q-STIRLING RECURRENCES

MIRCEA MERCA

Communicated by Dan Timotin

The q-Stirling numbers have many properties similar to those of the classical Stirling numbers. In this note, we introduce two recurrence relations for the q-Stirling numbers.

AMS 2010 Subject Classification: 11B37, 05E05.
Key words: Stirling numbers, q-Stirling numbers, convolutions.

1. INTRODUCTION

The q-Stirling numbers of the first kind $s_{q}[n, k]$ and the second kind $S_{q}[n, k]$ are a natural extension of the classical Stirling numbers. The q-Stirling numbers of the first kind are the coefficients in the expansion

$$
(x)_{n, q}=\sum_{k=0}^{n} s_{q}[n, k] x^{k},
$$

where

$$
(x)_{n, q}=\prod_{k=0}^{n-1}\left(x-[k]_{q}\right)
$$

with $(x)_{0, q}=1$. The q-Stirling numbers of the second kind are the coefficients of $(x)_{k, q}$ in the reverse relation

$$
x^{n}=\sum_{k=0}^{n} S_{q}[n, k](x)_{k, q},
$$

For $q \neq 1$ the q-number $[n]_{q}$ is defined by

$$
[n]_{q}=1+q+\cdots+q^{n-1}=\frac{1-q^{n}}{1-q} .
$$

It is clear that

$$
\lim _{q \rightarrow 1}[n]_{q}=n .
$$

On the other hand, the q-Stirling numbers can be defined by the recurrence relations

$$
s_{q}[n, k]=s_{q}[n-1, k-1]-[n-1]_{q} s_{q}[n-1, k]
$$

and

$$
S_{q}[n, k]=S_{q}[n-1, k-1]+[k]_{q} S_{q}[n-1, k],
$$

with boundary conditions

$$
s_{q}[n, 0]=S_{q}[n, 0]=\delta_{n, 0} \quad \text { and } \quad s_{q}[0, k]=S_{q}[0, k]=\delta_{0, k},
$$

where $\delta_{i, j}$ is the usual Kronecker delta function. There is a long history of studying q-Stirling numbers $[1,2,4,5,6,9,10,11]$. New and interesting combinatorial interpretations of these numbers have recently been given by Cai and Readdy [3].

Recall that the q-binomial coefficients are defined by

$$
\left[\begin{array}{ll}
n \\
k
\end{array}\right]_{q}= \begin{cases}\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}, & \text { for } k \in\{0, \ldots, n\} \\
0, & \text { otherwise }\end{cases}
$$

where

$$
[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q},
$$

is q-factorial, with $[0]_{q}!=1$. In a recent paper [8], the author prove that the q-Stirling numbers of both kinds can be expressed in terms of the q-binomial coefficients,

$$
\begin{aligned}
& s_{q}[n+1, n+1-k]=(1-q)^{-k} \sum_{j=0}^{k}(-1)^{k-j} q^{\binom{j+1}{2}}\binom{n-j}{k-j}\left[\begin{array}{c}
n \\
j
\end{array}\right]_{q}, \\
& S_{q}[n+1+k, n+1]=(1-q)^{-k} \sum_{j=0}^{k}(-q)^{j}\binom{n+k}{k-j}\left[\begin{array}{c}
n+j \\
j
\end{array}\right]_{q},
\end{aligned}
$$

and vice versa

$$
\begin{aligned}
& q^{\binom{k+1}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\sum_{j=0}^{k}(1-q)^{j}\binom{n-j}{k-j} s_{q}[n+1, n+1-j], \\
& q^{k}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}=\sum_{j=0}^{k}(q-1)^{j}\binom{n+k}{k-j} S_{q}[n+1+j, n+1] .
\end{aligned}
$$

The last two identities can be seen as recurrence relations for the q-Stirling numbers and can be rewritten as:

$$
\begin{aligned}
& \left.q^{(n-k+1}\right)\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\sum_{j=k}^{n}(1-q)^{n-j}\binom{j}{k} s_{q}[n+1, j+1], \\
& q^{n-k}\left[\begin{array}{c}
n \\
n-k
\end{array}\right]_{q}=\sum_{j=k}^{n}(q-1)^{j-k}\binom{n}{j} S_{q}[j+1, k+1] .
\end{aligned}
$$

The first identity is a horizontal recurrence relation for the q-Stirling numbers of the first kind. The second is a vertical recurrence relation for the q-Stirling numbers of the second kind.

In this paper, motivated by these identities, we shall prove two recurrence relations for the q-Stirling numbers of both kinds. These relations does not involve q-binomial coefficients.

ThEOREM 1.1. Let k and n be non-negative integers such that $k \leqslant n$. Then

$$
s_{q}[n+1, k+1]=\sum_{j=k}^{n}(-1)^{j-k} q^{n-j}\binom{j}{k} s_{q}[n, j] .
$$

THEOREM 1.2. Let k and n be non-negative integers such that $k \leqslant n$. Then

$$
S_{q}[n+1, k+1]=\sum_{j=k}^{n} q^{n-j}\binom{n}{j} S_{q}[j, k] .
$$

Two known recurrence relations involving the classical Stirling numbers of both kinds can be easily derived as the limiting case $q \rightarrow 1$ of these results.

Corollary 1.3. Let k and n be non-negative integers such that $k \leqslant n$. Then

$$
\begin{aligned}
& \text { 1. }\left[\begin{array}{l}
n+1 \\
k+1
\end{array}\right]=\sum_{j=k}^{n}\binom{j}{k}\left[\begin{array}{l}
n \\
j
\end{array}\right] \\
& \text { 2. }\left\{\begin{array}{l}
n+1 \\
k+1
\end{array}\right\}=\sum_{j=k}^{n}\binom{n}{j}\left\{\begin{array}{l}
j \\
k
\end{array}\right\}
\end{aligned}
$$

Recall that the unsigned Stirling number of the first kind $\left[\begin{array}{l}n \\ k\end{array}\right]$ is defined as the number of permutations of n elements with k disjoint cycles. The Stirling numbers of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ count the number of ways to partition a set of n objects into k non-empty subsets.

2. PROOF OF THEOREM 1.1

In order to prove this theorem, we consider that the q-Stirling numbers of the first kind are specializations of elementary symmetric functions [5], i.e.,

$$
s_{q}[n+1, n+1-k]=(-1)^{k} e_{k}\left([1]_{q},[2]_{q}, \ldots,[n]_{q}\right) .
$$

According to Merca [7, Theorem 1], we can write

$$
\begin{aligned}
& e_{k}\left([1]_{q}\right.\left.,[2]_{q}, \ldots,[n]_{q}\right) \\
&=e_{k}\left(1,1+q, 1+q+q^{2}, \ldots, 1+q+\cdots+q^{n-1}\right) \\
&=e_{k}\left(1,1+q, 1+q(1+q), \ldots, 1+q\left(1+q+\cdots+q^{n-2}\right)\right) \\
&=\sum_{j=0}^{k}\binom{n-j}{k-j} e_{j}\left(q, q(1+q), \ldots, q\left(1+q+\ldots+q^{n-2}\right)\right) \\
&=\sum_{j=0}^{k} q^{j}\binom{n-j}{k-j} e_{j}\left(1,1+q, \ldots, 1+q+\ldots+q^{n-2}\right) \\
& \quad=\sum_{j=0}^{k} q^{j}\binom{n-j}{k-j} e_{j}\left([1]_{q},[2]_{q}, \ldots,[n-1]_{q}\right) .
\end{aligned}
$$

In terms of the q-Stirling numbers of the first kind, this relation can be written as

$$
s_{q}[n+1, n+1-k]=\sum_{j=0}^{k}(-1)^{k-j} q^{j}\binom{n-j}{k-j} s_{q}[n, n-j] .
$$

By this identity, with k replaced by $n-k$, we obtain

$$
\begin{aligned}
s_{q}[n+1, k+1] & =\sum_{j=0}^{n-k}(-1)^{n-k-j} q^{j}\binom{n-j}{n-k-j} s_{q}[n, n-j] \\
& =\sum_{j=k}^{n}(-1)^{n-j} q^{j-k}\binom{n+k-j}{n-j} s_{q}[n, n+k-j] \\
& =\sum_{j=k}^{n}(-1)^{j-k} q^{n-j}\binom{j}{k} s_{q}[n, j] .
\end{aligned}
$$

The proof is complete.

3. PROOF OF THEOREM 1.2

The proof of this theorem is quite similar to the proof of Theorem 1.1. It is well know that the q-Stirling numbers of the second kind are specializations
of complete homogeneous symmetric functions [5], i.e.,

$$
S_{q}[n+k, n]=h_{k}\left([1]_{q},[2]_{q}, \ldots,[n]_{q}\right)
$$

Considering [7, Theorem 1], we have

$$
\begin{aligned}
& h_{k}\left([1]_{q},[2]_{q}, \ldots,[n+1]_{q}\right) \\
& \quad=h_{k}\left(1,1+q, 1+q+q^{2}, \ldots, 1+q+\cdots+q^{n}\right) \\
& \quad=h_{k}\left(1,1+q, 1+q(1+q), \ldots, 1+q\left(1+q+\cdots+q^{n-1}\right)\right) \\
& \quad=\sum_{j=0}^{k}\binom{n+k}{k-j} h_{j}\left(q, q(1+q), \ldots, q\left(1+q+\ldots+q^{n-1}\right)\right) \\
& \quad=\sum_{j=0}^{k} q^{j}\binom{n+k}{k-j} h_{j}\left(1,1+q, \ldots, 1+q+\ldots+q^{n-1}\right) \\
& \quad=\sum_{j=0}^{k} q^{j}\binom{n+k}{k-j} h_{j}\left([1]_{q},[2]_{q}, \ldots,[n]_{q}\right) .
\end{aligned}
$$

Thus we deduce that

$$
S_{q}[n+1+k, n+1]=\sum_{j=0}^{k} q^{j}\binom{n+k}{k-j} S_{q}[n+j, n] .
$$

By this relation, with n replaced by $n-k$, we obtain

$$
S_{q}[n+1, n-k+1]=\sum_{j=0}^{k} q^{j}\binom{n}{k-j} S_{q}[n-k+j, n-k] .
$$

The proof follows easily replacing k by $n-k$ in the last relation.

4. CONCLUDING REMARKS

A q-analogue of some Stirling identities have been discovered and proved in this paper considering that the q-Stirling numbers are specializations of complete and elementary symmetric functions.

REFERENCES

[1] C. Bennett, K. Dempsey, and B. Sagan, Partition lattice q-analogs related to q-Stirling numbers. J. Algebraic Combin. 3 (1994), 261-283.
[2] L. Carlitz, On abelian fields. Trans. Amer. Math. Soc. 35 (1933), 122-136.
[3] Y. Cai and M. Readdy, q-Stirling numbers: A new view. Advances in Applied Math. 86 (2017), 50-80.
[4] R. Ehrenborg and M. Readdy, Juggling and applications to q-analogues. Discrete Math. 157 (1996), 107-125
[5] T. Ernst, q-Stirling Numbers, an Umbral Approach. Advances in Dynamical Systems and Applications 3 (2008), 2, 251-282.
[6] H. W. Gould, The q-Stirling numbers of the first and second kinds. Duke Math. J. 28 (1961), 281-289.
[7] M. Merca, A note on the r-Whitney numbers of Dowling lattices. C. R. Math. Acad. Sci. Paris 351 (2013), 649-655.
[8] M. Merca, A Note on q-Stirling Numbers. In: G.V. Milanović and M.Th. Rassias. (Eds.), Analytic Number Theory, Approximation Theory, and Special Functions, pp. 239-244, Springer, New-York, 2014.
[9] S. Milne, A q-analog of restricted growth functions, Dobinski's equality, and Charlier polynomials. Trans. Amer. Math. Soc. 245 (1978), 89-118.
[10] S. Park, P-partitions and q-Stirling numbers. J. Combin. Theory Ser. A 68 (1994), 3352.
[11] M. Wachs and D. White, p, q-Stirling numbers and set partition statistics. J. Combin. Theory Ser. A 56 (1991), 27-46.

> University of Craiova Department of Mathematics 200585 Craiova, Romania and
> Academy of Romanian Scientists Ilfov 3, Sector 5, Bucharest, Romania
> mircea.merca@profinfo.edu.ro

