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The q-Stirling numbers have many properties similar to those of the classical
Stirling numbers. In this note, we introduce two recurrence relations for the
q-Stirling numbers.
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1. INTRODUCTION

The q-Stirling numbers of the first kind sq[n, k] and the second kind
Sq[n, k] are a natural extension of the classical Stirling numbers. The q-Stirling
numbers of the first kind are the coefficients in the expansion

(x)n,q =
n∑

k=0

sq[n, k]xk,

where

(x)n,q =
n−1∏
k=0

(x− [k]q),

with (x)0,q = 1. The q-Stirling numbers of the second kind are the coefficients
of (x)k,q in the reverse relation

xn =
n∑

k=0

Sq[n, k](x)k,q,

For q 6= 1 the q-number [n]q is defined by

[n]q = 1 + q + · · ·+ qn−1 =
1− qn

1− q
.

It is clear that

lim
q→1

[n]q = n.
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On the other hand, the q-Stirling numbers can be defined by the recur-
rence relations

sq[n, k] = sq[n− 1, k − 1]− [n− 1]qsq[n− 1, k]

and

Sq[n, k] = Sq[n− 1, k − 1] + [k]qSq[n− 1, k],

with boundary conditions

sq[n, 0] = Sq[n, 0] = δn,0 and sq[0, k] = Sq[0, k] = δ0,k,

where δi,j is the usual Kronecker delta function. There is a long history of
studying q-Stirling numbers [1, 2, 4, 5, 6, 9, 10, 11]. New and interesting
combinatorial interpretations of these numbers have recently been given by
Cai and Readdy [3].

Recall that the q-binomial coefficients are defined by[
n
k

]
q

=


[n]q!

[k]q![n− k]q!
, for k ∈ {0, . . . , n},

0, otherwise,

where

[n]q! = [n]q[n− 1]q · · · [1]q ,

is q-factorial, with [0]q! = 1. In a recent paper [8], the author prove that the
q-Stirling numbers of both kinds can be expressed in terms of the q-binomial
coefficients,

sq[n+ 1, n+ 1− k] = (1− q)−k
k∑

j=0

(−1)k−jq(
j+1
2 )
(
n− j
k − j

)[
n
j

]
q

,

Sq[n+ 1 + k, n+ 1] = (1− q)−k
k∑

j=0

(−q)j
(
n+ k

k − j

)[
n+ j
j

]
q

,

and vice versa

q(
k+1
2 )
[
n
k

]
q

=

k∑
j=0

(1− q)j
(
n− j
k − j

)
sq[n+ 1, n+ 1− j],

qk
[
n+ k
k

]
q

=
k∑

j=0

(q − 1)j
(
n+ k

k − j

)
Sq[n+ 1 + j, n+ 1].

The last two identities can be seen as recurrence relations for the q-Stirling
numbers and can be rewritten as:
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q(
n−k+1

2 )
[
n
k

]
q

=
n∑

j=k

(1− q)n−j
(
j

k

)
sq[n+ 1, j + 1],

qn−k
[

n
n− k

]
q

=
n∑

j=k

(q − 1)j−k
(
n

j

)
Sq[j + 1, k + 1].

The first identity is a horizontal recurrence relation for the q-Stirling numbers
of the first kind. The second is a vertical recurrence relation for the q-Stirling
numbers of the second kind.

In this paper, motivated by these identities, we shall prove two recurrence
relations for the q-Stirling numbers of both kinds. These relations does not
involve q-binomial coefficients.

Theorem 1.1. Let k and n be non-negative integers such that k 6 n.
Then

sq[n+ 1, k + 1] =
n∑

j=k

(−1)j−kqn−j
(
j

k

)
sq[n, j].

Theorem 1.2. Let k and n be non-negative integers such that k 6 n.
Then

Sq[n+ 1, k + 1] =
n∑

j=k

qn−j
(
n

j

)
Sq[j, k].

Two known recurrence relations involving the classical Stirling numbers
of both kinds can be easily derived as the limiting case q → 1 of these results.

Corollary 1.3. Let k and n be non-negative integers such that k 6 n.
Then

1.

[
n+ 1
k + 1

]
=

n∑
j=k

(
j

k

)[
n
j

]

2.

{
n+ 1
k + 1

}
=

n∑
j=k

(
n

j

){
j
k

}

Recall that the unsigned Stirling number of the first kind

[
n
k

]
is defined as

the number of permutations of n elements with k disjoint cycles. The Stirling

numbers of the second kind

{
n
k

}
count the number of ways to partition a set

of n objects into k non-empty subsets.
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2. PROOF OF THEOREM 1.1

In order to prove this theorem, we consider that the q-Stirling numbers
of the first kind are specializations of elementary symmetric functions [5], i.e.,

sq[n+ 1, n+ 1− k] = (−1)kek([1]q, [2]q, . . . , [n]q).

According to Merca [7, Theorem 1], we can write

ek([1]q, [2]q, . . . , [n]q)

= ek(1, 1 + q, 1 + q + q2, . . . , 1 + q + · · ·+ qn−1)

= ek(1, 1 + q, 1 + q(1 + q), . . . , 1 + q(1 + q + · · ·+ qn−2))

=

k∑
j=0

(
n− j
k − j

)
ej(q, q(1 + q), . . . , q(1 + q + . . .+ qn−2))

=

k∑
j=0

qj
(
n− j
k − j

)
ej(1, 1 + q, . . . , 1 + q + . . .+ qn−2)

=

k∑
j=0

qj
(
n− j
k − j

)
ej([1]q, [2]q, . . . , [n− 1]q).

In terms of the q-Stirling numbers of the first kind, this relation can be written
as

sq[n+ 1, n+ 1− k] =
k∑

j=0

(−1)k−jqj
(
n− j
k − j

)
sq[n, n− j].

By this identity, with k replaced by n− k, we obtain

sq[n+ 1, k + 1] =

n−k∑
j=0

(−1)n−k−jqj
(

n− j
n− k − j

)
sq[n, n− j]

=

n∑
j=k

(−1)n−jqj−k
(
n+ k − j
n− j

)
sq[n, n+ k − j]

=
n∑

j=k

(−1)j−kqn−j
(
j

k

)
sq[n, j].

The proof is complete.

3. PROOF OF THEOREM 1.2

The proof of this theorem is quite similar to the proof of Theorem 1.1. It
is well know that the q-Stirling numbers of the second kind are specializations
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of complete homogeneous symmetric functions [5], i.e.,

Sq[n+ k, n] = hk([1]q, [2]q, . . . , [n]q).

Considering [7, Theorem 1], we have

hk([1]q, [2]q, . . . , [n+ 1]q)

= hk(1, 1 + q, 1 + q + q2, . . . , 1 + q + · · ·+ qn)

= hk(1, 1 + q, 1 + q(1 + q), . . . , 1 + q(1 + q + · · ·+ qn−1))

=
k∑

j=0

(
n+ k

k − j

)
hj(q, q(1 + q), . . . , q(1 + q + . . .+ qn−1))

=
k∑

j=0

qj
(
n+ k

k − j

)
hj(1, 1 + q, . . . , 1 + q + . . .+ qn−1)

=
k∑

j=0

qj
(
n+ k

k − j

)
hj([1]q, [2]q, . . . , [n]q).

Thus we deduce that

Sq[n+ 1 + k, n+ 1] =
k∑

j=0

qj
(
n+ k

k − j

)
Sq[n+ j, n].

By this relation, with n replaced by n− k, we obtain

Sq[n+ 1, n− k + 1] =

k∑
j=0

qj
(

n

k − j

)
Sq[n− k + j, n− k].

The proof follows easily replacing k by n− k in the last relation.

4. CONCLUDING REMARKS

A q-analogue of some Stirling identities have been discovered and proved
in this paper considering that the q-Stirling numbers are specializations of
complete and elementary symmetric functions.
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