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Almost half a century ago, the extreme points of the closed convex hulls of various
geometric families of analytic functions of the unit disk were completely classified,
paving the way for solutions to linear extremal problems over the families. Little
is known about such extreme points for the analogous families defined on the
Euclidean unit ball B ⊆ Cn for n ≥ 2. Only recently were any extreme points
found for the closed convex hull of the family of convex mappings of B. We will
survey the techniques used to find this set of extreme points, demonstrate that
the set is incomplete, and give some related results that may help to guide future
work.
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1. PROLOGUE

Prior to the settlement by de Branges [7] of the Bieberbach conjecture [5]
on the bounds of the Taylor coefficients of members of the schlicht class

S = S(D) = {f ∈ H(D) : f is univalent, f(0) = 0, and f ′(0) = 1},

where H(D) denotes the space of functions analytic in the unit disk D ⊆ C,
significant attention turned to various compact subfamilies of S defined using
some geometric constraint on a function’s range. For such a family F ⊆ S

that is invariant under rotations, the problem of maximizing the modulus of a
coefficient in the series expansions of members of F is equivalent to maximizing
the value of a real-linear functional on H(D) over F. Since the maximum value
of such a functional will be attained at an extreme point of the closed convex
hull of F, identification of these extreme points is of interest.

Taking a step back, let X be a locally convex topological vector space
(such as H(D) under the topology of uniform convergence on compact sets),
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and let A ⊆ X. The convex hull of A is the set coA consisting of all x ∈ X
of the form x =

∑n
k=1 λkak with a1, . . . , an ∈ A and λ1, . . . , λn ≥ 0 such that∑n

k=1 λk = 1. The closed convex hull of A is the closure of coA in X and is
denoted coA. If E ⊆ X, then an extreme point of E is any x ∈ E such that
the equality x = (1− t)a+ tb for a, b ∈ E and t ∈ (0, 1) implies a = b = x. By
Milman’s theorem, extreme points of coA are also extreme points of A when A
and coA are both compact, but the converse clearly does not hold in general.
(See [22].)

Let us now consider the particular family

K = K(D) = {f ∈ S : f(D) is convex},

which is well known to be compact. (See [10].) The complete classification of
the extreme points of coK was given by Brickman, MacGregor, and Wilken [4].
Here, we frame their work in a manner that helps motivate what follows. (See
also [12,13].) Let

R = R(D) =

{
f ∈ H(D) : f(0) = 0, f ′(0) = 1, and Re

f(z)

z
>

1

2
for z ∈ D

}
.

A classical result of Marx [11] and Strohhäcker [28] gives that K ⊆ R.

For a Borel subset E of a topological space X, let P (E) be the set of all
regular Borel probability measures µ on X such that µ(X \ E) = 0. One may
use the well-known Herglotz representation for analytic functions with positive
real part in D (see [10]) to see that the association of f ∈ R to µ ∈ P (∂D)
through the representation

(1.1) f(z) =

∫
∂D

z

1− uz
dµ(u), z ∈ D,

establishes a bijection between R and P (∂D). As P (∂D) can be viewed as a
subset of the dual space of the Banach space of continuous complex-valued
functions on ∂D by the Riesz representation theorem [27], it has an induced
weak-∗ topology. With this and the topology of uniform convergence on com-
pact sets applied to R, this bijection is actually an affine homeomorphism. The
extreme points of the compact, convex set P (∂D) are the Dirac (point mass)
measures δα for α ∈ ∂D, and therefore the extreme points of R (itself now seen
to be a compact, convex set) are the half-plane mappings

(1.2) z 7→ z

1− αz
, z ∈ D,

for α ∈ ∂D. Now coK ⊆ R, the extreme points of R lie in K, and R is the
closed convex hull of its extreme points by the Krein–Milman theorem. We
conclude that coK = R, which completely exposes the extreme points of coK.
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2. BACKGROUND ON K(B)

Geometric function theory in higher dimensions is unsurprisingly more
complicated than its one-variable counterpart. Our generalization of the unit
disk D is the unit ball B = Bn ⊆ Cn with respect to the Euclidean norm ‖ · ‖.
(The lack of a Riemann mapping theorem in higher dimensions makes this a
nontrivial choice.) The space of holomorphic mappings from B into Cm, m ∈ N,
is written H(B,Cm). Notably, this space is locally convex in the topology of
uniform convergence on compact sets. The Fréchet derivative of f ∈ H(B,Cm)
at a point z ∈ B is the linear operator Df(z) : Cn → Cm.

Since the family

S(B) = {f ∈ H(B,Cn) : f is biholomorphic, f(0) = 0, and Df(0) = I},

where I is the identity operator, is not compact when n ≥ 2 (a fundamental
difference from the one-variable case), it is especially important to consider
various compact subfamilies of S(B). Such a compact subfamily is (see [10],
for instance)

K(B) = {f ∈ S(B) : f(B) is convex},
the natural generalization of the one-variable family K, and its members are
called convex mappings. As above, we wonder, what are the extreme points of
coK(B)? A complete answer likely would reveal maxima of real-linear func-
tionals defined on H(B,Cn) over K(B). For instance, since K(B) is invariant
under unitary rotations, we may look to find the maximum modulus of a Taylor
coefficient in the expansions of coordinate functions of members of K(B).

The remainder of this note is a discussion of mathematical developments,
some recent and some not so much, directed towards answering this question.
Rather than progress chronologically, we choose to take advantage of more
recently found results that provide context or clarity to concepts established
earlier. While complete proofs will not be given, as the reader may consult
the cited references, some sketches of proofs of what we feel to be the more
important results are provided to give the reader a sense of the underlying
work.

Before beginning our exploration, we give some useful properties of K(B).
For the first, we recall that a polynomial P : Cn → Cm is homogeneous of degree
k ∈ N ∪ {0} if P (λz) = λkP (z) for all z ∈ Cn and λ ∈ C. The norm of such a
P is

‖P‖ = sup
u∈∂B

‖P (u)‖ = sup
z∈Cn\{0}

‖P (z)‖
‖z‖k

.

In the case m = 1, we write Pk(n) for the space of complex-valued homogeneous
polynomials of degree k, which is a Banach space in the above norm.
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Any f ∈ H(B,Cm) has a series expansion of the form f =
∑∞

k=0 Pk,
where each Pk is a homogeneous polynomial of degree k. If f ∈ K(B), then
P0 = 0, P1 = I, and ‖Pk‖ ≤ 1 for all k ≥ 2, as shown in [21]. Note that
the analogous result in dimension n = 1 can easily be derived from (1.1) by
expanding the integrand and moving the integral inside the series. Applying
the norm to the series expansion of f ∈ K(B) yields our second property, the
useful growth bound

(2.1) ‖f(z)‖ ≤ ‖z‖
1− ‖z‖

, z ∈ B,

whose development historically preceded the bound on terms of the homoge-
neous polynomial expansion. From this bound, we see that K(B) is a normal
family, a result already implied by its compactness noted above.

Our next observation deals with the Koebe transform. If AutB denotes
the group of biholomorphic automorphisms of B, then for ϕ ∈ AutB, the Koebe
transform of f ∈ S(B) with respect to ϕ is the mapping formed by normalizing
f ◦ ϕ to lie in S(B). That is, the mapping

Λϕ[f ](z) = Dϕ(0)−1Df(ϕ(0))−1[f(ϕ(z))− f(ϕ(0))], z ∈ B.
For any ϕ ∈ AutB, it is geometrically evident that Λϕ[K(B)] ⊆ K(B). That is
to say, K(B) is a linear-invariant family, a concept introduced in one variable
by Pommerenke [23,24] and first extended to higher dimensions in [2, 19].

Lastly, for f ∈ K(B), let

S =

{
u ∈ ∂B : lim

B3z→u
‖f(z)‖ =∞

}
.

Recently, Bracci and Gaussier [3] showed that S may have up to, but no more
than, two elements and f extends to a homeomorphism from B \ S onto f(B).
The case S = ∅ coincides with f bounded. We refer to a point in S as an
infinite boundary singularity of f .

3. THE MAPPINGS FQ

It is only natural to propose the generalization of the half-plane mappings
(1.2) to B as candidates for extreme points of coK(B); that is, the mappings

(3.1) z 7→ z

1− 〈z, α〉
, z ∈ B,

for α ∈ ∂B. Here, 〈·, ·〉 is the standard Hermitian inner product in Cn. These
mappings, however, fail to be extreme when n ≥ 2.

To see this, we begin with a result we will use again later. See [14, 16].
For n ≥ 2 and z ∈ Cn, we write z = (z1, ẑ) for ẑ ∈ Cn−1, and we let e1, . . . , en
be the canonical basis vectors of Cn.
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Theorem 3.1. Let n ≥ 2 and P ∈ Pk(n − 1) for k ≥ 2. The mapping
f(z) = z + P (ẑ)e1 lies in K(B) if and only if

(3.2) ‖P‖ ≤ (k − 1)(k−3)/2

k(k − 2)(k−2)/2
.

Let n ≥ 2. We now see that if Q ∈ P2(n − 1) with ‖Q‖ ≤ 1/2, then
f(z) = z + Q(ẑ)e1 is a mapping in K(B). For r ∈ (0, 1), let ϕr ∈ AutB be
given by

(3.3) ϕr(z) =

(
z1 − r
1− rz1

,

√
1− r2 ẑ

1− rz1

)
.

(Background on AutB can be found in [10, 26].) From above, we know that
Λϕr [f ] ∈ K(B) for all r ∈ (0, 1), and hence compactness gives that

(3.4) FQ(z) = lim
r→1−

Λϕr [f ](z) =
z

1− z1
+

Q(ẑ)

(1− z1)2
e1, z ∈ B,

lies in K(B). (That the limit is uniform on compact sets follows from Vitali’s
theorem in several complex variables.) We see that mappings of the form (3.1)
fail to be extreme points of K(B) due to the simple observation

z

1− z1
=
FQ(z) + F−Q(z)

2
, z ∈ B,

for any Q ∈ P2(n− 1) with 0 < ‖Q‖ ≤ 1/2.
One may be tempted to mimic the above technique using homogeneous

polynomials of degree k > 2 with norm bounded by (3.2). Oddly, only homo-
geneous polynomials of degree 2 produce interesting results. Insight into this
phenomenon is given in [20].

It is now only natural to consider the mappings FQ, for Q ∈ P2(n − 1)
with ‖Q‖ ≤ 1/2, in place of those given in (3.1). We note that each FQ has
exactly one infinite boundary singularity (namely, e1) and FQ(B) contains a
real line. In particular, {ite1 : t ∈ R} ⊆ FQ(B). We call such a convex mapping
half-plane-like.

We note that FQ(B) may possibly contain lines in other directions. For
instance, if

Q(w) = −1

2

n−1∑
k=1

w2
k, w ∈ Cn−1,

then ‖Q‖ = 1/2 and FQ(B) contains the real n-dimensional space spanned by
{ie1, e2, . . . , en}. We note [17] that this is the maximum dimension of such a
subspace:

Theorem 3.2. Let f ∈ K(B). If X is a real subspace of Cn such that
X ⊆ f(B), then dimX ≤ n.
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To see this, observe that X∩iX 6= {0} if dimX > n. For u ∈ X∩iX\{0},
we have u, iu ∈ X. It follows that ζ 7→ f−1(ζu) is a bounded entire function
of ζ ∈ C, which must be constant.

It certainly seems that a mapping FQ for Q chosen so that FQ(B) contains
a real n-dimensional space is “extremal” in some sense. This is the foundation
of our work moving forward.

4. HALF-PLANE-LIKE MAPPINGS

Assume n ≥ 2 throughout this section. Above, we noticed that FQ given
in (3.4) with Q ∈ P2(n− 1) and ‖Q‖ ≤ 1/2 is what we called “half-plane-like”
because it is a convex mapping with exactly one infinite boundary singularity
that contains a line in its range. Here, we ponder the nature of such mappings
to see that, under the right conditions, they must be of the form FQ.

Let us begin by observing that if f ∈ K(B) and u ∈ ∂B are such that
{tu : t ∈ R} ⊆ f(B), then w + tu ∈ f(B) for all w ∈ f(B) and t ∈ R. This is
geometrically intuitive, but see [3, 18] for arguments. For t ∈ R, let

ψt(z) = f−1(f(z) + tu), z ∈ B.
It follows that {ψt : t ∈ R} is a continuous one-parameter subgroup of AutB;
i.e., t 7→ ψt is a continuous group-homomorphism of R into AutB. Because ψt
has no fixed points in B for t 6= 0, an argument based on the Denjoy–Wolff
theorem in B (see [6], for instance) gives that there exist a, b ∈ ∂B such that

lim
t→∞

ψt(z) = a, lim
t→−∞

ψt(z) = b, z ∈ B,

the limits being uniform on compact subsets of B. Both a and b are infinite
boundary singularities of f . Since half-plane-like mappings have only one in-
finite boundary singularity, we will consider the case a = b here. The reader
may consult [18] for a consideration of the case where a 6= b.

For the remainder of the section, we summarize the steps taken to analyze
these half-plane-type mappings in [15, 17]. There is no loss of generality in
assuming that a = b = e1. Because the automorphisms ψt, t ∈ R\{0}, have e1
as their only fixed point in B, their general form is known (see [1]). A detailed
analysis shows that u (the direction vector of the line assumed to lie in f(B))
must be such that u1 ∈ iR. A complicated situation results when û 6= 0, but
the mappings FQ considered above are such that u may be chosen to be ie1,
the only possibility (save for the redundant u = −ie1) when û = 0. We will
therefore assume this latter condition moving forward. It can then be shown
that there is an Hermitian operator A : Cn−1 → Cn−1 such that

ψt(z) =
(z1 + it(1− z1), e−itAẑ)

1 + it(1− z1)
, z ∈ B, t ∈ R.
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An analysis using this form of ψt allows us to conclude that there exists a
holomorphic G : Cn−1 → Cn with G(0) = 0 and DG(0) = 0 such that the
mapping f with our assumptions has the form

(4.1) f(z) =

(
z1

1− z1
, exp

(
z1

1− z1
A

)
ẑ

1− z1

)
+G

(
exp

(
z1

1− z1
A

)
ẑ

1− z1

)
.

The next step is to show that A = 0. To do this, we assume otherwise
and choose a nonzero eigenvalue of A. Using this eigenvalue and an associated
unit eigenvector, it is possible to construct two points of f(B) whose midpoint
fails to lie in f(B), contradicting convexity. It therefore remains to address the
characteristics of G.

The first significant property of G is that G must be a homogeneous
polynomial of degree 2. To sketch the argument, let G(w) =

∑
αw

αaα, w ∈
Cn−1, be the multi-index expansion of G. That is, each α is an (n−1)-tuple of
nonnegative integers, aα ∈ Cn for all α, and wα =

∏n−1
k=1 w

αk
k . Fix α such that

|α| =
∑n−1

k=1 αk ≥ 3 and ρ ∈ (0, 1)n−1 such that ‖ρ‖ < 1/2. Now for r ∈ (0, 1),
let z ∈ Cn be such that z1 = r and |zk| = ρk−1

√
1− r2 for 2 ≤ k ≤ n. With

wk = zk+1/(1− r) for 1 ≤ k ≤ n− 1, we use the assumption |α| ≥ 3 and some
straightforward calculations involving (4.1) (with A = 0) to see that

wαaα =

∫
[0,2π]n−1

e−i〈θ,α〉f(z1, z2e
iθ1 , . . . , zne

iθn−1) dm(θ),

where m ∈ P ([0, 2π]n−1) is normalized Lebesgue measure. The growth bound
(2.1) then implies

‖wαaα‖ ≤
∫
[0,2π]n−1

‖f(z1, z2e
iθ1 , . . . , zne

iθn−1)‖ dm(θ) <
1 + r

1− r
.

From the choice of w, we have

‖aα‖ρα <
(

1− r
1 + r

)|α|/2−1
.

Letting r → 1− gives aα = 0.
The next notable property of G is that if we write G(w) = (G1(w), Ĝ(w))

for w ∈ Cn−1, where G1 : Cn−1 → C and Ĝ : Cn−1 → Cn−1, then Ĝ = 0. That
is, G(Cn−1) ⊆ span{e1}. To argue this, let v ∈ ∂Bn−1, r ∈ (0, 1), ζ ∈ D, and λ
be a square root of ζ. Convexity then gives that

r

1− r
e1 + ζ

1 + r

1− r
G(v) =

f(r, λ
√

1− r2 v) + f(r,−λ
√

1− r2 v)

2
∈ f(B).

We now define the analytic g : D→ B by

g(ζ) = f−1
(

r

1− r
e1 + ζ

1 + r

1− r
G(v)

)
.
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We then have

g′(0) = Df(re1)
−1
(

1 + r

1− r
G(v)

)
= ((1− r2)G1(v), (1 + r)Ĝ(v)).

If h = ϕr ◦g (see (3.3)), then h(0) = 0, and hence by Schwarz’s lemma, we find∥∥∥∥∥
(
G1(v),

√
1 + r

1− r
Ĝ(v)

)∥∥∥∥∥ = ‖Dϕr(re1)g′(0)‖ = ‖h′(0)‖ ≤ 1.

Since r may be arbitrarily close to 1, it must be that Ĝ(v) = 0. Any number
of elementary arguments then give that Ĝ(w) = 0 for all w ∈ Cn−1.

Finally, we may now observe that if f =
∑∞

k=1 Pk is the homogeneous
polynomial expansion of f , then

P2(z) = (z21 +G1(ẑ), z1ẑ), z ∈ Cn.
As noted above, ‖P2‖ ≤ 1, which can be used to verify that ‖G1‖ ≤ 1/2 (where
the norm is in P2(n− 1)). The following theorem summarizes our discussion.

Theorem 4.1. Let n ≥ 2 and f ∈ K(B) such that {tu : t ∈ R} ⊆ f(B)
for some u ∈ ∂B. The limits

lim
t→∞

f−1(f(z) + tu), lim
t→−∞

f−1(f(z) + tu), z ∈ B,

each converge uniformly on compact subsets of B to constants on ∂B. If they
both converge to e1, then u1 ∈ iR. In the case that u = ±ie1, there exists
Q ∈ P2(n− 1) such that ‖Q‖ ≤ 1/2 and f = FQ.

5. A SUFFICIENT CONDITION FOR EXTREME POINTS OF
coK(B)

We begin the section with a lemma from [12].

Lemma 5.1. Let n ≥ 2 and Θ: P2(n−1)→ H(B,Cn) be given by Θ(Q) =
FQ. Then Θ is an affine homeomorphism onto its range when P2(n − 1) has
the norm topology and H(B,Cn) has the topology of uniform convergence on
compact subsets of B.

We denote closed balls in P2(n) centered at the origin by

Br(n) = {Q ∈ P2(n) : ‖Q‖ ≤ r}, r > 0.

From Lemma 5.1 and the development in earlier sections, we see that Θ affinely
and topologically embeds B1/2(n− 1) into K(B) when n ≥ 2. It is immediate
that a mapping FQ for Q ∈ B1/2(n− 1) is not an extreme point of K(B) (and
hence of coK(B)) if Q is not an extreme point of B1/2(n− 1). In the following
theorem from [12], we now will see that, conversely, the extreme points of
B1/2(n− 1) indeed produce extreme points of coK(B).
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Theorem 5.2. Let n ≥ 2. If Q is an extreme point of B1/2(n− 1), then
FQ is an extreme point of coK(B).

We note that mappings FQ as in the theorem were shown to be extreme
points of K(B) in [17]. That conclusion is subsumed in the above, stronger
result. We complete the section by outlining the proof of this fundamental
theorem with greater detail than we have given for previous results.

Let E be the set of extreme points of coK(B). By Montel’s theorem (in
conjunction with (2.1)), coK(B) is compact. Since the topology of uniform
convergence on compact subsets of B is metrizable, we have that E is a Borel
subset of K(B). (See [22].) By the Krein–Milman theorem, coE = coK(B).

Fix an extreme point Q of B1/2(n − 1). By Choquet’s theorem, there is
a µ ∈ P (E) such that

(5.1) `(FQ) =

∫
E

`dµ, ` ∈ H(B,Cn)∗,

where H(B,Cn)∗ is the topological (i.e., continuous) dual space of H(B,Cn).

For each k ∈ N, the function ak : H(B,Cn)→ Cn given by

ak(f) =
1

2πi

∫
C

f(ζe1)

ζk+1
dζ,

where C ⊆ D is a circle centered at 0, is linear and continuous. For f ∈
H(B,Cn), we have

f(ζe1) = f(0) +
∞∑
k=1

ζkak(f), ζ ∈ D.

By applying (5.1) in each coordinate, we obtain

e1 = ak(FQ) =

∫
E

ak dµ, k ∈ N.

Our work at the end of Section 2 makes clear that ‖ak(f)‖ ≤ 1 for all k ∈ N
and f ∈ E. Therefore the Borel measure νk defined by νk(A) = µ(a−1k (A)) for
Borel sets A ⊆ Cn is seen to lie in P (B), and we have

e1 =

∫
B
z dνk(z).

Since e1 is an extreme point of the compact, convex set B, it must be that
νk = δe1 by Bauer’s theorem (see [22]), meaning ak(f) = e1 for µ-almost every
f ∈ E. Thus if Ek = {f ∈ E : ak(f) 6= e1}, then

Ẽ = E \
∞⋃
k=1

Ek
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is a Borel set with µ(Ẽ) = 1.

For f ∈ Ẽ, we have

f(ζe1) =
ζ

1− ζ
e1, ζ ∈ D.

We therefore see that f satisfies the conditions of Theorem 4.1 with u = ie1.
Hence f = FRf

for some Rf ∈ B1/2(n− 1). Now the equation

FQ(z) =

∫
Ẽ

f(z) dµ(f), z ∈ B,

(using (5.1) coordinate-wise again) becomes

z

1− z1
+

Q(ẑ)

(1− z1)2
e1 =

z

1− z1
+

e1
(1− z1)2

∫
Ẽ

Rf (ẑ) dµ(f), z ∈ B.

If Θ is as in Lemma 5.1 and ν is the Borel measure defined by ν(A) = µ(Θ(A))
for Borel sets A ⊆ P2(n− 1), we have that ν ∈ P (B1/2(n− 1)) and

Q(w) =

∫
B1/2(n−1)

S(w) dν(S), w ∈ Cn−1.

Because Q is an extreme point of the compact, convex set B1/2(n − 1), an
argument using Bauer’s theorem once again gives ν = δQ. But then µ = δFQ

,
meaning FQ ∈ E.

6. THE EXTREME POINTS OF Br(n).

Theorem 5.2 makes clear that an explicit identification of the extreme
points of B1/2(n−1) will produce concrete extreme points of coK(B) for n ≥ 2.
For generality, we will consider the extreme points of Br(n) for r > 0 and n ∈ N.
To begin, consider the following subspace of Cn associated to Q ∈ P2(n):

V (Q) = span{u ∈ ∂B : |Q(u)| = ‖Q‖}.

Clearly, 1 ≤ dimV (Q) ≤ n. We now have the following from [17].

Theorem 6.1. Let Q ∈ P2(n). There is an orthonormal basis {v1, . . . , vm}
of V (Q) such that

(6.1) Q

 m∑
j=1

λjvj + w

 = ‖Q‖
m∑
j=1

λ2j +Q(w)

for all λ1, . . . , λm ∈ C and w ∈ V (Q)⊥.
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We briefly outline the main steps of the proof. There is a symmetric
bilinear functional L : Cn × Cn → C such that Q(z) = L(z, z) for all z ∈ Cn.
The proof begins by establishing the equality

(6.2) L(u, v) = ‖Q‖Re〈u, v〉

for all u, v ∈ ∂B such that Q(u) = Q(v) = ‖Q‖. The desired basis for V (Q)
can then be constructed using the Gram–Schmidt process. Specifically, if we
suppose {v1, . . . , vk} is an orthonormal set of vectors such that Q(vj) = ‖Q‖
for j = 1, . . . , k and there exists some u ∈ ∂B \ span{v1, . . . , vk} such that
Q(u) = ‖Q‖, then

vk+1 =
u−

∑k
j=1〈u, vj〉vj

‖u−
∑k

j=1〈u, vj〉vj‖
is orthogonal to v1, . . . , vk and can be shown using (6.2) to satisfy Q(vk+1) =
‖Q‖.

To establish the expansion (6.1), we show that for w ∈ V (Q)⊥, it must
be that L(vj , w) = 0 for all j = 1, . . . ,m. The result then follows by expanding
the left-hand side of (6.1) using L.

The following theorem from [17] can then be used in conjunction with
(6.1) to find the extreme points of Br(n) explicitly.

Theorem 6.2. Let r > 0. Then Q ∈ P2(n) is an extreme point of Br(n)
if and only if ‖Q‖ = r and V (Q) = Cn.

If V (Q) 6= Cn, then we use compactness to let

α = sup
u∈∂B∩V (Q)⊥

|Q(u)| < r.

If α > 0, choose ε > 0 such that 0 < (1 − ε)α < (1 + ε)α < r, and define
Q1, Q2 ∈ P2(n) by

Q1

 m∑
j=1

λjvj + w

 = r

m∑
j=1

λ2j + (1 + ε)Q(w),

Q2

 m∑
j=1

λjvj + w

 = r

m∑
j=1

λ2j + (1− ε)Q(w)

for λ1, . . . , λm ∈ C and w ∈ V (Q)⊥, where {v1, . . . , vm} is the orthonormal
basis given by Theorem 6.1. Then Q1, Q2 ∈ Br(n) and Q = (Q1 + Q2)/2. A
similar approach addresses the case α = 0.

Conversely, if V (Q) = Cn, let {v1, . . . , vn} be the orthonormal basis given
by Theorem 6.1 and suppose Q1, Q2 ∈ Br(n) and t ∈ (0, 1) are such that
(1 − t)Q1 + tQ2 = Q. Evaluating both sides at each vj shows that Q1(vj) =
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Q2(vj) = r for all j = 1, . . . , n. Following the proof of Theorem 6.1, we
conclude that Q1 = Q2 = Q.

We summarize as follows.

Corollary 6.3. Let r > 0 and Q ∈ P2(n). Then Q is an extreme point
of Br(n) if and only if there is an orthonormal basis {v1, . . . , vn} of Cn such
that

Q(z) = r

n∑
k=1

〈z, vk〉2, z ∈ Cn.

7. SOME, BUT ONLY SOME, EXTREME POINTS OF coK(B)

Let n ≥ 2 for this section. By U(n) we denote the group of unitary oper-
ators on Cn. Evidently, K(B) and coK(B) are invariant under the transform
f 7→ U∗ ◦ f ◦ U |B for a given U ∈ U(n). Therefore if f is an extreme point of
coK(B), then so is U∗ ◦ f ◦ U |B for each U ∈ U(n). Using this, we see from
Theorem 5.2 and Corollary 6.3 that any mapping of the form

f(z) =
1

1− 〈z, u〉
z +

∑n−1
k=1〈z, vk〉2

2(1− 〈z, u〉)2
u, z ∈ B,

where {u, v1, . . . , vn−1} is an orthonormal basis of Cn, is an extreme point of
coK(B). Let F denote the set of all mappings of this form. Then, of course,
coF ⊆ coK(B). Naturally, we wonder if equality holds. Unfortunately, it does
not.

To see this, define ` ∈ H(B,Cn)∗ by

`(f) =
3

πi

∫
C

〈f(ζe2), e1〉
ζ4

dζ =

〈
∂3f

∂z32
(0), e1

〉
,

where C ⊆ D is a circle centered at 0. For f ∈ F, let U ∈ U(n) and Q ∈
B1/2(n − 1) such that f = U∗ ◦ FQ ◦ U |B. Write Uz = (U1z, Ûz) for z ∈ Cn,
where U1 : Cn → C and Û : Cn → Cn−1. For u = U∗e1, we then have

〈f(z), e1〉 =
z1

1− 〈z, u〉
+

u1Q(Ûz)

(1− 〈z, u〉)2
, z ∈ B.

Then

|`(f)| = |u1||Q(Ûe2)|

∣∣∣∣∣ d3

dζ3
ζ2

(1− u2ζ)2

∣∣∣∣
ζ=0

∣∣∣∣∣ = 12|u1||u2||Q(Ûe2)|.

Note that |Q(Ûe2)| ≤ ‖Ûe2‖2/2 = (1− |u2|2)/2, and hence

|`(f)| ≤ 6|u2|(1− |u2|2)3/2 ≤
9
√

3

8
,
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the last inequality following from straightforward calculus.
Now let g ∈ coF. By Choquet’s theorem, there is µ ∈ P (F) such that

|`(g)| =
∣∣∣∣∫

F

`dµ

∣∣∣∣ ≤ 9
√

3

8
.

However, Theorem 3.1 gives that the mapping h(z) = z + z32e1/3, z ∈ B, is
such that h ∈ K(B). But `(h) = 2 then implies h /∈ coF.

8. EPILOGUE

As noted in Section 1, coK = R, and we conclude this note with a short
consideration of the relationship between coK(B) and the generalization of R
to B given by

R(B) =

{
f ∈ H(B,Cn) : f(0) = 0, Df(0) = I,

and Re〈f(z), z〉 > ‖z‖
2

2
for z ∈ B \ {0}

}
.

Here, we will see that coK(B) 6= R(B) when n ≥ 2, providing a negative answer
to a question posed in [13].

Recall that the family

M =

{
f ∈ H(B,Cn) : f(0) = 0, Df(0) = I,

and Re〈f(z), z〉 > 0 for z ∈ B \ {0}
}

provides a generalization of the Carathéodory class of functions p ∈ H(D)
satisfying p(0) = 1 and Re p(z) > 0 for z ∈ D. It is well known that M is
compact [8], and R(B) is the image of M under the continuous transformation

(8.1) f 7→ f + I|B
2

,

and hence R(B) is compact. In addition, R(B) is clearly convex.
In [13], we proved that K(B) ⊆ R(B), which immediately gives coK(B) ⊆

R(B). This result was actually known to T.J. Suffridge before its publication.
Of note, we actually showed that K(B) ⊆ G(B) ⊆ R(B), where G(B) is a family
of quasi-convex mappings introduced by Roper and Suffridge [25], who proved
the first inclusion. While it is clear that coG(B) ⊆ R(B), whether coG(B) and
R(B) are equal remains unknown.

That coK(B) 6= R(B) follows immediately from the following theorem
[12].
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Theorem 8.1. If n ≥ 2 and Q ∈ B1/2(n − 1), then FQ (as in (3.4)) is
not an extreme point of R(B).

The proof relies on showing that mappings of the form

fα(z) = FQ(z) +
αQ(ẑ)

(1− z1)2
(z − z1e1), z ∈ B,

lie in R(B) when α ∈ C is such that |α| ≤ 1/2. For Q 6= 0, we then have
FQ = (fα + f−α)/2 for 0 < |α| ≤ 1/2. The case Q = 0 is simple.

To examine this situation a little more, we let H0(D) = {f ∈ H(D) :
f(0) = 0}, n ≥ 2, and Q ∈ P2(n − 1) and define the operator ΨQ : H0(D) →
H(B,Cn) by

ΨQ[f ](z) =

(
f(z1) +

f(z1)
2Q(ẑ)

z21
,
f(z1)

z1
ẑ

)
, z ∈ B.

This is a modification of an extension operator introduced in [9] for families of
locally univalent mappings. We have the following from [12].

Theorem 8.2. Let n ≥ 2 and Q ∈ P2(n−1). Then ΨQ[R] ⊆ R(B) if and
only if ‖Q‖ ≤ 1/2.

To sketch the proof, let f ∈ R and F = ΨQ[f ]. The only significant
verification needed is that Re〈F (z), z〉 > ‖z‖2/2 for z ∈ B \ {0} when ‖Q‖ ≤
1/2. A calculation shows that this is implied by the inequality

|z1|‖ẑ‖2|ϕ(z1)|2 < ‖z‖2(2 Reϕ(z1)− 1), z ∈ B \ {0},

where ϕ(ζ) = f(ζ)/ζ for ζ ∈ D. If µ ∈ P (∂D) is such that (1.1) holds, we see
that this inequality is implied by

|z1|‖ẑ‖2
∫
∂D

dµ(u)

|1− uz1|2
< ‖z‖2

∫
∂D

1− |z1|2

|1− uz1|2
dµ(u), z ∈ B \ {0}.

This, in turn, follows from establishing |z1|‖ẑ‖2 < ‖z‖2(1−|z1|2) for z ∈ B\{0}
by a straightforward calculation.

The converse follows by showing that FQ = ΨQ[f ] /∈ R(B) when ‖Q‖ >
1/2, where f(ζ) = ζ/(1− ζ) for ζ ∈ D. This particular observation is notable
because FQ is an extreme point of coK(B) when Q is an extreme point of
B1/2(n − 1). Although this mapping is not an extreme point of R(B), we see
that any increase in the norm of Q will cause FQ to lie outside of R(B). This
at least suggests that FQ is a support point of R(B). This may, in fact, be true
for any Q ∈ P2(n − 1) with ‖Q‖ = 1/2. Either result would imply the same
property for the mapping

g(z) =
1 + z1
1− z1

z +
2Q(ẑ)

(1− z1)2
e1, z ∈ B,
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relative to the family M, using the transform (8.1).
To our knowledge, the mappings FQ, where Q is an extreme point of

B1/2(n− 1), are the only known extreme points of K(B), much less of coK(B),
when n ≥ 2, and we have seen there are more to be found. We look forward
to what future developments on this topic will bring.
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