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This survey is devoted to the travelling-wave solutions to some two-component
partial differential equations modelling shallow water waves on irrotational flows
as well as on shear flows. Qualitative informations about the travelling-wave
solutions are obtained from a general ordinary differential equation for each
model considered. The existence and the profile of the travelling waves depend
on the values of the constants of integration, and on the existence, the sign
and order of multiplicity of the roots of some polynomials of degree 3, 4, 5,
6, depending on the model; fronts, pulses, anti-pulses, multi-pulses, periodic
travelling waves will arise. By comparing the effects of the vorticity on the pulse
waves in the models with and without vorticity, we find that the right-going
waves propagating in the same direction as the underlying shear flow have a
higher amplitude and narrower wavelength and the right-going waves for which
the underlying shear flow propagates in the opposite direction are wider, their
amplitude decreases.
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1. INTRODUCTION

One fascinating feature of the study of water waves is that their mo-
tion can exhibit elementary patterns, such as, fronts, pulses or periodic wave
trains. Mathematical understanding of these elementary patterns is essen-
tial to gain fundamental insights into the more complex patterns. We review
recent works on the most important models that appear in the literature -
the Green–Naghdi model, the two-component Camassa–Holm model, a new
two-component model of Green–Naghdi type, the Zakharov–Itō model and the
Kaup–Boussinesq model - for the description of waves in shallow water, waves
whose wavelength is very much longer than the water depth, propagating on
irrotational flows as well as on shear flows. Although the irrotational models
(with considerable advantages in their mathematical analysis) of wave motion
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yield many practical results that tell us about the nature of water waves, in
reality there is always some vorticity present in actual wave motion: for wind-
driven waves, waves riding upon a sheared current, or waves near a ship or
pier. We pay special attention to the case when the vorticity is present but has
a constant value. For waves which are long compared with the water depth,
the choice of constant vorticity is not just a mathematical simplification but
it is also physically reasonable, since, in this case, the non-zero mean vorticity
is more important than its specific distribution - see the discussion in [20]. In
particular, constant vorticity gives a good description of tidal currents [20].
While vorticity cannot be generated in an incompressible inviscid flow, it can
be prescribed by thinking of the vorticity beneath the wave as injected by a
current. The problem of understanding the effects of a current on the dynam-
ics of water waves is very difficult both theoretically as well as experimentally
and numerically see the discussions in [14,17,18,45,60,64] and the references
therein. The water waves propagating in the presence of constant vorticity
have to be two-dimensional - see [13, 65], the vorticity has only one non-zero
component which points in the horizontal direction orthogonal to the direction
of wave propagation; in contrast, within the setting of irrotational flows, for
two-dimensional wave trains entering a still water region with a flat bed there
is no restriction concerning the direction of wave propagation. At least in the
absence of flow reversal, the vorticity does not destroy the symmetry of the
surface travelling waves - see [15,34].

Most of the studies devoted to travelling waves are focused on a particular
sub-class of solutions: the solitary waves - pulses - [5, 7, 12, 20, 55, 63]. These
localized travelling waves, whose shapes do not change as they propagate along
with a constant velocity, are less ubiquitous than the periodic wave trains but
nevertheless represent observable and beautiful wave patterns. By applying a
unified procedure, the most general ordinary differential equation describing
the whole family of travelling wave solutions to each two-component model
above, was derived in [21, 22]. The equations describing the solitary wave so-
lutions are obtained by choosing the constants of integration appropriately.
Some of the general equations can be solved analytically to obtain the explicit
solutions, but a description of the travelling wave profiles for all models above
can be made by performing a phase-plane analysis [21, 22]. The existence and
the profile of the travelling waves depend on the values of the constants of inte-
gration, and on the existence, the sign and order of multiplicity of the roots of
some polynomials of degree 3, 4, 5, 6, depending on the model. A closed curve
in the phase-plane yields a periodic travelling wave solution, a homoclinic orbit
gives a pulse type solution and a heteroclinic orbit in the phase-plane provides
a front type solution. For certain values of the constants, all models possess
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pulses. For the Kaup–Boussinesq system, interesting analytical multi-pulse
travelling wave solutions are found. For the Zakharov–Itō system pulse and
anti-pulse solutions are obtained. The two-component Camassa-Holm (CH2)
model, with or without vorticity, possesses front wave solutions too. The front
wave solutions decay algebraically in the far field. If we compare the effects of
the vorticity on the pulse waves in the CH2 model and CH2Ω model, we find
that the right-going waves propagating in the same direction as the underly-
ing shear flow (Ω > 0) have a higher amplitude and narrower wavelength and
the right-going waves for which the underlying shear flow propagates in the
opposite direction (Ω < 0) are wider, their amplitude decreases.

2. SHALLOW-WATER APPROXIMATION

We consider the wave motion in a single layer of incompressible fluid that
occupies a domain with a free upper surface and a flat bottom. The fluid is
inviscid but may be rotational. The effects of surface tension are ignored, there-
fore the evolution of waves from their initial profile is governed by the balance
between gravity and the inertia of the system. The fundamental governing
equations and boundary conditions are: the Euler equation, the equation for
incompressible fluids, free surface and bottom kinematic conditions, and a dy-
namic condition constant pressure at the free surface. All these together
constitute the classical water-wave problem. In the absence of non-uniform
currents in the water, the assumption of irrotational flow is realistic. For these
flows, the following equation: the curl of the velocity field is zero, has to be
additionally taken into account. But in order to incorporate the ubiquitous
effects of currents and wave-current interactions, the vorticity - the curl of the
velocity field - is very important.

In order to derive approximations to the governing equations it is useful to write
them in non-dimensional form. The water-wave problem has the following non-
dimensional form (see, for example, [42], [14]):

ut + uux + vuz = −px
δ2(vt + uvx + vvz) = −pz

ux + vz = 0

uz − δ2vx = Ω(1)

v = ε(ηt + uηx) on z = 1 + εη(x, t)

p = εη on z = 1 + εη(x, t)

v = 0 on z = 0.
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Here (x, z) are the non-dimensional Cartesian coordinates, the x-axis being
in the direction of wave propagation and the z-axis pointing vertically up-
wards. (u(x, z, t), v(x, z, t)) is the non-dimensional velocity field of the fluid
and p(x, z, t) denotes the non-dimensional pressure. Ω(x, z, t) is the non-
dimensional vorticity. For example, in the case of irrotational flows Ω(x, z, t) =
0, and in the case of constant vorticity flows Ω(x, z, t) =const. η(x, t) is the
non-dimensional fluid surface displacement from the undisturbed fluid level.
The dimensionless form of the water-wave problem involves two fundamental
parameters

ε :=
a

h0
, δ :=

h0

λ
,

where a is the typical amplitude of the wave, h0 is the undisturbed depth of
the fluid and λ is the wavelength. The amplitude parameter ε is associated
with the nonlinearity of the wave. The long-wave (or shallowness) parameter
δ is associated with the dispersion of the wave, it measures the deviation of
the pressure, in the water below the wave, away from the hydrostatic pressure
distribution. The role of δ independent of ε is useful in the description of
arbitrary amplitude shallow-water waves, that is, δ → 0, for arbitrary fixed ε.
For δ = 0, the leading-order equations become

ut + uux + vuz = −px
pz = 0

ux + vz = 0

uz = Ω(2)

v = ε(ηt + uηx) on z = 1 + εη(x, t)

p = εη on z = 1 + εη(x, t)

v = 0 on z = 0.

3. TWO-COMPONENT SHALLOW WATER MODELS

3.1. Irrotational case

In this case, Ω = 0, the system of equations (2) reduces to

u = u(x, t), v = −zux, p = εη(x, t)(3)

and

(4)
ut + uux + Hx = 0
Ht + (Hu)x = 0,
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where

(5) H(x, t) := 1 + εη(x, t).

The hyperbolic partial differential equations (4) are the so-called classical shal-
low water equations (see, for example, [59]). The system (4) is Hamiltonian
with respect to three distinct Hamiltonian structures ( [10, 50, 52]) which are
compatible and thus, the system is completely integrable [53]. This system
provides a good approximation to the exact solution of the water-wave prob-
lem [2].

The classical shallow water equations do not take into account any disper-
sive effect. Higher-order corrections to these equations can be obtained through
different routes. The relevant system to model highly nonlinear weakly disper-
sive waves propagating in shallow water is the following system:

(6) (GN)

{
ut + uux + Hx = 1

3H

[
H3
(
uuxx + uxt − u2

x

) ]
x

Ht + (Hu )x = 0.

In 1953, Serre [56] derived this system by assuming that the horizontal
component of fluid velocity is independent of the vertical coordinate z - the first
two conditions in (3) are satisfied, but the pressure depends on z and δ2 - and
by integrating the Euler equations over z in the interval [0, H(x, t)]. More then
ten years later Su and Gardner [58] obtained the system (6) by depth-averaging
the two-dimensional irrotational water-wave problem, by using asymptotic ex-
pansion in the small shallowness parameter δ and by retaining terms as far as
O(δ4). Green and Naghdi considered in [29] the three-dimensional water-wave
problem with a free surface and a variable bottom, and without imposing the
condition that the fluid motion should be irrotational. The model equations
were not derived by a formal asymptotic expansion, but instead by impos-
ing the condition that the horizontal velocity is independent of the vertical
coordinate z, that the vertical velocity has only a linear dependence on z
and by using the mass conservation equation and the energy equation in in-
tegral form plus invariance under rigid-body translation. For one horizontal
x-coordinate and for a flat bottom, the equations obtained have the form (6).
In the literature, the equations (6) are referred to as the Serre equations, or
the Su-Gardner equations but usually they are called the Green-Naghdi (GN)
equations. Throughout this work we will call them the GN equations.

The GN equations are mathematically well-posed in the sense that they
admit solutions over the relevant time scale for any initial data reasonably
smooth (see [1, 48]). The solution of the GN equations provides a good ap-
proximation of the solution of the full water-wave problem, the difference be-
tween both solutions remaining of order O(δ4) as long as the wave does not
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exhibit any kind of singularity such as wave breaking (see [2, 48]). The GN
equations have a Hamiltonian formulation (see [33]). The GN equations can
be obtained by a variational approach in the Lagrangian formalism [35]. In the
shallow-water regime, for a velocity field with a horizontal component which is
independent of the vertical coordinate z and a vertical component which has
only a linear dependence on z, the Lagrangian used in the variational derivation
is [35]:

L(u,H) = Ekinetic(u,H) − Epotential(H)

=
1

2

∫ ∞
−∞

[
Hu2 +

1

3
H3u2

x − (H − 1)2

]
dx.(7)

We stress that there is no limitation on the amplitude assumed in the deriva-
tion of the GN equations. They have exact solitary wave solutions [56,58] - see
Section 4.1 for their explicit expressions. The small-amplitude solitary wave
solutions of the GN equations are linearly stable [46, 47]. The GN equations
have also the periodic cnoidal wave solutions [9, 23, 35, 56]. The stability of
periodic cnoidal waves is further investigated in [9]: it is established that the
waves with sufficiently small amplitude are stable and the waves with suffi-
ciently large amplitude are unstable.

An asymptotic reduction of the GN system for small-amplitude shallow
water waves is obtained by Constantin and Ivanov [16] by using the expansion
of the variables with respect to ε and δ2 and by keeping the leading order
terms, the following integrable two-component Camassa-Holm (CH2) system∗:

(8) (CH2)

{
ut + 3uux − utxx − 2uxuxx − uuxxx + HHx = 0
Ht + (Hu)x = 0.

For H = 0, this system reduces to the celebrated peakon equation derived by
Camassa and Holm [8]. The system (8) can be obtained within the shallow
water regime by a variational approach in the Lagrangian formalism [36]. The
Lagrangian used in the variational derivation is [36]:

L(u,H) = Ekinetic(u) − Epotential(H)

=
1

2

∫ ∞
−∞

[
u2 + u2

x − (H − 1)2
]

dx.(9)

The mathematical properties, such as well-posedness and wave breaking, the
geometric aspects and the travelling wave solutions of the CH2 system were
further investigated in many works (see, for example, [16, 24,25,30,51]).

∗The system (8) with a minus sign in front of the HHx term appears originally in [54] as
a tri-Hamiltonian system. Alternative derivations of the system (8) with the minus sign in
front of the HHx term are provided in [11,27,49,57].
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By a variational approach in the Lagrangian formalism, in [37] is derived
a new two-component (N2C) system:

(10) (N2C)

{
ut + 3uux + HHx =

[
H2
(
uuxx + uxt − 1

2u
2
x

) ]
x

Ht + (Hu)x = 0.

In the shallow-water regime, for a velocity field with a horizontal component
which is independent of the vertical coordinate z and a vertical component
which has only a linear dependence on z, the Lagrangian used to obtain (10)
is [37]:

L(u,H) = Ekinetic(u,H) − Epotential(H)

=
1

2

∫ ∞
−∞

[
u2 + H2u2

x − (H − 1)2
]

dx.(11)

The system (10) has a noncanonical Hamiltonian formulation [37]. Its exact
solitary-wave solutions differ from the classical sech2-form [37] - see Section 4.1
for their explicit expressions.

3.2. Constant vorticity case

In this case, Ω = const in (2) , the water waves travelling over the con-
stant shear current U (z) = Ω z . For Ω > 0 , the underlying shear flow
is propagating in the positive direction of the x−coordinate, for Ω < 0 it
propagates in the negative direction.
The leading-order equations (2) reduce to

u = Ω z + u(x, t), v = −zux, p = εη(x, t)(12)

and

(13)
ut + uux + Hx = 0

Ht + (Hu)x + ΩHHx = 0,

with the same H defined in (5).
Returning to the non-dimensional system (1), one observes that the com-

ponent v of the velocity and the pressure p are proportional to ε, that is, to
the wave amplitude. By introduction a suitable scaling around the shear flow
and by truncating asymptotic expansions of the variables to the first order in
ε and δ2, Ivanov [39] obtained the following system:
(14)

(CH2Ω)

{
ut + 3uux − utxx − 2uxuxx − uuxxx + HHx − Ωux = 0
Ht + (Hu)x = 0.

This is an integrable bi-Hamiltonian system [39]. Wave-breaking criteria and a
sufficient condition guaranteeing the existence of a global solution are presented
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in [31]. The well-posedness of this system was studied in [26]. For Ω = 0 , we
get the integrable CH2 system (8).

By a further rescaling of the spatial variable x, of the time variable t
and of the z-independent part of the horizontal component of the velocity
u(x, t), Ivanov [39] proceeded with the derivation in a direction that leads to
the following system:

(15) (ZIΩ)

{
ut + uxxx + 3uux + HHx − Ωux = 0
Ht + (Hu)x = 0,

which matches the Zakharov–Itō (ZI) system [38, 66] with constant vorticity.
This system represents a two-component generalization of the classical KdV
equation. It has a Lax pair [62], a bi-Hamiltonian structure and an integrable
hierarchy [4].

Another system that describes motion of shallow water in the lowest order
in small parameters controlling weak dispersion and weak nonlinearity effects,
is the Kaup–Bousinesq (KB) system. In the presence of a linear shear current
this system has the form [39]:

(16) (KBΩ)

{
ut +

(
1
2 u

2 + H
)
x

= 0

Ht − 1
4 uxxx + C (Ω)

2 [ (H − 1)u ]x = 0 ,

with

(17) C (Ω) := 1 +
1

4

(
Ω +

√
4 + Ω 2

)2
.

The system (16) is integrable iff Ω = 0 , see [39,44]. In the original derivation
proposed by Kaup in [44] as an early example of a coupled pair of equations that
admits an inverse-scattering formalism, the second term in the second equation
of the system appears with ’+’ sign. However, this yields a linearly ill-posed
model, see [3]. The inverse scattering for the KB equations was developed
further in [32]. For other studies on the KB system see, for example, the
papers [19,28,40,43] and the references therein.

4. TRAVELLING WAVE SOLUTIONS

In this chapter we present the most general ordinary differential equations
describing the whole family of travelling wave solutions to the systems (6), (8),
(10) and to the systems (14), (15), (16) which constant vorticity.

We look for right-going waves travelling at a constant speed c > 0, whose
profile are steady relative to a frame of reference moving with velocity c in the
x−direction. Combining the independent variables x and t into one variable
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ξ := x− ct, we suppose that

(18) H(x, t) = H(ξ), u(x, t) = u(ξ), ξ := x − ct.

We can distinguish between different shapes of the travelling waves. Wave
trains are spatially periodic travelling waves with a period L > 0, if

H(ξ + L) = H(ξ), u(ξ + L) = u(ξ), for all ξ.

Fronts and pulses are travelling waves that are asymptotically constant,
that is, they converge to rest states

lim
ξ→±∞

H(ξ) = H±, lim
ξ→±∞

u(ξ) = u±.

For fronts we have H− 6= H+, u− 6= u+, and for pulses H− = H+, u− = u+.
We substitute the Ansatz (18) into the systems (6), (8), (10), (14), (15),

(16). We observe that, for the first five systems, the second equation is the
same. This equation becomes

(19)
(
−cH + Hu

)′
= 0,

with prime denoting the usual derivative operation with respect to ξ, which
yields:

(20) u =
cH − K1

H
, K1 ∈ R,

where K1 ∈
{
KGN

1 , KCH2
1 , KN2C

1 ,KCH2Ω
1 ,KZIΩ

1

}
is an integration constant and

c ∈
{
cGN, cCH2, cN2C, cCH2Ω , cZIΩ

}
the constant wave speed corresponding to

each model, respectively.
After substituting (18) into the first equations of the systems (6), (8), (10),

(14), (15), by using the expression (20) for u along with its derivatives, that is,

u′ =
K1H

′

H2
, u′′ =

K1H
′′

H2
− 2K1(H ′)2

H3
,

we integrate these equations once. Then, we multiply the equations obtained by

2u′ =
2K1H

′

H2
and we integrate once again; after each integration, the integra-

tion constants corresponding to each model are denoted by K2 ∈
{
KGN

2 , KCH2
2 ,

KN2C
2 ,KCH2Ω

2 ,KZIΩ
2

}
and K3 ∈

{
KGN

3 , KCH2
3 , KN2C

2 ,KCH2Ω
3 ,KZIΩ

3

}
, respec-

tively. Finally, we obtain the following first order implicit ODEs, which de-
scribe all possible travelling waves of the models under consideration [21,22]:
for the GN model:

(21) (H ′)2 = − 3

K2
1

H3 +
K3 + 2cK2

K3
1

H2 − 2K2

K2
1

H + 3,

for the CH2 model:
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(22) (H ′)2 = H2

[
− 1

K2
1

H4 +
K3 + 2cK2

K3
1

H3 +
c2 − 2K2

K2
1

H2

− 2c

K1
H + 1

]
,

for the N2C model:

(23) (H ′)2 = − 1

K2
1

H4 +
K3 + 2cK2

K3
1

H3 +
c2 − 2K2

K2
1

H2

− 2c

K1
H + 1,

for the CH2Ω model:

(24) (H ′)2 = H2

[
− 1

K2
1

H4 +
(c2 Ω + 2 cK2 + K3

K 3
1

)
H3

+
(c 2 − 2 Ω c − 2K2

K 2
1

)
H2 −

(2 c − Ω

K1

)
H + 1

]
,

and for the ZIΩ model:

(25) (H ′)2 = K1H ·
[
− 1

K 2
1

H4 +
(c2 Ω + 2 cK2 + K3

K3
1

)
H3

+
(c2 − 2 Ω c − 2K2

K 2
1

)
H2 −

(2 c − Ω

K1

)
H + 1

]
.

For the KBΩ system, after substituting (18) into (16), we integrate once and
we get

(26) H = K1 + c u − 1

2
u2 ,

(27) − cH − 1

4
u′′ +

C (Ω)

2
(H − 1)u = K2 ,

where c is a cKBΩ and K1 , K2 are the integration constants corresponding to
this model, that is, KKBΩ

1 , KKBΩ
2 . We replace (26) into (27), and we get a

differential equation in u only. We multiply this equation by 2u ′ , we integrate
once again and we obtain now an ODE for the variable u [22]:

(28) (u′)2 = −C (Ω)

2
u4 +

4 c
[
1 + C (Ω)

]
3

u3

+ 2
[
(K 1 − 1) C (Ω) − 2 c2

]
u2 − 8 (cK1 + K2)u + K3,

K3 being an integration constant corresponding to this model, i.e. KKBΩ
3 .

The equations (20) with (21), (22), (23), (24), (25), respectively, and (26)
with (28), completely characterize the travelling wave solutions of the model
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partial differential equations considered. We see that the real-valued solutions
exist only if the right-hand side of each equation (21) - (25) and (28) is non-
negative. This depends on the values of the parameters and the roots of the
polynomial functions on the right-hand side of each equation (21) - (25) and
(28), and gives also bounds on the wave height H(ξ) and on u(ξ), respectively,
∀ ξ ∈ R. At this point, each problem involves four interdependent parameters:
the propagation wave speed c and the integration constants K1, K2, K3. For
different values of the integration constants K1, K2, K3, different shapes of the
travelling waves propagating at the speed c arise.

4.1. Fronts, pulses, anti-pulses and multi-pulses

Let us now look for the solitary wave solutions that are asymptotically
stable at ±∞.

By imposing the conditions:

H(ξ)→ 1, H ′(ξ)→ 0, H ′′(ξ)→ 0,(29)

u(ξ)→ 0, u′(ξ)→ 0, u′′(ξ)→ 0,(30)

we can determine the integration constants K1, K2, K3 and the equations which
govern the corresponding solitary waves [21,22]:

KGN
1 = cGN, KGN

2 = 3(cGN)2 +
3

2
, KGN

3 = −3(cGN)3 + 3 cGN,

(31) (H ′)2 =
3

(cGN)2
(H − 1)2

[
(cGN)2 − H

]
,

KCH2
1 = cCH2, KCH2

2 =
1

2
, KCH2

3 = cCH2,

(32) (H ′)2 =
1

(cCH2)2
H2 (H − 1)2

[
(cCH2)2 − H2

]
,

KN2C
1 = cN2C, KN2C

2 =
1

2
, KN2C

3 = cN2C

(33) (H ′)2 =
1

(cN2C)2
(H − 1)2

[
(cN2C)2 − H2

]
,

KCH2Ω
1 = cCH2Ω , KCH2Ω

2 =
1

2
, KCH2Ω

3 = cCH2Ω

(34) (H ′)2 =
H 2

(cCH2Ω) 2
· (H − 1) 2 · (cCH2Ω c+ − H) · ( H − cCH2Ω c−) ,

KZIΩ
1 = cZIΩ , KZIΩ

2 =
1

2
, KZIΩ

3 = cZIΩ
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(35) (H ′) 2 =
H

cZIΩ
(H − 1) 2 · (cZIΩ c+ − H) · ( H − cZIΩ c−) ,

KKBΩ
1 = 1, KKBΩ

2 = −cKBΩ , KKBΩ
3 = 0

(u′) 2 = u 2
[
−C (Ω)

2
u 2 +

4 c
[
1 + C (Ω)

]
3

u − 4 (cKBΩ) 2
]
.(36)

In (34) and (35), c± given by:

c± :=
1

2

(
Ω ±

√
4 + Ω 2

)
,

are the speeds to the right, c+ > 0, and to the left, c− < 0 of the linear shallow
water waves on the constant shear current U(z) = Ω z, see [6, 7, 41,61].

The right-hand side of the equations (31) – (36) has to be non-negative,
thus, for each model, we get the necessary condition for the existence of the
solitary wave solutions:

(37) 0 ≤ H(ξ) ≤ (cGN)2,

(38) 0 ≤ H(ξ) ≤ cCH2,

(39) 0 ≤ H(ξ) ≤ cN2C,

(40) 0 ≤ H(ξ) ≤ cCH2Ω c+ ,

(41) 0 ≤ H(ξ) ≤ cZIΩ c+ ,

(42) uKBΩ
− ≤ u(ξ) ≤ uKBΩ

+ ,

respectively. In the last inequality, uKBΩ
− and uKBΩ

+ are the two real roots of the
second order polynomial in the brackets in (36). These roots exist iff

16 c2
(
1 + C (Ω)

)2
9

− 8 c 2 C (Ω) ≥ 0 ,

which yields

C (Ω) ≤ 1

2
or C (Ω) ≥ 2 .

Hence, with the notation (17) in view, we get for the KBΩ model, the following
restriction on the constant vorticity:

(43) Ω ≥ 3

2
.

By looking at the relations (38) and (40), we can compare the solitary waves in
the CH2 model and CH2Ω model. For the right-going waves propagating in the
same direction as the underlying shear flow, that is, Ω > 0 yields c+ > 1, thus,
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they have a higher amplitude and narrower wavelength. For the right-going
waves for which the underlying shear flow propagates in the opposite direction
Ω < 0 yields c+ < 1), hence, they are wider, their amplitude decreases.

According to the asymptotic behaviour of H, it follows that the right-
going solitary waves exist only if

1 ≤ c , c ∈
{
cGN, cCH2, cN2C

}
(44)

1 ≤ c c+ , c ∈
{
cCH2Ω , cZIΩ

}
.(45)

Some of the equations (31)–(36) can be solved explicitly. For the GN
model, the explicit pulse-type wave solution of the equation (31) is [56,58]:

H(ξ) = 1 + [(cGN )2 − 1] sech2

[√
3

2

√
(cGN )2 − 1

cGN
ξ

]
.

For the N2C model, the explicit pulse-type wave solution of the equation (33)
is [35]:

H(ξ) = 1 +
(cN2C)2 − 1

1+ (cN2C)2+1
2 cosh

[√
(cN2C)2−1

cN2C ξ

]
+ (cN2C)2−1

2 sinh

[√
(cN2C)2−1

cN2C ξ

] .
For the equations that cannot be solved explicitly, we can give a description
of the solitary wave profiles by performing a graphical phase-plane analysis
[21, 22]. For the CH2 and CH2Ω models, the polynomials in H on the right-
hand side of the equations (32) and (34) have two double roots, 0 and 1. In
the phase-plane (H,H ′), the homoclinic orbits, that start in 0 or in 1, lead
to the pulse-type solutions and the heteroclinic orbits, connecting 0 and 1,
to the front wave solutions, see Figures 1 in the cases: (a) c c+ > 1 and (b)
c c+ = 1 . For the CH2 model, Ω = 0 yields c± = ±1. We highlight the fact
that two fronts tend only algebraically to the equilibrium state H = 1 , that is,
H (ξ) ≈ 1 + ξ−a as ξ →∞ , a > 1 being a parameter. Indeed, for c c+ = 1, the

root H = 1 becomes triple, thus, locally (34) becomes: (1 − H)′ ∼ (1 − H)
3
2 .

After integrating this relation we obtain the desired conclusion 1 −H ∼ 1
ξ 2

as ξ → ∞ . By a similar reasoning, since H = 0 is double root in (34), the
decay to H = 0 is exponential .
For the ZIΩ we get in the case c c+ > 1 a pulse and anti-pulse [22]. The phase-
portrait and the solitary waves profiles are depicted in Figure 2. We highlight
the fact that two fronts tend only algebraically to the equilibrium state H = 1 .

For the KBΩ model, with a constant vorticity Ω >
3

2
, and u in the interval

(46) umin < u < umax ,
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Figure 1 – (see [22]). The graph of the polynomial P(H), the phase-plane
(H,H ′) and the solitary wave profiles for the CH2Ω model, in the cases:

a) c c+ > 1 and b) c c+ = 1. The physically admissible solutions are
those which lie above the solid bottom. For the CH2 model, Ω = 0 yields

c± = ±1.
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Figure 2 – (see [22]). The graph of the polynomial P(H), the phase-plane
(H,H ′) and the solitary wave profiles for the ZIΩ model, in the cases:
a) c c+ > 1 and b) c c+ = 1 . The physically admissible solutions are

those which lie above the solid bottom.
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Figure 3 – (see [22]). The graph of the functions H(ξ) (48) and u(ξ) (47),
for different values of the constant vorticity Ω and of the speed of

propagation c.

umin :=
12 c

2
[
1 + C (Ω)

]
+
√

2
√

2 − 5 C (Ω) + 2 C (Ω)2
> 0

umax :=
12 c

2
[
1 + C (Ω)

]
−
√

2
√

2 − 5 C (Ω) + 2 C (Ω)2
> 0 ,

the explicit solution of the equation (36) is [22]:

(47) u (ξ) =
6
√

2 c√
2 [1 + C (Ω)] +

√
2 − 5 C (Ω) + 2 C (Ω)2 sin[2 c ξ]

,

and, by (26), the function H has the expression [22]:

H (ξ) = 1 +
6
√

2 c2

√
2 [1 + C (Ω)] +

√
2 − 5 C (Ω) + 2 C (Ω)2 sin[2 c ξ]

(48)

− 36 c2[√
2 [1 + C (Ω)] +

√
2 − 5 C (Ω) + 2 C (Ω)2 sin[2 c ξ]

]2 .

These are multi-pulse travelling wave solutions to the KBΩ system, solutions
which consist of an arbitrary number of crests and troughs. The number of
crests and troughs increases with higher value of the constant vorticity Ω or at
higher speed of propagation c , see Figure 3. We point out that the velocity u
has the expression (47) only in the interval (46) which is situated above ξ = 0;
the same the wave height H has the expression (48) only in some interval
Hmin < H < Hmax. A multi-pulse travelling wave solution with two troughs
is plotted in Figure 4. The multi-pulse travelling wave solutions to the KB
system was found numerically by Chen [19].

For the following values of the integration constants:

KKBΩ
1 = 2, KKBΩ

2 = −2 cKBΩ , KKBΩ
3 = 0,



17 Travelling waves in two-component shallow water models 741

H

O O

u

u

uH

Figure 4 – (see [22]). A multi-pulse travelling wave solution with two
troughs.

which will mean that the the solitary wave solution is tends to the constant
state

H(ξ)→ 2, H ′(ξ)→ 0, H ′′(ξ)→ 0,(49)

u(ξ)→ 0, u′(ξ)→ 0, u′′(ξ)→ 0,(50)

the equation (28) becomes:

(u′) 2 = u 2
[
−C (Ω)

2
u 2 +

4 c
[
1 + C (Ω)

]
3

u + 2 C (Ω) − 4 (cKBΩ) 2
]
.

(51)

This equation can be solved analytically. If

(52) 2 c 2 < C (Ω) , †

the solution of the differential equation (51) has the explicit expression [22]:

(53) u (ξ) =
e−

√
2
[
C (Ω) − 2 c 2

]
ξ(

e−
√

2
[
C (Ω) − 2 c 2

]
ξ − 4 c

(
1 + C (Ω)

)
3

) 2

8
[
C (Ω) − 2 c 2

] + C (Ω)
2

,

and, taking into account (26), the function H is given by:

(54) H(ξ) = 2 + c u(ξ) − 1

2
u2(ξ) .

This is a one-trough travelling wave solution: see Figure 5 for different values
of the constant vorticity Ω and of the speed of propagation c.

†For Ω = 0 , the condition (52) becomes c 2 < 1 .
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Figure 5 – (see [22]). One-trough travelling wave solution (53) – (54) to
the KBΩ model, for different values of the constant vorticity Ω and of the

speed of propagation c.

4.2. Periodic travelling wave solutions

We now return to the general equations (21) - (25) and (28), which en-
compass all possible travelling waves of the six models under consideration.
These equations have the general form:

(55) (H ′)2 = P(H),

where P(H) ∈
{
PGN(H), PCH2(H), PN2C(H), PCH2Ω(H), PZIΩ(H)

}
are

polynomials in H, and

(56) (u′)2 = P(u),

with P(u) = PKBΩ(u) polynomial in u. The existence and the behaviour (e.g.
periodic, with decay to a constant state) of the solutions of these equations are
based on the qualitative analysis of the real roots and the signs of the polyno-
mials above; see [21, 22] for many situations that can encounter. We mention
that, for the GN model, the equation (21) can also be solved analytically [56]
(see also [9, 23]):

H(ξ) = H2 + (H3 −H2) cn2

[√
3

2

√
H3 −H1

KGN1

ξ; k

]
(57)

where 0 < H1 < H2 < H3 are the roots of the cubic polynomial in (21), cn(· , k)
is the cn-Jacobi elliptic function with the elliptic modulus k, 0 < k2 < 1,

k2 :=
H3 −H2

H3 −H1
.(58)
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If the cubic polynomial (21) has one real root, denoted H0 > 0, and two
complex conjugate roots, PGN (H) = − (H −H0)(H2 + pH + q), p, q ∈ R,
then, the equation (21) has the following periodic solution [35]:

H(ξ) = H0 −
√
H2

0 + pH0 + q

1− cn

[ √
3(H2

0+pH0+q)
1
4

KGN
1

ξ; k

]
1 + cn

[ √
3(H2

0+pH0+q)
1
4

KGN
1

ξ; k

](59)

with the elliptic modulus k, 0 < k2 < 1,

k2 :=
1

2

(
1 +

H0 + p
2√

H2
0 + pH0 + q

)
.(60)

We return to the general study of the polynomials in H and u, respec-
tively. If P(H), P(u), respectively, have only one real root, then no bounded
solutions exists. We restrict ourselves to bounded solutions because they are
physically more acceptable. If H, u, are bounded smooth solutions of the
equations (55), (56), respectively, let

Hmin = inf
ξ∈ R

H(ξ), Hmax = sup
ξ∈ R

H(ξ).

umin = inf
ξ∈ R

u(ξ), umax = sup
ξ∈ R

u(ξ).

Then, we use the fact that H, u are continuous and H ′ → 0, u′ → 0 as
ξ → Hmin or ξ → Hmax, to obtain that the infimum and the supremum of the
smooth solutions H, u, are zeros of P(H), P(u), respectively.
By Viète formulas:

– the cubic polynomial PGN(H) has at least one positive root, because
its leading coefficient is smaller than zero and its constant term is greater than
zero;

– the forth order polynomial PN2C(H) has at least one positive root and
one negative root, because its leading coefficient is smaller than zero and its
constant term is greater than zero. The sixth order polynomials PCH2(H) and
PCH2Ω(H) have 0 as double root and they are written as a factorization into H2

and a forth order polynomial with the same form as the polynomial PN2C(H);
– the fifth order polynomial PZIΩ(H), which has 0 as single root and is

written as a factorization into K1 H and a forth order polynomial having the
leading coefficient smaller than zero and the constant term greater than zero,
has at least one positive root and one negative root;

– the sum of the four roots of the polynomial PKBΩ(u) is higher than zero
for the right-going travelling waves. The leading coefficient of the polynomial
PKBΩ(u) is smaller than zero but the sign of the constant term depends on the
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Figure 6 – (see [22]). The graph of the polynomial P(H), the phase-plane
(H,H ′) and the solitary wave profiles for the ZI model with constant

vorticity in the case the constant K 1 > 0 and the polynomial in brackets
from (25) has four real roots: H 1 < 0 and 0 < H 2 < H 3 < H 4.

value of the constant K3. We conclude that, if real roots exist, at least one of
them has to be positive.

The existence and order of multiplicity of the roots of the polynomials
P(H), P(u), respectively, lead to different profiles for the travelling wave so-
lutions of the model equations. By an analysis in the phase-plane (H,H ′) (we
will write the analysis only for H, for u it will be the same), we can summarize
them as follows:

• if the polynomial P(H) has two simple roots, let us note them H1 > 0
and H2 > 0, and P(H) > 0 for H1 < H < H2, then the orbit in the phase
plane (H,H ′) is a closed curve and there exists a physically acceptable smooth
periodic travelling wave solution to the equation (55), with H1 = minξ∈ RH(ξ)
and H2 = maxξ∈ RH(ξ). This situation can be seen in Figure 6 and Figure 7.

• if the polynomial P(H) has a double root denoted H1 > 0, a simple
root denoted H2 > 0, and P(H) > 0 for H1 < H < H2, then there exists a
homoclinic orbit in the the phase plane (H,H ′) that starts in H1 and there
exists a physically acceptable smooth pulse type solution of the equation (55),
with H1 = infξ∈ RH(ξ), H → H1 as ξ → ±∞ and H2 = maxξ∈ RH(ξ). This
situation can be seen in Figure 7.

• if the polynomial P(H) has two double roots denoted H1 > 0 and
H2 > 0, and P(H) > 0 for H1 < H < H2, then there exist a heteroclinic
orbit in the the phase plane (H,H ′) connecting H1 and H2 and there exists
a physically acceptable smooth front type solution of the equation (55), with
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Figure 7 – (see [22]). The graph of the polynomial P(H), the phase-plane
(H,H ′) and the solitary wave profiles for CH2 model in the case the

polynomial in brackets from (22) has four real roots: H 1 < 0 and
0 < H 2 < H 3 < H 4 .

H1 = infξ∈ RH(ξ), H → H1 as ξ → −∞( or ∞) and H2 = supξ∈ RH(ξ),
H → H2 as ξ →∞(or −∞, respectively).

• if the polynomial P(H) has an odd number of positive simple roots, we
denote by Hbig the largest root, then no bounded travelling wave solutions will
exist for H > Hbig; see, for example, Figure 6.
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