
INDEXED VS. FIBRED STRUCTURES – A FIELD REPORT

UWE WOLTER

Communicated by Dan Timotin

The paper addresses applications of Category Theory in the area of diagram-
matic specifications. It outlines corresponding new categorical concepts, con-
structions and results. We discuss, especially, if and to what extend indexed
and fibred structures are appropriate conceptual tools to develop an adequate
formalization of diagrammatic specification techniques. The paper reflects the
author’s experiences and insights while working on a mathematical foundation
of Model Driven Software Engineering (MDSE), based on the concept of Gener-
alized Sketch, during the last 14 years.

AMS 2010 Subject Classification: 03G30, 18B25, 18C50, 18D30, 18F20, 68Q55.

Key words: indexed semantics, fibred semantics, Grothendieck construction, amal-
gamation, van Kampen square.

1. INTRODUCTION AND MOTIVATION

Initially, models were adopted in software development processes for
sketching the architectural design or documenting an existing implementation.
In contrast, the latest trend in software engineering regards models as first-class
entities of the development process. This trend has led to a branch of software
engineering, often called Model-Driven Software Engineering (MDSE), which
promotes modeling as the main activity of software development and pursues
the shift of paradigm from code-centric to model-centric.

In software engineering, a “model” is an abstract representation of certain
features and properties of an existing or anticipated software system. In this
paper, we use the term “specification”, instead of “model”, to refer to those
abstract representations. Following the tradition in logic and, especially, in
“model theory”, we use here the term “model” to denote interpretations of
specifications in a certain semantic universe.

A wide range of software models are “diagrammatic specifications”, i.e.,
graph-based structures, thus presheaf topoi appear as appropriate categorical
structures to build upon a mathematical foundation of MDSE. As a paradig-
matic example we consider in this paper the category Graph of (directed multi-)
graphs (see Section 4). Classical categorical sketches [1] do not meet the re-
quirements for an appropriate formalization of the wide range of diagrammatic

REV. ROUMAINE MATH. PURES APPL. 66 (2021), 3-4, 813–830

814 U. Wolter 2

specification techniques we are faced with in MDSE. Therefore we based the
development and applications of our Diagram Predicate Framework (DPF) [13,
14, 16, 20, 21, 22] on Generalized Sketches [3, 4, 15].

The original definitions of sketch semantics [4, 5, 15] are based on “in-
dexed semantics in the sense that semantics of sketches is given by interpre-
tations of sketches (specifications) in a semantic universe. In software engi-
neering, however, we are faced with “fibred semantics” where the semantics of
specifications is given by “instances” living in the same universe as the speci-
fications [3, 22, 23].

It came as a surprise for us that both paradigms, the “indexed” and
the “fibred” one, are by far not equivalent as well from the mathematical as
from the application point of view. Especially, the transition from “indexed
semantics”, omnipresent in mathematics and theoretical computer science, to
“fibred semantics” affords surprises.

In the paper we will try to shed some light on the relation between the
“indexed” and the “fibred” paradigm. We discuss some advantages and disad-
vantages of both paradigms especially with respect to applications in MDSE.
On the technical side, we focus on model theoretic aspects. In Section 5 we
discuss forgetful and free functors, while Section 6 is devoted to amalgamation.

2. INDEXED AND FIBRED STRUCTURES

2.1. Two paradigmatic examples - sets and categories

To begin with, we recapitulate indexed and fibred structures for two
paradigmatic concepts in mathematics - sets and categories.

Indexed Sets. Given a set I, an I-indexed set A = (Ai | i ∈ I) is a
family of sets indexed by the elements in I. An I-indexed map f : A → B
between two I-indexed sets is given by an I-indexed family f = (fi : Ai →
Bi | i ∈ I) of maps. The composition f ; g : A → C of two I-indexed maps
f : A → B and g : B → C is defined index-wise by the composition of maps
f ; g := (fi; gi : Ai → Ci | i ∈ I). The identity I-indexed map idA : A → A
on an I-indexed set A is given by an I-indexed family idA := (idAi | i ∈ I)
of identity maps. In such a way, I-indexed sets and I-indexed maps give as a
category at hand.

More abstractly, we can equivalently describe this category of I-indexed
sets as the functor category [P(I)→ Set] with Set the category of all sets and
total maps and P(I) the discrete category with I as its collection of objects.
P(I) indicates that this discrete category can be seen as the path category
generated by the graph with I as set of nodes and the empty set of edges.

3 Indexed vs. fibred structures 815

Fibred Sets. An I-fibred set (A, t) is given by a set A and a map
t : A → I. An I-fibred map g : (A, t) → (B, u) between two I-fibred sets
(A, t), (B, u) is given by a map g : A → B such that g;u = t. The com-
position f ; g : (A, t) → (C, v) of two I-fibred maps f : (A, t) → (B, u),
g : (B, u) → (C, v) is given by the composition f ; g : A → C of maps in
Set. The identity map idA : A → A provides obviously the identity I-fibred
map id(A,t) : (A, t)→ (A, t) for any I-fibred set (A, t). In such a way, we get a
category of I-fibred sets and I-fibred maps. More abstractly, this category is
nothing but the slice category Set/I (see [1] or [18]).

Indexed Categories. Given a small category I, we consider as I-indexed
categories arbitrary functors C : I→ Cat with Cat the category of all small cat-
egories. That is, I-indexed categories are morphisms in the category CAT. CAT
denotes the category with objects all categories like Set, Cat, . . . , [P(I)→ Set],
Set/I, . . . and all functors between them. I-indexed functors are natural trans-
formations C⇒ D : I→ Cat thus we consider the functor category [I→ Cat] as
our category of I-indexed categories.

Fibred Categories (Fibrations). We follow Barr & Wells [1] and con-
sider an I-fibred category (fibration) to be given by a small category E and
a functor P : E → I satisfying the corresponding axioms concerning “cartesian
arrows”. Our category Fib(I) of I-fibred categories is the full subcategory of the
slice category Cat/I with objects all I-fibred categories.

2.2. Indexed or fibred – An informal discussion

Whenever we want or need to define structures, we do have the choice
between the “indexed” and the “fibred” way.

Signatures. Algebraic signatures, for example, can be defined in the
“indexed way”: A signature Σ = (S,OP) is given by a set S of sort symbols
and an (S∗ × S)- indexed set OP = (OPw,s | w ∈ S∗, s ∈ S) of operation sym-
bols. Or, we can chose the “fibred way”: A signature Σ = (S,OP, α) is given
by a set S of sort symbols, a set OP of operation symbols and an arity function
α : OP → (S∗ × S). The “indexed way” is not our preferred choice. Usually,
we do have only finite many operation symbols thus infinite many of the sets
OPw,s will be just empty. Moreover, the “indexed way” allows “overloading”
of operation symbols since the sets OPw,s are not assumed to be disjoint. If
we want to ensure that all Σ-terms do have a unique sort, we have to resolve
this overloading when defining Σ-terms! The carriers of Σ-algebras, however,
are usually defined in an “indexed way”, namely as S-indexed sets.

Indexed mindset. A high percentage of mathematicians and theoreti-

816 U. Wolter 4

cal computer scientists are growing up in an “indexed mindset”. We learn that
syntax and semantics should be strictly separated. Syntactic entities live on
one side and are interpreted in a chosen “semantic universe” on the other side,
like the category Set of sets and total maps , Par of sets and partial maps, Rel
of sets and binary relations or PO of partial orders, for example. We call this
the indexed semantics or semantics-as-interpretation paradigm. There
is a huge tower of theory build upon this paradigm. As areas, relying on this
paradigm, we mention only a few: Universal Algebra, Algebraic Specifications,
Model Theory, Functorial Semantics, Denotational Semantics, Categorical Al-
gebra. Also the concept of Institution [2, 8] reflects to a great extend the
semantics-as-interpretation paradigm (compare Section 5).

Software engineering. There are, at least, two reasons why indexed
semantics may be not fully adequate to formalize certain concepts, structures
and constructions in software engineering. First, it doesn’t reflect the “model-
instance pattern” omnipresent in software engineering. An Object Diagram,
for example, is an instance of a Class Diagram in the sense that there is a graph
homomorphism from the underlying graph of the Object Diagram into the un-
derlying graph of the Class Diagram, i.e., the Object Diagram is typed (fibred)
over the Class Diagram. We call this kind of fibred approach to semantics the
fibred semantics or semantics-as-instance paradigm. Second, indexed se-
mantics is a rigid two-level approach with only one abstraction level – syntax.
In software engineering, as in nearly any area in science, life and industry, we
are, however, faced with arbitrary deep hierarchies of abstractions. In contrast
to the semantics-as-interpretation pattern, the semantics-as-instance pattern
can be neatly iterated and offers an appropriate formalization of arbitrary deep
hierarchies of abstractions [14, 21, 22].

This observation triggered, more than a decade ago, our decision to de-
velop a fibred semantics for Generalized Sketches [4, 5, 15], and we made some
progress in this direction [3, 21, 22, 23, 24, 25]. Our initial idea to achieve the
shift of paradigm by a simple translation of constructions and results from the
indexed setting to the fibred one, was quite naive as we will see.

3. FROM INDEXED TO FIBRED SEMANTICS

In this section we outline and discuss transitions between indexed and
fibred semantics.

3.1. Two paradigmatic examples - sets and categories

Indexed vs. Fibred Sets. For each I-indexed set A : P(I) → Set
the disjoint union construction provides an I-fibred set (Gr(A), prA),where

5 Indexed vs. fibred structures 817

Gr stands for “Grothendieck construction” (see the next paragraph), with
Gr(A) := {〈i, a〉 | i ∈ I, a ∈ A(i)} and prA : Gr(A)→ I given by prA(〈i, a〉) :=
i. The assignments A 7→ (Gr(A), prA) extend to a functor GrI : [P(I)→ Set]→
Set/I.

The other way around, the formation of pre-images (fibers) provides for
any I-fibred set (B, t) an I-indexed set Fb(B, t) : P(I)→ Set with Fb(B, t)(i) :=
t−1(i) = {b ∈ B | t(b) = i}. The assignments (B, t) 7→ Fb(B, t) extend to a
functor FbI : Set/I → [P(I) → Set]. For any set I the functors GrI and FbI
establish an equivalence between the categories [P(I)→ Set] and Set/I.

Indexed vs. Fibred Categories. For categories the equivalence breaks
apart. The generalization of the disjoint union construction is called
Grothendieck construction [1, 17] and transforms any I-indexed category
C : I → Cat into an I-fibred category prI : Gr(I) → I. prI is a split fibration
[1] and the generalization of the fiber-construction gives us only an equiva-
lence between [I → Cat] and the full subcategory of Cat/I of all split fibra-
tions. For arbitrary fibrations the fiber-construction provides, in general, only
pseudo-functors and pseudo-natural transformations thus the corresponding
Grothendieck construction gives us only “strict 2-equivalences of 2-categories”
at hand. Both kinds of equivalences are not of much help in our applications
(see Section 4).

3.2. A more general picture

We don’t distinguish in this paper between signatures and specifications.
We just assume that we do have a category Spec of specifications.

Indexed Semantics. To define an indexed semantics for specifications,
we choose, first, a semantic universe SU. To interpret specifications, we have
to find, second, a meta-universe MU such that there exists an embedding
functor in : Spec → MU and an object ex(SU) extracted from the semantic
universe SU. As models of a specification Sp we choose all or only certain
morphisms m : in(Sp)→ ex(SU) in MU. Third, we need a mechanism, relying
on MU, SU and the extraction process for ex(SU), allowing us to turn for each
specification Sp the collection of chosen morphisms m : in(Sp)→ ex(SU) into
a category Mod(Sp) of all models of Sp in SU.

In case of indexed sets, we do have Spec = Set, MU = CAT and a functor
in : Set → CAT assigning to each set I the corresponding discrete category
P(I) in CAT. Further, we have ex(SU) = SU = Set and use the mechanism
“functor category” to define model categories Mod(I) := [P(I)→ Set].

In case of indexed categories, we chose Spec = Cat, MU = CAT and a

818 U. Wolter 6

functor in : Cat→ CAT embedding the category of small categories into CAT.1

Further, we chose ex(SU) = SU = Cat and used again the mechanism “functor
category” to define model categories Mod(C) := [in(C)→ Cat].

Fibred semantics. To define a fibred semantics for specifications, we
have to choose, first, a common universe CU together with an embedding
functor em : Spec→ CU. As category Inst(Sp) of all instances of a specifica-
tion Sp we choose, second, a subcategory of the slice category CU/em(Sp).

In case of fibred-sets, we have Spec = CU = Set and em = idSet, while
Inst(I) := Set/I for any set I. For indexed categories, we chose Spec = CU =
Cat and em = idCat, while Inst(I) is chosen as the full subcategory of Cat/I
with objects all I-fibred categories.2

Grothendieck construction. We abstract from the two examples in
Subsection 3.1. Transforming an indexed semantics into a fibred semantics
means that we have a construction transforming any model m : in(Sp) →
ex(SU) into an instance of Sp, i.e., into an object Gr(m) together with a
morphism prm : Gr(m) → em(Sp). Moreover, this construction should extend
to morphisms, in such way, that we get for each specification Sp a functor
from Mod(Sp) into Inst(Sp). We will keep the name “Grothendieck” for those
constructions.

4. INDEXED AND FIBRED SEMANTICS FOR GRAPHS

As a non-trivial, but still simple, example of “diagrammatic specifica-
tions” we consider as our category Spec of specifications the category Graph
of small (directed multi) graphs. A (small) graph G = (GV , GE , sc

G, tgG) is
given by a collection (set) GV of nodes, a collection (set) GE of edges and two
maps scG, tgG : GE → GV . A morphism ϕ = (ϕV , ϕE) : G → K between
graphs is given by two maps ϕV : GV → KV , ϕE : GE → KE such that
scG;ϕV = ϕE ; scK and tgG;ϕV = ϕE ; tgK . Composition of graph morphisms
is defined by componentwise composition of maps. Note, that the category
Graph of small graphs is isomorphic to the presheaf topos [MG→ Set] with MG

(“Metamodel of Graphs”) the category: E
sc ,,
tg

22idE 88 V idVff .

By GRAPH we denote the category containing as objects, especially, the
underlying graphs of categories like Set, Cat, Graph, Par, Rel, . . . , [P(I)→ Set],

1We consider an object C in Cat and its counterpart in(C) in CAT as distinct but isomor-
phic mathematical entities! The isomorphisms between C and in(C) live in the same category
as CAT and the functor in. We consider this category as a “regulative idea” ([18],p. 5).

2Examples for non-trivial cases “ex(SU)” and “em” are discussed in Section 4.

7 Indexed vs. fibred structures 819

Set/I,

Indexed semantics. Often, nodes in diagrams in software engineering
are interpreted as sets while edges represent maps. Therefore, we may choose
SU := Set. Further, we choose MU := GRAPH, in : Graph → GRAPH the
embedding of Graph into GRAPH and ex(Set) := gr(Set) the underlying graph
of the category Set.3 As collection of models of a small graph G we can choose
then the whole hom-set GRAPH(in(G), gr(Set)). Fortunately, we can borrow
the composition in Set to define morphisms between those models: A natural
transformation α : m ⇒ n between two models (interpretations) m,n :
in(G) → gr(Set) is given by a family {αv : mV (v) → nV (v) | v ∈ in(G)V } of
morphisms in Set such that mE(e);αu = αv;nE(e) for all edges e : v → u in
in(G).

in(G)

m

**

n

44 gr(Set)

v u mV (v) mV (u)

nV (v) nV (u)

• • • •

e //
mE(e) //

nE(e) //

αv

��

αu

��

m //

n

&&

=

α

��

In the usual way, natural transformations between interpretations define
a category on the hom-set GRAPH(in(G), gr(Set)). We call those categories
interpretation categories and denote them by [in(G) → Set] (see [27]). In
other words: We use the mechanism “interpretation category” to define our
categories of models Mod(G) := [in(G)→ Set].4

There are cases where edges in a diagram represent partial maps or binary
relations. Then we choose simply SU := Par or SU := Rel, respectively, instead
of SU := Set. In other cases we may interpret nodes as graphs and edges as
graph morphisms thus we have to choose SU := Graph.

3The notation gr for the underlying graph of a category should not be confounded with
Gr, which stands for the Grothendieck construction.

4Barr & Wells [1] use the same mechanism to define categories of models of sketches only
that they don’t coin explicitly the concept “interpretation category”.

820 U. Wolter 8

Interpretation vs. functor categories. Of course, we could also use
the mechanism ”functor category” to define indexed semantics in an equivalent
way. We choose MU := CAT and in : Graph → CAT assigns to each small
graph G the corresponding path category P(G). Categories of models are then
functor categories [P(G) → SU]. This is, however, not the appropriate way
to propagate applications of category theory in software engineering! We can
not tell a software engineer first you have to transform your diagram into a
category before you can make a meaning out of it. Moreover, a finite diagram
G may generate an infinite path category P(G) and infinite structures can not
be handled by a computer. A computer can only handle finite representations
of infinite structures!

Fibred semantics. A fibred semantics is simply obtained by choosing
CU := Graph, em := idGraph and Inst(G) := Graph/G for any small graph G.

Grothendieck construction. For any model m : in(G) → gr(Set) we
construct a small graph Gr(m) as follows:

• nodes: 〈v, x〉 with v a node in G and x ∈ mV (v)

• arrows: 〈e, x〉 : 〈v, x〉 → 〈u, y〉 with e : v → u an edge in G and
y = mE(e)(x).

We obtain a graph morphism prm : Gr(m) → G with prm(〈v, x〉) := v for
any node 〈v, x〉 in Gr(m) and prm(〈e, x〉) := e for any arrow 〈e, x〉 in Gr(m).
This construction extends to model morphisms and we get a functor from
Mod(G) = [in(G)→ Set] into Inst(G) = Graph/G for any small graph G.

The outlined Grothendieck construction generalizes straightforwardly to
the cases SU = Par or SU = Rel where we get functors from [in(G) → Par] or
[in(G) → Rel], respectively, into Graph/G. In other word, our choice to take
as fibred semantics the whole slice category Inst(G) = Graph/G means that
we include also the cases SU = Par and SU = Rel on the indexed side.

In case SU = Graph, however, the Grothendieck construction doesn’t pro-
vide a functor into Graph/G but into Graph/R(G) where R(G) is the reflexive
graph generated by G [23]. So, in this case we have to vary the fibred semantics
by choosing a non-trivial functor em : Graph→ Graph with em(G) := R(G).

5. FORGETFUL AND FREE FUNCTORS FOR GRAPHS

Fibred semantics gives us a neat formalization of metamodelling at hand
but doesn’t behave as nice as indexed semantics when it comes to important
“model theoretic” constructions. In this section we discuss forgetful and free
functors for indexed and fibred semantics of graphs.

9 Indexed vs. fibred structures 821

5.1. Forgetful functors

Forgetful functors are inherent to indexed semantics while it is more tech-
nically involved to define forgetful functors for fibred semantics.

Indexed semantics. Forgetful functors are simply provided by pre-
composition in GRAPH. Any graph homomorphism ϕ : G → H induces a
forgetful functor Mod(ϕ) : Mod(H) → Mod(G) with Mod(ϕ)(n) := in(ϕ);n
for any H-model n : in(H) → gr(Set). Note, that natural transformations
between interpretations are pre-composed with a graph morphism in the same
way as natural transformations between functors are pre-composed with a func-
tor. Since composition in GRAPH is associative, the assignments G 7→ Mod(G)
and ϕ 7→ Mod(ϕ) define a (model) functor Mod : Graphop → CAT.

in(G)
in(ϕ) //

in(ϕ);n $$

in(H)

n

��

=

J|ϕ

ι|ϕ

��

ϕ|ι //

pb

J

ι

��
gr(Set) G

ϕ // H

Fibred semantics. First, we have to decide for an arbitrary but fixed
choice of pullbacks in Graph. Then, any graph morphism ϕ : G→ H induces a
forgetful functor Inst(ϕ) : Inst(H)→ Inst(G) with Inst(ϕ)(ι) := (J|ϕ, ι|ϕ)
for any instance ι : J → H of H, where (J|ϕ, ι|ϕ) is given by the chosen pull-
back of ι along ϕ (see the right-hand diagram above). The construction of
chosen pullbacks is, in general, only compositional “up to isomorphism” thus
the assignments G 7→ Inst(G) and ϕ 7→ Inst(ϕ) will, in general, only define a
pseudo (instance) functor Inst : Graphop → CAT [3, 17].

5.2. Free functors

Concerning free functors, we face exactly the opposite picture. Free func-
tors are inherent to fibred semantics while it is more technically involved to
define free functors for indexed semantics.

Fibred semantics. Any graph homomorphism ϕ : G → H induces by
simple post-composition, a (change-of-base) functor Ch(ϕ) : Inst(G) →
Inst(H), with Ch(ϕ)(I, δ) := (I, δ;ϕ) for any G-instance (I, δ). Ch(ϕ) is left-
adjoint to Inst(ϕ) : Inst(H)→ Inst(G). The assignments G 7→ Inst(G) and

822 U. Wolter 10

ϕ 7→ Ch(ϕ) define a functor Ch : Graph→ CAT.

in(G)
in(ϕ) //

m
$$

in(H)

Fr(ϕ)(m)

��

I

δ
��

δ;ϕ

��
gr(Set) G

ϕ //
=

H

Indexed semantics. To obtain for any graph homomorphism ϕ : G →
H a free functor Fr(ϕ) : Mod(G) → Mod(H), i.e., a functor left-adjoint to
the forgetful functor Mod(ϕ) : Mod(H) → Mod(G), we have to construct for
any G-model m : in(G) → gr(Set) an H-model Fr(ϕ)(m) : in(H) → gr(Set)
together with a natural transformation ηm : m ⇒ in(ϕ); Fr(ϕ)(m) satisfying
the corresponding universal property. If we interpret a graph G as an algebraic
signature declaring a set GV of sorts and a unary operation e : v → u for each
edge in GE , we can describe Fr(ϕ)(m) as the “H-algebra freely generated by
the G-algebra m along the signature morphism ϕ”. The construction of “free
algebras” is only compositional “up to isomorphism” thus the assignments
G 7→ Mod(G) and ϕ 7→ Fr(ϕ) define, in general, only a pseudo functor Fr :
Graph→ CAT.

Be aware, that the “free algebra construction” is not fully reflecting what
we do in the fibred setting. In the fibred setting, we have (δ;ϕ)−1(v) = ∅ for
all nodes v ∈ HV \ ϕV (GV) while Fr(ϕ)(m)V (v) will be not empty if there is
a node u ∈ GV with mV (u) 6= ∅ and a chain of edges in H from ϕV (u) to v.
To mimic the effect of change-of-base functors, we can choose, e.g., SU := Par
since the construction of “free partial algebras along a signature morphism”
doesn’t introduce any new definedness for partial operations [19, 26].

6. AMALGAMATION FOR GRAPHS

6.1. Compositionality in general

We consider an arbitrary category Spec of specifications and specification
morphisms together with a ”semantic” functor Str : Specop → CAT assigning
to each specification Sp a category Str(Sp) of structures, like interpretations or
instances, for example, complying with Sp and assigning to each specification
morphism ϕ : Sp1 → Sp2 a (forgetful) functor Str(ϕ) : Str(Sp2)→ Str(Sp1).

Compositionality is an important and well-known concept in theoretical
computer science [7]. It is a method to uniquely and correctly compose (over-
lapping) semantics of components of an already composed specification. The
composition of specifications is usually carried out with the help of colimits,
i.e., the category Spec is assumed to be finitely cocomplete. E.g. in the left

11 Indexed vs. fibred structures 823

diagram in the figure below specifications Sp1 and Sp2 are related via the com-
mon part Sp0 whose role as subspecification of Sp1 and Sp2 is formalized with
specification morphisms ϕ and ψ, resp. Syntactic composition is carried out
by constructing the pushout of ϕ and ψ.

Compositionality means that the “semantic” functor Str is continuous,
i.e., transforms colimits in Spec into limits in CAT. Especially, the pushout (1)
of specifications should be transformed into a pullback (2) of categories.

Sp0
ϕ //

ψ

��
(1)

Sp1

ψ∗

��

Str(Sp0)

(2)

Str(Sp1)
Str(ϕ)oo A0

∃!

A1
�Str(ϕ)oo

Sp2
ϕ∗
// Sp Str(Sp2)

Str(ψ)

OO

Str(Sp)

Str(ψ∗)

OO

Str(ϕ∗)
oo A2

_
Str(ψ)

OO

A
_
Str(ψ∗)

OO

�
Str(ϕ∗)
oo

To achieve compositionality for pushouts, we need amalgamation of struc-
tures: For any structures A0, A1, and A2 complying to Sp0, Sp1, and Sp2
resp., which are related to each other according to the action of the functor
Str, i.e., Str(ϕ)(A1) = A0 = Str(ψ)(A2), there has to exist a unique structure
A, complying to Sp, such that Str(ψ∗)(A) = A1 and Str(ϕ∗)(A) = A2.

The most frustrating surprise in our project “fibred semantics for Gen-
eralized sketches” was that amalgamation of instances turned out to be quite
complicated while amalgamation of models is nearly trivial. In the remaining
part of this section, we discuss this issue in more detail and outline some new
results.

6.2. Model amalgamation

For our sample formalism with Spec = Graph and Str the model functor
Mod : Graphop → CAT, defined in Subsection 5.1, we get amalgamation of
models for free. The embedding in : Graph → GRAPH preserves pushouts
thus we get for arbitrary pushouts in Graph:

in(K)
in(ϕ) //

in(ψ)
��

po

in(G)

in(ψ∗)
�� m

��

=in(H)
in(ϕ∗)//

n //

in(C)

k
$$

=

gr(Set)

There exists for any coherent pair
of models, i.e., for any m : in(G) →
gr(Set) and n : in(H) → gr(Set)
with Mod(ϕ)(m) = in(ϕ);m =
in(ψ);n = Mod(ψ)(n), a unique
model k : in(C) → gr(Set) such
that Mod(ϕ∗)(k) = in(ϕ∗); k = n and
Mod(ψ∗)(k) = in(ψ∗); k = m .

824 U. Wolter 12

6.3. Model amalgamation in view of the Grothendieck construction

To find out, what amalgamation of instances could be, we analyze the
translation of model amalgamation into the fibred setting by means of the
Grothendieck construction.

Model reduction into pullback. For any graph morphism ϕ : H → G
and any interpretation m : in(G)→ gr(Set) the assignments

• ϕm,V (〈v, x〉) = 〈ϕV (v), x〉 for any node 〈v, x〉 in Gr(in(ϕ);m) and

• ϕm,E(〈e, x〉) = 〈ϕE(e), x〉 for any arrow 〈e, x〉 in Gr(in(ϕ);m)

define a graph morphism ϕm : Gr(in(ϕ),m)→ Gr(m) such that the following
right diagram is a pullback diagram in Graph (compare ex. 1.10.4 in [10])

in(H)
in(ϕ) //

in(ϕ);m %%

in(G)

m

��

=

Gr(in(ϕ);m)
ϕm //

prϕ;m

��
pb

Gr(m)

prm

��
gr(Set) H

ϕ // G

Coherent models into pullback-pushout half cube. In such a way,
the Grothendieck construction transforms any coherent pairs m : in(G) →
gr(Set), n : in(H)→ gr(Set) of models into a pullback-pushout half cube
where l := in(ϕ);m = in(ψ);n.

in(K)
in(ϕ) //

in(ψ)

��
po

l

((

in(G)

in(ψ∗)

�� m

��

=in(H)
in(ϕ∗)

//

n //

in(C)

=

gr(Set)

Gr(l)
ϕm //

prl

��

ψn

{{
pb

Gr(m)

prm

��

Gr(n)

prn

��

pb

K
ϕ //

ψ

zz
po

G

ψ∗

{{
H

ϕ∗
// C

Mediator into pullback completion. Finally, the existence of a unique
mediating morphism k is turned into the existence of a pullback completion
of the pullback-pushout half cube. That is, we get a commutative cube where
also the front and the right faces are pullbacks. Note an important differ-
ence between the indexed and the fibred setting: While the mediator is unique
“on the nose” a corresponding pullback completion will be only unique “up to
isomorphism”.

13 Indexed vs. fibred structures 825

in(K)
in(ϕ) //

in(ψ)

��
po

in(G)

in(ψ∗)

�� m

��

=in(H)
in(ϕ∗) //

n //

in(C)

k

$$
=

gr(Set)

Gr(l)
ϕm //

prl

��

ψn

{{

Gr(m)

prm

��

ψ∗
k

zz
Gr(n)

ϕ∗
k //

prn

��

Gr(k)

prk

��

K
ϕ //

ψ

zz
po

G

ψ∗

yy
H

ϕ∗
// C

6.4. Instance amalgamation

Instance amalgamation. Summarizing our analysis in Subsection 6.3,
we can conclude that instance amalgamation means to construct pullback com-
pletions for pullback-pushout half cubes in the common universe CU, i.e., Graph
in our case. We have no idea how to do this in arbitrary categories CU. If CU
is a topos, however, we know that for a pullback completion of a pullback-
pushout half cube the resulting top square becomes also a pushout ([9] 15.3).
So, in topoi, the only chance to get a pullback completion is to construct a
pushout of the span of morphisms on top of the cube and to hope that the
resulting commutative front and right faces are pullbacks. We consider this as
the most reasonable procedure to construct amalgamation of instances.

Counterexample. Also for the cases SU = Par or SU = Rel we do have
trivially model amalgamation for arbitrary pushouts in Spec = Graph and the
corresponding Grothendieck constructions transform also in these cases coher-
ent pairs of models into pullback-pushout half cubes in CU = Graph that do
have a pullback completion. There are, however, pullback-pushout half cubes
that are not obtained by any variant of the Grothendieck construction and thus
may not have pullback completions. We consider the two examples in Fig. 1
of pullback-pushout half cubes in Set. The pushout of the span of maps on
the top of the left example produces a set with two elements and it is easy to
check that the resulting front and right faces are pullbacks. Intertwining the
two equivalences in I, obtained as the kernels of the two maps a‘ and r‘, re-
spectively, gives us the right example. On the one hand, pullback complements
for the right and the front face with sets over S containing two elements will
always yield a non-commutative top face. On the other hand, the pushout on
the top face creates a singleton set and the resulting front and left squares are
not pullbacks.

Amalgamable instances. After facing the hard fact that amalgamation
of coherent instances will be not possible in very many cases, while amalgama-

826 U. Wolter 14

x

y

z

w

xz

wy

a

γ

yx zwr

xyzw

1:x

2:x

1:y

2:y

1:z

2:z

1:w

2:w1:xz
2:xz

1:wy
2:wy

τ

1:yx

2:yx

1:zw

2:zw
a'

r'

β

a

r

x

y

z

w

xz

wy

a

γ

yx zwr

xyzw

1:x

2:x

1:y

2:y

1:z

2:z

1:w

2:w12:xz
21:xz

1:wy
2:wy

τ

1:yx

2:yx

1:zw

2:zw
a'

r'

β

a

r

Figure 1 – Existence and non-existence of pullback completions.

tion of coherent models is always possible, two questions arise naturally. First,
we may ask for a characterization of those pairs of coherent instances that can
be amalgamated. Or, in other words: What pullback-pushout half cubes in
CU do have a pullback completion?

We are not able to give an answer for arbitrary categories or arbitrary
topoi CU. However, for arbitrary presheaf topoi, i.e., for functor categories
CU = [C → Set] with C a small category, a necessary and sufficient character-
ization is given in [25]. Intuitively, this characterization says that a pullback-
pushout half cube does have a pullback completion if, and only if, the top span
of morphisms is a multiple copy of the bottom span of morphisms (compare the
left example in Fig. 1). In other words: There are no effects on the semantic
level that are not reflected on the syntax level.

6.5. Van Kampen squares and van Kampen colimits

Second, it is important to know for what bottom pushouts in CU all (!)
pullback-pushout half cubes do have a pullback completion? More intuitively:
For what bottom spans of morphisms the intertwining of equivalences, we have
seen in the counter example in Fig. 1, is not possible? It was a kind of bitter
surprise for the author that we ended up, in such a way, with the question:
What are the van Kampen squares in CU?

Van Kampen squares. A pushout (1) is a van Kampen square if,
for any commutative cube (2) with (1) in the bottom and where the back and
the left faces are pullbacks, the following equivalence holds:

The top face is pushout iff the front and right faces are pullbacks:

15 Indexed vs. fibred structures 827

A′
h′ //

a

��

f ′

~~

B′

b

��

g′

~~
A h //

f

��

B

g

��

C ′
k′ //

c

��

D′

d

��

(2)

(1) A h //

f

~~

B

g

~~
C k // D C k // D

Adhesive categories. A sufficient condition for van Kampen squares
in arbitrary topoi is that one of the morphisms f or h in the square above is
monic. This observation gave rise to the concept of Adhesive Category coined
by Lack and Sobociński [12] and used, e.g., to systematize and generalize essen-
tial concepts, constructions and results in the area of Graph transformations
[6].

Unique path condition. In practice, we meet, however, situations
where none of the two morphisms in the span is monic, but we still need amal-
gamation of all coherent pairs of instances.

In [25] we give a sufficient and necessary characterization of van Kampen
squares in arbitrary presheaf topoi by means of a “unique path condition”.
Referring to our counter example (see Fig. 2), the unique path condition means
informally that the kernel of a and the kernel of r should not interact in such
a way that there are two essentially different ways to find out that two items
in L have to be identified by a; r = r; a. In the counter example we have,
e.g., the two distinct alternating paths x

a→ xz
a← z

r→ zw
r← w

a→ wy
a← y

and x
r→ yx

r← y identifying x and y. Two variations of the example, where

x

y

z

w

xz

wy

a

γ

yx zwr

xyzw

1:x

2:x

1:y

2:y

1:z

2:z

1:w

2:w12:xz
21:xz

1:wy
2:wy

τ

1:yx

2:yx

1:zw

2:zw
a'

r'

β

a

r

A L
aoo r // R

x �

!!

;

}}
xz y

� //<

}}

yx

wy z � //�

aa

zw

w
;

==

�

aa

Figure 2 – Example – unique path condition not satisfied.

the unique path condition is satisfied while still producing a singleton set as
pushout object on the bottom, are pictured in Fig. 3.

828 U. Wolter 16

x�

<

}}
xz y � //=

~~

yx

wy z � //�

``

z

x�

!!

;

}}
xz y

� //<

}}

yx

wy z � //�

aa

z

w � //�

aa

w

Figure 3 – Example – unique path condition satisfied.

Van Kampen colimits We asked then if and how the results in [25]
could be generalized. We introduce in [11] the concept of van Kampen colimit
and give a sufficient and necessary characterization of van Kampen colimits in
arbitrary presheaf topoi by means of a generalized unique path condition.

7. CONCLUDING REMARKS

What did we learned during our journey from traditional indexed to fibred
semantics and from traditional specifications to diagrammatic specifications?
What insights and recommendations we tried to communicate in this paper?

First, we shouldn’t insist that the indexed approach is the only reasonable
way to define semantics for formal specifications. We have to be aware that the
fibred approach can be more appropriate in some situations, especially, when
it comes to software engineering.

Second, we have to understand the essential differences between the in-
dexed and the fibred approach as well as the peculiarities of the fibred approach
with regard to model-theoretic constructions and properties. We hope that our
insight “fibred amalgamation = van Kampen” is helpful in this respect. As
another small observation, not discussed in the paper, we want to mention that
the translation of sentences along signature morphisms in an institution is of-
ten based on free constructions thus translation of sentences is more complex
in the indexed setting while it is simple in the fibred setting.

We are convinced that we will need, at the end, a flexible and neat com-
bination of indexed and fibred concepts and techniques to develop appropriate
specification frameworks for MDSE. In other cases, like Hoare logic, for exam-
ple, the best way to deal with semantics may be to use both fibred and indexed
structures, in a way that the structural features of a framework are presented
in an indexed manner and the features of deduction in a fibred one [24].

By the way, during our journey we have been missing sadly a comprehen-
sive compendium on slice and comma categories.

17 Indexed vs. fibred structures 829

Third, it may be reasonable, at some points, to weaken or to vary tradi-
tional categorical concepts and constructions to reach out for new applications,
in a similar way as we weakened the concept “functor category” to the concept
“interpretation category” and varied the Grothendieck construction.

We want to close the paper with a short reflection about the peculiar-
ities of the fibred approach. Indexed amalgamation is easy since it relies on
very strong assumptions about the identity of mathematical entities. All the
categories Set, Rel, Graph, Cat, . . . and thus also [I → Cat], Set/I, . . . are, for
example, build upon “extensional equality”. The Grothendieck construction,
however, tears us out from this ideal world by producing “copies” of mathemat-
ical entities, and there are no mechanisms or tools available within the fibred
setting enabling us to control that two “copies” of the “same entity” behave
in the “same way”. They just become independent entities of their own.

Acknowledgments. The author wishes to thank the organizers of the special ses-

sion “Mathematical Structures in Formal System Development and Analysis ” of the Ninth

Congress of Romanian Mathematicians in 2019 for inviting him to give a talk at the congress

and to write this paper.

REFERENCES

[1] M. Barr and C. Wells, Category Theory for Computing Science. Series in Computer
Science, London, Prentice Hall International, 1990.

[2] R. Diaconescu, Institution-Independent Model Theory. 1sted., Birkhäuser Basel, 2008.

[3] Z. Diskin and U. Wolter, A Diagrammatic Logic for Object-Oriented Visual Modeling.
Electronic Notes in Theoretical Computer Science 203 (2008), 6, 19–41.

[4] Z. Diskin, Databases as diagram algebras: Specifying queries and views via the graph-
based logic of sketches. Tech. Rep. 9602 , Frame Inform Systems, Riga, Latvia,
http://www.cs.toronto.edu/ zdiskin/Pubs/TR-9602.pdf (1996).

[5] Z. Diskin, Towards algebraic graph-based model theory for computer science. Bulletin
of Symbolic Logic 3 (1997), 144–145.

[6] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, Fundamentals of Algebraic Graph
Transformations. Berlin, Springer, 2006.

[7] H. Ehrig, M. Große-Rhode, and U. Wolter, Applications of Category Theory to the
Area of Algebraic Specification in Computer Science. Applied Categorical Structures
6 (1998), 1, 1–35.

[8] J. A. Goguen and R. M. Burstall, Institutions: Abstract Model Theory for Specification
and Programming. Journals of the ACM 39 (1992), 1, 95–146.

[9] R. Goldblatt, Topoi: The Categorial Analysis of Logic. Dover Publications, 1984.

[10] B. Jacobs, Categorical Logic and Type Theory. Elsevier, 1999.

[11] H. König and U. Wolter, Van Kampen Colimits and Path Uniqueness. Logical Meth-
ods in Computer Science 14 (2018), 2, Article 5, 1–27.

830 U. Wolter 18

[12] S. Lack and P. Sobociński, Adhesive Categories. In: I. Walukiewicz I (Ed.), Proceed-
ings of FOSSACS 2004, pp. 273–288. Springer, LNCS 2987, 2004.

[13] F. Maćıas, A. Rutle, V. Stolz, R. Rodriguez-Echeverria, and U. Wolter, An Approach
to Flexible Multilevel Modelling. Enterprise Modelling and Information Systems Ar-
chitectures 13 (2018), Article 10, 1–35.

[14] F. Maćıas, U. Wolter, A. Rutle, F. Durán, and R. Rodriguez-Echeverria, Multilevel
coupled model transformations for precise and reusable definition of model behaviour.
Journal of Logical and Algebraic Methods in Programming 106 (2019), 167–195.

[15] M. Makkai, Generalized Sketches as a Framework for Completeness Theorems. Jour-
nal of Pure and Applied Algebra 115 (1997), 49–79, 179–212, 214–274.

[16] F. Mantz, G. Taentzer, Y. Lamo, and U. Wolter, Co-evolving meta-models and their
instance models: A formal approach based on graph transformation. Science of Com-
puter Programming 104 (2015), 2–43.

[17] A. Martini, U. Wolter, and E. H. Haeusler, Fibred and Indexed Categories for Abstract
Model Theory. Logic Journal of the IGPL 15 (2007), 5-6, 707–739.

[18] C. McLarty, Elementary Categories, Elementary Toposes. Oxford Logic Guides (Book
21). Clarendon Press, 1991.

[19] H. Reichel, Initial Computability, Algebraic Specifications, and Partial Algebras. Ox-
ford University Press, 1987.

[20] A. Rossini, A. Rutle, Y. Lamo, and U. Wolter, A formalisation of the copy-modify-
merge approach to version control in MDE. Journal of Logic and Algebraic Program-
ming 79 (2010), 7, 636–658.

[21] A. Rossini, J. de Lara, E. Guerra, A. Rutle, and U. Wolter, A formalisation of deep
metamodelling. Formal Aspects of Computing 26 (2014), 1115–1152.

[22] A. Rutle, A. Rossini, Y. Lamo, and U. Wolter, A formal approach to the specifi-
cation and transformation of constraints in MDE. Journal of Logic and Algebraic
Programming 81 (2012), 4, 422–457.

[23] U. Wolter and Z. Diskin, From Indexed to Fibred Semantics – The Generalized Sketch
File. Tech. rep. 361 (2007), Department of Informatics, University of Bergen.

[24] U. Wolter, A. R. Martini, and E. H. Haeusler, Indexed and Fibred Structures for
Hoare Logic. Electronic Notes in Theoretical Computer Science 348 (2020), 125–145.

[25] U. Wolter and H. König, Fibred Amalgamation, Descent Data, and Van Kampen
Squares in Topoi. Applied Categorical Structures 23 (2013), 447–486.

[26] U. Wolter, An Algebraic Approach to Deduction in Equational Partial Horn Theories.
Journal of information processing and cybernetics. EIK 27 (1990), 2, 85–128.

[27] U. Wolter, Category Theory and Diagrammatic Modelling. Script for the course
INF223, Department of Informatics, University of Bergen, Norway, Draft (2020).

University of Bergen
Department of Informatics

P.O.Box 7803, N-5020 Bergen, Norway
uwe. wolter@ uib. no

uwe.wolter@uib.no

	Introduction and motivation
	Indexed and fibred structures
	Two paradigmatic examples - sets and categories
	Indexed or fibred – An informal discussion

	From Indexed to Fibred Semantics
	Two paradigmatic examples - sets and categories
	A more general picture

	Indexed and fibred semantics for graphs
	Forgetful and free functors for graphs
	Forgetful functors
	Free functors

	Amalgamation for graphs
	Compositionality in general
	Model amalgamation
	Model amalgamation in view of the Grothendieck construction
	Instance amalgamation
	Van Kampen squares and van Kampen colimits

	Concluding remarks

