAPPINGS

If A ∈ L(Cn) satisfies k+(A) < 2m(A), then, in view of Remark 4.4
(see [10] and [20], for A = In), for every f ∈ S1

A(Bn) there exists Φ ∈ A(Cn)
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such that Φ ◦ f ∈ S0
A(Bn). Taking into account this characterization, we

consider the following question: under which conditions for a mapping f ∈
S(Bn) (n ≥ 2) does there exist Φ ∈ A(Cn) such that Φ ◦ f ∈ ŜA(Bn) (or
Φ ◦ f ∈ S∗(Bn), respectively Φ ◦ f ∈ K(Bn))? In other words, under which
conditions is a normalized univalent mapping on Bn (n ≥ 2), up to a normalized
automorphism of Cn, spirallike (or starlike, respectively convex)? This question
was first studied by Arosio, Bracci and Wold in [5], for convex mappings.
They found a necessary and sufficient condition, under a smooth boundary
assumption, for this characterization. The authors extended their work in [23],
under lower boundary assumptions, considering also the spirallike mappings.

If m > 0 is not an integer, then we say that a mapping f is of class Cm if f
has continuous partial derivatives up to order [m] and the partial derivatives of
order [m] are Hölder continuous with exponentm−[m] ([m] denotes the integral
part of m). We say that a domain D ⊆ Cn has Cm boundary if ∂D admits a
defining function of class Cm (cf. [12,31]). Also, we say that a domain D ⊂ Cn

is strictly pseudoconvex if there is a C2 strictly plurisubharmonic function r
on a neighborhood U of ∂D such that D ∩ U = {z ∈ U : r(z) < 0}. For the
definition and basic properties of polynomially convex sets, see e.g. [35, Chapter
VI]. We note that if K is a compact set in Cn that has a Stein and Runge
neighborhood basis, then K is polynomially convex (see e.g. [35, Chapter VI,
Theorem 1.8]). If n = 1, a compact K ⊂ C is polynomially convex if and only
if C \K is connected.

Definition 7.1 (see [23, Definition 2.2]). Let A ∈ L(Cn) be such that
m(A) > 0 and let D ⊆ Cn be a domain such that 0 ∈ D.

(i) D is said to be strictly A-spirallike if e−tAD ⊂ D, t > 0 (see [11], for
A = In).

(ii) D is said to be (strictly) A-spiralshapelike if there exists Φ ∈ A(Cn)
such that Φ(D) is (strictly) A-spirallike (see [4, Definition 3.2], for A = In).

(iii) D is said to be convexshapelike if there exists Φ ∈ A(Cn) such that
Φ(D) is convex (see [5]).

(iv) A mapping f : Bn → Cn is said to be strictly A-spirallike, (strictly)
A-spiralshapelike, respectively convexshapelike, if f ∈ S(Bn) and f(Bn) has
the corresponding property.

If A = In in the above definitions, then we replace ”spiral” with ”star”
and we omit the operator. We note that every convex domain is strictly starlike
( [23, Remark 2.5(ii)]).

Remark 7.2. Let A ∈ L(Cn) be such that m(A) > 0.

i) Let f : Bn → Cn be a locally biholomorphic and normalized mapping.
In view of the proof of [25, Theorem 3.2], we have the following sufficient
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condition for strict spirallikeness: if there exists c > 0 such that

<
〈(
Df(z)

)−1
Af(z), z

〉
≥ c‖z‖2, z ∈ Bn,

then f is strictly A-spirallike. In general, this condition is not necessary for
strict spirallikeness (see [23, Example 2.6]).

ii) Let D ⊂ Cn be a bounded domain with 0 ∈ D. By [23, Remark 2.8
and Proposition 3.4], if D is strictly A-spiralshapelike and pseudoconvex or D
is A-spiralshapelike and strictly pseudoconvex with C2 boundary, then D is
polynomially convex.

By [5] and [23] the following theorem holds. One of the key ingredients of
the proof is the Andersén-Lempert theorem [1]. The proof is given, under the
assumption of smooth boundary (in order to use the Fefferman mapping theo-
rem), by Arosio, Bracci and Wold [5] for convexshapelike mappings, but it can
be adapted for spiralshapelike mappings, under a lower regularity assumption
of the boundary (see [23, Theorem 3.7]), by using the extension theorem due
to Pinchuk et al. (see [27] and [32] ; see also [8, Main theorem], [12, Theorem
1.7] and [31, Theorem 3]) and Remark 7.2 i).

Theorem 7.3. Let n ≥ 2, A ∈ L(Cn) with m(A) > 0 and let f ∈ S(Bn)
be such that f(Bn) is a bounded strictly pseudoconvex domain. If f(Bn) has
Cm boundary with m > 2, then the following conditions are equivalent:

(i) f is (strictly) A-spiralshapelike;

(ii) f(Bn) is polynomially convex;

(iii) f is (strictly) starshapelike.

Moreover, if f(Bn) has Cm boundary with m > 2+ 1
2 , then the above conditions

are equivalent to the following condition:

(iv) f is convexshapelike.

Corollary 7.4 (see [5], for A = In, and [23]). Let n ≥ 2 and A ∈ L(Cn)
with m(A) > 0. If f ∈ S(Bn) is such that f(Bn) is a bounded strictly pseudo-
convex domain which has Cm boundary with m > 2 and f(Bn) is polynomially
convex, then f ∈ S1

A(Bn).

Under even lower regularity of the boundary, we have the following coun-
terexamples given in [23] (cf. [11]).

Example 7.5. i) Let f ∈ S(B2) be given by f(z) = (z1 + 1
2z

2
1 , z2), z =

(z1, z2) ∈ B2. Then f is strictly starlike, but not convexshapelike.
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ii) Let ϕ(ζ) =
1−
√(

1−ζ
1+ζ

)2
+1

1+

√(
1−ζ
1+ζ

)2
+1

, ζ ∈ U, where we choose the branch of the

square root on C \ (−∞, 0] with
√

1 = 1, and f ∈ S(B2) be given by f(z) =(ϕ(z1)−ϕ(0)
ϕ′(0) , z2

)
, z = (z1, z2) ∈ B2. Then f is starlike, but f(B2) is not polyno-

mially convex. In particular, f is not strictly starshapelike.

Remark 7.6. In view of [5, Example 4.2] and Remark 7.2 (ii), there exist
normalized Fatou-Bieberbach mappings on C2 which restricted to B2 are not
A-spiralshapelike for any A ∈ L(Cn) with m(A) > 0.
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