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We study the boundary behavior of mappings of continual domains in met-
ric spaces with measures. Some sufficient conditions for continually ring Q-
homeomorphisms and their inverses to be extended to the boundary are pre-
sented. These results involve the p-modulus technique and special types of do-
mains, like domains with continually weakly flat and continually strongly acces-
sible boundaries, continual QED domains, continual NED sets.
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1. INTRODUCTION

The recent developments of modern mapping theory motivate studying
various types of regular domains, like domains of quasiextremal length (QED
domains), domains with weakly flat and strongly accessible boundaries, null
sets for extremal distance (NED sets), etc. in Euclidean spaces, metric spaces
and Riemannian manifolds; see e.g. [12], [16], [20] and the references therein.
Due to the famous Liouville theorem, even in R3 the class of conformal map-
pings is exhausted by Möbius transformations only, and quasiconformal map-
pings and their generalizations provide natural extensions of geometric aspects
of analytic functions to higher dimensions.

The continually ring Q-homeomorphisms, whose boundary behavior is
studied in the paper, have been introduced by the first author in [1]. The idea
was to extend the well-known ring definition of quasiconformality by Gehring
[7]. In fact, we study the main properties of mappings, whose p-moduli of
the families of continua joining the boundary components of ring domains
are integrally restricted from above. Such relations and establishing the main
differential features of mappings in Rn, n ≥ 2, have been initiated by the second
author in [9].
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More precisely, we continue to establish the boundary behavior of map-
pings with integrally restricted p-moduli between continual domains of quasiex-
tremal length in metric measure spaces started in [1], and investigate the ap-
propriate properties of NED sets, QED domains and spaces, extending the
theory of nonconformal moduli; see e.g. [5], [10], [16].

Note that the investigation of mappings in metric spaces with measures
leads to interesting and deep applications to the fractal theory in Rn, n ≥ 2,
which are intensively used in various fields of Mathematics and other sciences.

2. CONTINUAL CONNECTEDNESS IN TOPOLOGICAL
SPACES

We recall some necessary definitions. A topological space is connected if
it cannot be split into two nonempty distinct open sets. A topological space T
is called locally connected, if for any point x0 and its arbitrary neighborhood U
there is a connected neighborhood V ⊆ U . Compact connected spaces is said
to be continua. For any sets A, B and C of a topological space T we denote
by Γ(A,B;C) a family of all continua γ, which join A and B in C, e.g. such
that γ ∩A 6= ∅, γ ∩B 6= ∅ and γ \ {A ∪B} ⊆ C.

A topological space T is called continually connected, if any pair of its
points can be imbedded into a continuum γ located in T. By a continual domain
in a topological space T we mean an arbitrary open continually connected set
D. Also a space T is called locally continually connected at a point x0, if for
any neighborhood U of x0 there is a neighborhood V ⊆ U, which is a continual
domain in T. A space T is said to be continually connected at a point x0, if for
any its neighborhood U there exists a neighborhood V ⊆ U, such that V \{x0}
is a continual domain; cf. [16, p. 274]. Finally, a continual domain D is called
continually connected at a point x0 ∈ ∂D, if for any neighborhood U of x0 there
is a neighborhood V ⊆ U provided that V ∩D is a continual domain.

Now we present a continual counterpart of Proposition 2.1 in [18] (cf. [16,
Proposition 13.1]), whose proof will be given below.

Proposition 2.1. Let T be a topological space with a base of topology B,
consisting of continually connected sets. Then any arbitrary open set Ω in T
is connected if and only if Ω is continually connected.

Recall that by a base of topology T we mean an arbitrary collection of
open sets in T, such that any open set of T can be presented as a union of sets
from this collection. This implies the following

Corollary 2.1. An open set Ω in Rn, n ≥ 2, or, generally, in an arbi-
trary manifold, is connected if and only if Ω is continually connected.
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Remark 2.1. If a domain D in Rn, n ≥ 2, or in a manifold Mn, n ≥ 2, is
locally connected at x0 ∈ ∂D, then it is continually connected at x0. Based on
Proposition 2.1, we show later that the connectedness and continual connect-
edness of open sets are equivalent in a quite wide class so-called continually
weakly flat spaces.

Proof of Proposition 2.1. 1) Sufficiency. Let Ω be continually connected.
If Ω is nonconnected then Ω = Ω1∪Ω2, where Ω1 and Ω2 are two some nonempty
and distinct open sets. Let x1 ∈ Ω1 and x2 ∈ Ω2. Then due to the continual
connectedness of Ω there is a continuum K in Ω, containing both points. On
the other hand, the sets K ∩Ω1 and K ∩Ω2 are open in the topology T, both
are nonempty distinct and K = (K ∩ Ω1) ∪ (K ∩ Ω2), which contradicts to
the connectedness of K. This contradiction disproves the assumption that Ω is
nonconnected.

2) Necessity. Assume that Ω is connected. Fix an arbitrary point x0 ∈ Ω
and denote by Ω0 a set of all point x in Ω, which can be connected to x0 by
a finite sequence of sets Bk ∈ B, k = 1, ...,m, such that x0 ∈ B1, x ∈ Bm and
Bk ∩ Bk+1 6= ∅, k = 1, ...,m − 1. Obviously, Ω0 is continually connected; see
e.g. [15].

First, the set Ω0 is open. Indeed, if x∗ ∈ Ω0 then by the construction
there exists its neighborhood B∗ ∈ B, which lies in Ω0.

Secondly, Ω0 is closed in Ω. Assume by contradiction that ∂Ω0 ∩Ω 6= ∅.
Note that for any point z0 ∈ ∂Ω0 ∩ Ω there exist its neighborhood B0 ∈ B
and a point y0 ∈ Ω0, since z0 ∈ ∂Ω0. Thus, z0 ∈ Ω0 due to the notation of
Ω0. However, Ω0 is open, and, therefore, Ω0 ∩ ∂Ω0 = ∅. This contradiction
disproves the above assumption.

Thus, Ω0 is both open and closed in Ω, and, therefore, it coincides with
Ω because of connectedness. This yields that Ω is continually connected and
completes the proof of Proposition 2.1. �

We say that a family Γ1 of continua in an arbitrary topological space
T is minorated by a family Γ2 of continua in T and write Γ1 > Γ2, if for
each continuum γ1 ∈ Γ1 there is a continuum γ2 ∈ Γ2, such that γ2 is a
subcontinuum of γ1, namely γ2 ⊆ γ1.

The following statement is applied to the proofs of our main results. Its
proof can be found in [1, Proposition 1].

Proposition 2.2. Let Ω be an open set in a metric space (X, d). Then

(1) Γ(Ω, X \ Ω;X) > Γ(Ω, ∂Ω; Ω) .

Recall that Hk, k ∈ [0,∞), denotes the k-dimensional Hausdorff measure
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of a set A in the metric space (X, d). More precisely, for A in (X, d),

Hk(A) : = sup
ε>0

Hk
ε (A) ,

(2) Hk
ε (A) : = inf

∞∑
i=1

(diamAi)
k ,

where the infimum in (2) is taken over all coverings of A by the sets Ai with
diamAi < ε; see e.g. [13]. Recall that diamAi = sup

x,y∈Ai
d(x, y), and if for

any set A and k1 ≥ 0 the condition Hk1(A) < ∞ holds, then Hk2(A) = 0 for
arbitrary real number k2 > k1. The following quantity

dimHA := sup
Hk(A)>0

k,

stands for the Hausdorff dimension of the set A.

Later on, we say that a continuum in a metric space (X, d) is k-rectifiable
if its Hausdorff measure Hk is finite. 1-rectifiable continua γ are called for
simplicity rectifiable continua or continua of finite length, and H1(γ) is the
length of γ. In [6] the systems of measures in an abstract set X with a fixed
main measure have been considered.

In our paper we consider a Borel measure m
(k)
γ associated with some

continuum γ in the metric space (X, d). The measure m
(k)
γ is defined for any

Borel set B in (X, d) as the Hausdorff measure Hk of B ∩ γ for fixed k > 0. In

that follows, for any continuum γ ∈ Γ, the measure mγ := m
(1)
γ .

We develop here a p-modulus technique applicable to the families of con-
tinua in metric spaces which do not need to be linearly connected (by con-
tinuous paths). The simplest example for such continua can presented by a
pseudoarc, whose never two points can be connected by a path; in particular
any pseudoarc does not contain Jourdan arcs.

The following statement has been also proven in [1, Proposition 2]. For
convenience of the reader, we repeat it here.

Proposition 2.3. Let γ be a rectifiable continuum in a metric space
(X, d), which joins two points x1 ∈ B(x0, r1) and x2 ∈ X \ B(x0, r2), where
x0 ∈ X, 0 < r1 < r2 < ∞. Suppose also that η : [0,∞] → [0,∞] is a Borel
function. Then

(3)

∫
γ

η(d(x, x0)) dmγ ≥
r2∫
r1

η(r) dr .
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Remark 2.2. In particular, the inequality (3) implies that for any contin-
uum γ,

(4) H1(γ) ≥ diam γ .

However, the inequality

(5) Hk(γ) ≥ [diam γ]αk

does not hold for any nondegenerated continua and any k, except for k = 1, and
any αk ∈ R. Indeed, under k < 1, [13, Theorem VII.2] yields 1 > dimH γ ≥
dim γ = 0, where dim γ denotes the topological dimension of γ, e.g. γ is
totally disconnected; cf. [13, II.4.D]. Although the latter contradicts the fact
that γ is a nondegenerated continuum. If k > 1, the inequality (4) is not valid
too. It can be illustrated by the following example. Let I = [0, 1]. Obviously,
H1(I) = 1 < ∞ and, therefore, Hk(I) = 0 for any k > 1, and diam I = 1.
Thus, (5) does not hold for this simplest continuum I.

A nonnegative µ-measurable function ρ : X → [0,∞] is called admissible
for a family of continua Γ in (X, d) (abbr. ρ ∈ adm Γ) if∫

X

ρdmγ ≥ 1 ∀ γ ∈ Γ .

3. METRIC MEASURE SPACES

Let now (X, d, µ) be a metric space with a Borel measure µ. Recall that
the space (X, d, µ) is called α-regular by Ahlfors, if there exists a constant
C ≥ 1, such that

C−1rα ≤ µ(Br) ≤ Crα

for all balls Br in X of radius r < diamX. It is well known that α-regular
spaces have Hausdorff dimension α; see e.g. [11, p. 61]. A space (X, d, µ) is
called regular by Ahlfors, if it is α-regular for some α ∈ (1,∞).

We say also that a space (X, d, µ) is upper α-regular at x0 ∈ X, if there
is a constant C > 0 such that

(6) µ(B(x0, r)) ≤ Crα,

for all balls B(x0, r) centered at x0 ∈ X of radius r < r0. A metric space
(X, d, µ) is upper regular if the relation (6) holds at each point x for some
α ∈ (1,∞).
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The p-modulus, 1 < p < ∞, of the family Γ of continua γ in (X, d, µ) is
defined by

Mp(Γ) = inf
ρ∈adm Γ

∫
X

ρp(x) dµ(x).

The p-modulus of Γ = ∅ is defined by Mp(Γ) = +∞.

By the relation (1) from [6], Proposition 2.2 yields

Corollary 3.1. For any open set Ω in a metric measure space (X, d, µ)
with Borel measure µ,

Mp(Γ(Ω, X \ Ω;X)) ≤Mp(Γ(Ω, ∂Ω; Ω)) ∀ p ∈ (1,∞).

LetD andD′ be two continual domains in spaces (X, d, µ) and (X ′, d′, µ′, )
respectively, Q : X → (0,∞) be a µ-measurable function and p ∈ (1,∞). We
say that a homeomorphism f : D → D′ is called continually ring Q-homeo-
morphism at a point x0 ∈ D with respect to p-modulus if the inequality

Mp(Γ(f(C0), f(C1); D′)) ≤
∫

A∩D

Q(x) · ηp(d(x, x0)) dµ(x)

holds for any ring A = A(x0, r1, r2) := {x0 ∈ X : r1 < d(x, x0) < r2}, 0 <
r1 < r2 <∞, for any two continua C0 ⊂ B(x0, r1)∩D and C1 ⊂ D\B(x0, r2),
and any Borel function η : (r1, r2)→ [0,∞] such that

r2∫
r1

η(r) dr ≥ 1.

Finally, we say that a homeomorphism f : D → D′ is continually ring Q-
homeomorphism in D, if f is a continually ring Q-homeomorphism at any
x0 ∈ D (see Fig. 1).

Following [18], we say that the boundary of a continual domain D is
continually weakly flat at a point x0 ∈ ∂D with respect to p-modulus, p ∈
(1,∞), if for arbitrary N > 0 and any neighborhood U of the point x0 there
exists its neighborhood V ⊂ U such that

Mp(Γ(E,F ;D)) ≥ N

for any two continua E and F in D crossing ∂U and ∂V.
We also say that the boundary of a continual domain D is continually

strongly accessible at a point x0 ∈ ∂D with respect to p-modulus, p ∈ (1,∞),
if for any neighborhood U of the point x0 there are a compact set E ⊂ D, a
neighborhood V ⊂ U of x0, and a real number δ > 0 such that

Mp(Γ(E,F ;D)) ≥ δ
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Figure 1

for any continuum F in D, crossing ∂U and ∂V.

Finally, the boundary of a continual domain D is called either continually
strongly accessible with respect to p-modulus, p ∈ (1,∞), or continually weakly
flat with respect to p-modulus, p ∈ (1,∞), if the corresponding property holds
at each point of its boundary.

The notions of the weak flatness and strong accessibility were introduced
for domains in Rn as generalizations of the corresponding P1 and P2-properties
by Väisälä ([19]) and the quasiconformal accessibility and quasiconformal flat-
ness by Näkki ([17]). In this paper we consider further extensions of the above
notions since Γ stands for the family of continua.

Recall following [14] and [16] that ϕ : X → R has finite mean oscillation
at a point x0 ∈ X, abbr. ϕ ∈ FMO(x0), if

(7) lim
ε→0

1

µ(B(x0, ε))

∫
B(x0,ε)

|ϕ(x)− ϕ̃ε| dµ(x) <∞ ,

where

ϕ̃ε =
1

µ(B(x0, ε))

∫
B(x0,ε)

ϕ(x)dµ(x)

stands for the average of the function ϕ over the ball B(x0, ε) = {x ∈ X :
d(x, x0) < ε} with respect to the measure µ. Here the condition (7) assumes
that ϕ is integrable with respect to the measure µ over some ball B(x0, ε),
ε > 0. Any further details on the above class of functions can be found at [16].

The following result has been established in [18] for the case of families
of curves. Here we extend it for the case of families of continua containing a
priory fixed point.
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Lemma 3.1. Let the condition

(8)

∫
A(x0,ε,ε0)

ψp(d(x, x0)) dµ(x) = o

 ε0∫
ε

ψ(t) dt

p
hold as ε→ 0, where ε0 ∈ (0,∞). Suppose that ψ(t) is a nonnegative function
on (0,∞), satisfying 0 <

∫ ε0
ε ψ(t) dt < ∞, ∀ ε ∈ (0, ε0) . Then the p-modulus,

p ∈ (1,∞), of all continua in X, containing x0, vanishes.

Remark 3.1. The condition (8) implies that under ε→ 0,

(9)

∫
A(x0,ε,ε1)

ψp(d(x, x0)) dµ(x) = o

 ε1∫
ε

ψ(t) dt

p ∀ ε1 ∈ (0, ε0).

x0

X

Γ={

γ

γ: x0# | |}γ

!
!0

Figure 2

Proof of Lemma 3.1. Assume that Γ is a family of all continua in X,
which contain the point x0. For a sequence rk such that rk ∈ (0, ε0), rk → 0
as k →∞, denote by Γ =

⋃∞
k=1 Γk, where Γk is a family of all continua in X,

containing the point x0 and intersecting the spheres Sk = S(x0, rk); see Fig. 2.

Pick the function

ρ(x) =

 ψ(d(x, x0))

(rk∫
r
ψ(t) dt

)−1

, if x ∈ A(x0, r, rk),

0, if x ∈ X\A(x0, r, rk).

For the family Γk(r) intersecting the spheres Sk and S(x0, r), r ∈ (0, rk),
this function is admissible in view of Proposition 2.3. Due to the fact that
Γk > Γk(r), we have

Mp(Γk) ≤ Mp(Γk(r)) ≤

 rk∫
r

ψ(t) dt

−p ∫
A(x0,r,rk)

ψp(d(x, x0)) dµ(x) .
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Hence, by the conditions (8) and (9), Mp(Γk) = 0, since r ∈ (0, rk) is arbitrary.
Now applying the subadditivity of the p-modulus, one gets

Mp(Γ) ≤
∞∑
k=1

Mp(Γk) = 0 ,

which completes the proof of the lemma. �

Choosing in Lemma 3.1, ψ(t) = 1/t, we have the following conclusion.

Corollary 3.2. Let for some ε0 ∈ (0,∞), as ε→ 0, the condition

(10)

∫
A(x0,ε,ε0)

dµ(x)

dp(x, x0)
= o

([
log

ε0

ε

]p)
hold. Then the p-modulus, p ∈ (1,∞), of the family of all continua in X
containing x0, vanishes.

This result naturally extends Corollary 7.20 in [11] and Lemma 7.18 as
well.

Remark 3.2. Note that for an upper α-regular metric space (X, d, µ),
α > 1, at a point x0, ∫

r<d(x0,x)<R0

dµ(x)

dα(x, x0)
= O

([
log

R0

r

])
,

and, therefore, the condition (10) immediately holds; cf. [11, p. 54].

4. WEAKLY FLAT SPACES

Following [16, Chapter 13] and [18], we introduce some needed notions.
A continually connected space (X, d, µ) is called continually weakly flat at a
point x0 ∈ X with respect to p-modulus, p ∈ (1,∞), if for any neighborhood U
of x0 and arbitrary real N > 0 there exists a neighborhood V ⊆ U of x0 such
that

(11) Mp(Γ(E,F ;X)) ≥ N

for any pair of continua E and F in X intersecting both ∂V and ∂U. We
say also that a continually connected space (X, d, µ) is continually strongly
accessible at a point x0 ∈ X with respect to p-modulus, p ∈ (1,∞), if for any
neighborhood U of x0 there exist a neighborhood V ⊆ U of x0, a compact
set E in X and a real number δ > 0, such that Mp(Γ(E,F ;X)) ≥ δ for each
continuum F in X intersecting ∂V and ∂U. Finally, a continually connected
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space (X, d, µ) is called continually weakly flat (continually strongly accessible),
if the corresponding property holds at any point of this space.

Remark 4.1. In fact, in the definitions of continually weakly flat and con-
tinually strongly accessible spaces it is enough to restrict ourselves by neigh-
borhoods of x0 and, in particular, instead of U and V to choose sufficiently
small balls (open and closed) centered at x0. Moreover, by Proposition 2.2 one
can consider continua E and F in U. It is also clear that any continual domain
in continually weakly flat space with respect to p-modulus, p ∈ (1,∞), is con-
tinually weakly flat space again due to the same statement (Proposition 2.2).

The proof of the following statement is similar to the corresponding proof
of Proposition 3 in [1], therefore, we skip its proof.

Proposition 4.1. Let a space (X, d, µ) be continually weakly flat at a
point x0 ∈ X with respect to p-modulus, p ∈ (1,∞). Then (X, d, µ) is continu-
ally strongly accessible at x0 with respect to p-modulus.

The next lemma provides a crucial tool for our research and goes back to
the lines of Lemma 9.1 in [18]; cf. [16, Lemma 13.7].

Lemma 4.1. Let a space (X, d, µ) be continually weakly flat at a point x0 ∈
X with respect to p-modulus, p ∈ (1,∞). Then (X, d, µ) is locally continually
connected at x0.

Proof. We start the proof by contradiction. Assume that the space X
is not locally continually connected at the point x0. Then there exists r0 ∈
(0, d0), d0 = supx∈X d(x, x0), such that µ(Ux0) := µ(B(x0, r0)) < ∞, and
any neighborhood Vx0 ⊆ Ux0 of x0 has a continually connected component K0,
which contains x0, and also continually connected components K1, . . . ,Km, . . . ,
that are different from K0, provided that x0 = limm→∞ xm for some xm ∈ Km.
The Janiszewski theorem and continual connectedness of X yield Km∩∂Vx0 6=
∅ for all m = 1, 2, . . . ; see e.g. [15, §47, III, Thm 1].

The existence of such components of continual connectedness remains
true for the case when the neighborhoods coincide, i.e. Vx0 = Ux0 = B(x0, r0).
Let r∗ ∈ (0, r0), K∗i = Ki ∩ B(x0, r∗) and K∗0 = K0 ∩ B(x0, r∗). Then for any
i = 1, 2, . . . ,

(12) Mp(Γ(K∗i ,K
∗
0 ;D)) ≤ M0 :=

µ(Ux0)

[r0 − r∗]p
< ∞.
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Indeed, since the components Ki and K0 cannot be connected by a continuum
in Vx0 = B(x0, r0) and any continuum connecting K∗i and K∗0 should intersect
the ring B0 \B∗, due to the Darboux property on connected sets, the function

ρ(x) =

{
1

r0−r∗ , if x ∈ B(x0, r0) \B(x0, r∗) ,

0, if x ∈ X \ (B(x0, r0) \B(x0, r∗) ) ,

is admissible for the family Γi of all rectifiable continua from Γ(K∗i ,K
∗
0 ;D);

see [15, §46, I] and Proposition 2.3.
However, the upper bound (12) for the p-modulus contradicts the con-

dition of continual weak flatness of X at x0. Indeed, in view of (11), there is
r ∈ (0, r∗) such that

Mp(Γ(K∗i0 ,K
∗
0 ;D)) ≥M0 + 1

for sufficiently large i0 = 1, 2, . . . , because in the corresponding sets K∗i0 with
d(x0, xi0) < r and K∗0 , there are continua intersecting both ∂B(x0, r∗) and
∂B(x0, r); cf. Proposition 2.2.

Thus, the assumption that X is not locally continually connected fails.
This completes the proof.

Combining Lemma 4.1 and Corollary 2.1 with Proposition 2.1 yields the
following conclusions.

Corollary 4.1. Continually weakly flat spaces (X, d, µ) are locally con-
nected.

Corollary 4.2. An open set Ω of any continually weakly flat space
(X, d, µ) becomes continual domain if and only if Ω is connected.

Corollary 4.3. Any continual domain D in a continually weakly flat
space (X, d, µ) is continually connected at a point x0 ∈ ∂D if and only if D is
locally connected at x0.

Now combining Lemmas 3.1 and 4.1 with Corollary 2.1, we obtain

Corollary 4.4. Let (X, d, µ) be a continually weakly flat space at a point
x0 ∈ X with respect to p-modulus, p ∈ (1,∞), and the condition (8) (or, in
particular, (10)) holds. Then (X, d, µ) is continually connected at x0.

Finally, Remark 13.8 in [16] allows us to conclude

Corollary 4.5. If a space X is continually weakly flat with respect to
p-modulus, p ∈ (1,∞), and upper p-regular at a point x0 ∈ X, then X is
continually connected at x0.
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5. CONTINUAL DOMAINS OF QUASIEXTREMAL LENGTH

In this section we investigate a subclass of domains with continually
weakly flat boundaries. We say that a continual domain D in (X, d, µ) is con-
tinual domain of quasiextremal length with respect to p-modulus, p ∈ (1,∞),
abbr. continual QED domain, if

Mp(Γ(E,F ;X)) ≤ KMp(Γ(E,F ;D))

for some finite number K ≥ 1 and any continua E and F in D; see Fig. 3.

X X

E
E

D
D

FF

Γ(E,F;D) Γ(E,F;X)

Figure 3

The class QED was introduced by Gehring and Martio in [8] under study-
ing the boundary extension of quasiconformal mappings in higher dimensions.
Note that continual QED domains provide a wider class of domains and have
a special interest in view of various applications. Bounded convex domains,
domains with smooth boundaries illustrate the simplest examples of the con-
tinual QED domains and the domains with continually weakly flat boundaries
as well.

Obviously, by the definition, the continual QED domains in continually
weakly flat spaces with respect to p-modulus, p ∈ (1,∞), have continually
weakly flat boundaries. This fact allows us to formulate some results and
continue our research regarding the boundary behavior of continually ring Q-
homeomorphisms, started in [1].

Lemma 5.1. Let f be a continually ring Q-homeomorphism with respect
to p-modulus, p ∈ (1,∞), between two continual QED domains D and D′

in continually weakly flat spaces X and X ′, respectively. Suppose that D′ is
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compact and at a point x0 ∈ ∂D the following condition

(13)

∫
A(x0,ε,ε0)

Q(x)ψp(d(x, x0)) dµ(x) = o

 ε0∫
ε

ψ(t) dt

p
holds as ε → 0. Here ψ(t) is a nonnegative measurable function defined on
(0,∞) such that

0 <

ε0∫
ε

ψ(t) dt <∞ ∀ ε ∈ (0, ε0).

Then f : D → D′ extends to x0 in (X ′, d′, µ′) by continuity.

Taking into account the appropriate properties of continual QED do-
mains, Lemma 5.1 naturally follows from Lemma 4 in [1].

The following result is a conclusion from Lemma 5.1 with Corollary 4 and
Remark 4 in [1].

Corollary 5.1. In particular, the limit of f(x) under x→ x0 exists, if

(14)

∫
A(x0,ε,ε0)

Q(x)ψp(d(x, x0)) dµ(x) < ∞

and

(15) lim
ε→0

ε0∫
ε

ψ(t) dt = ∞ .

Theorem 2 in [1] and the corresponding properties of continual QED
domains yield:

Theorem 5.1. Let f be a continually ring Q-homeomorphism with re-
spect to p-modulus, p ∈ (1,∞), between two continual QED domains D and
D′ in continually weakly flat spaces X and X ′, respectively. Suppose that D′

is compact and at a point x0 ∈ ∂D,

(16)

∫
A(x0,ε,ε0)

Q(x) dµ(x)

d(x, x0)p
= o

([
log

ε0

ε

]p)
, ε→ 0 .

Then f admits a continuous extension to x0 in (X ′, d′).
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Corollary 5.2. In particular, the assertion of Theorem 5.1 holds if the
singular integral

(17)

∫
Q(x) dµ(x)

d(x, x0)p

converges in a neighborhood of x0.

Here and later on we assume Q(x) = 0 outside of D. Similarly to The-
orem 3 from [2] together with Theorem 1.1 in [3] we obtain the following
statement.

Theorem 5.2. Let f be a continually ring Q-homeomorphism with re-
spect to p-modulus, p ∈ (1,∞), between two continual QED domains D and D′

in continually weakly flat spaces X and X ′, respectively, and let D′ be compact.
If Q ∈ L1

µ(D), then the inverse homeomorphism g = f−1 admits a continuous

extension g : D′ → D.

Combining Theorem 4 and Corollary 7 in [1] with the appropriate prop-
erties of continual QED domains, one gets

Theorem 5.3. Let f be a continually ring Q-homeomorphism with re-
spect to p-modulus, p ∈ (1,∞), between two continual QED domains D and D′

in continually weakly flat spaces X and X ′, respectively, and let D and D′ be
compact. If Q ∈ L1

µ(D) satisfies either (16) or (17) at each point x0 ∈ ∂D,
then f admits a homeomorphic extension f : D → D′.

Finally, combining Theorems 3 and 5 from [1] with the corresponding
properties of QED domains yields:

Theorem 5.4. Let f be a continually ring Q-homeomorphism with re-
spect to p-modulus, p ∈ [2,∞), between two continual QED domains D and D′

in continually weakly flat spaces X and X ′, respectively, and let D and D′ be
compact. If at some point x0 ∈ ∂D, the function Q : X → (0,∞) has a finite
mean oscillation at x0 ∈ ∂D,

(18) µ(B(x0, 2r)) ≤ γ · logp−2 1

r
· µ(B(x0, r)) ∀ r ∈ (0, r0) ,

and the space (X, d, µ) is upper p-regular at x0, then f continuously extends
to x0. If the last two conditions hold at each point x0 ∈ ∂D, then f admits a
homeomorphic extension to f : D → D′.

Remark 5.1. As it was mentioned in [16, Remark 13.11], in the case of
regular by Ahlfors spaces the doubling measure condition holds. This condition
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is much stronger than (18). Due to the compactness of D, the function Q is
integrable in a neighborhood of ∂D, which can be derived from the finite mean
oscillation at points of ∂D. Recall that to ensure Q ∈ FMO(x0) at x0 ∈ ∂D,
it suffices to assume

lim
ε→0

1

µ(B(x0, ε))

∫
B(x0,ε)

Q(x) dµ(x) <∞ .

6. CONTINUAL NULL SETS FOR EXTREMAL DISTANCE

Recall that similarly to Rn, n ≥ 2, sets A of continual null sets for ex-
tremal distance in continually weakly flat spaces with respect to p-modulus,
p ∈ (1,∞), cannot contain inner points. Moreover, they cannot split the space
X even locally. This means that D \ A has only one component of continual
connectedness for any continual domain D in X. Thus, the complement to
such sets A in X provides a quite partial case of continually QED domains.
Therefore, the continual null sets for extremal distance in continually weakly
flat spaces with respect to p-modulus, p ∈ (1,∞), play the same role in various
removable problems for singular sets under quasiconformal mappings and their
generalizations as in Rn, n ≥ 2. We start with the definition for such sets.

A closed set A in a space (X, d, µ) is called continual null set for extremal
distance with respect to p-modulus, p ∈ (1,∞), abbr. continual NED set, if

(19) Mp(Γ(E,F ;D)) = Mp(Γ(E,F ;D \A))

for any continual domain D in X and any continua E and F in D; see Fig. 4.

X X

E
E

D
D

FF

Γ(E,F;D\A) Γ(E,F;D)

A

Figure 4

The following proposition is a continual counterpart of Proposition 9.2 in
[18] with respect to p-modulus.



540 E. Afanas’eva and A. Golberg 16

Proposition 6.1. Let A be a continual NED set in a continually weakly
flat space (X, d, µ) with respect to p-modulus, p ∈ (1,∞), which does not de-
generate into one element set. Then

1) A has no inner points;

2) D \A is a continual domain for any continual domain D in X.

Proof. 1) We show that A does not contain any inner points by contra-
diction. Assume that there exists a point x0 ∈ A, which belongs to A with a
ball B(x0, r0) for some r0 > 0, i.e. B(x0, r0) ⊆ A. Let also x∗ ∈ X, x∗ 6= x0,
and γ be a continuum containing both x0 and x∗ in X. Since always there
exists a smaller ball B∗ = B(x0, r

∗) ⊆ A, which does not contain x∗, one can
find its subcontinuum γ∗ ⊆ B∗, such that x0 and x1 ∈ ∂B∗ belong to γ∗.
For details, see Proposition 1 in [1]. Hence, letting E = F = γ∗, we have
Mp(Γ(E,F,X)) = ∞, because the space X is continually weakly flat with re-
spect p-modulus, p ∈ (1,∞). On the other hand, γ∗ does not intersect with
X \A, then Γ(E,F ;X \A) = ∅, and, therefore, Mp(Γ(E,F ;X \A)) = 0. This
contradicts the condition (19). Thus, the continual NED set A has no inner
points.

2) Due to Corollary 4.2, it is enough to establish that D \A is connected.
Denote by Ω∗ one of connected components of the open set D \ A. Note that
Ω∗ is open in X, since by Corollary 4.1, X is locally connected; see [4, I.11.11].
Similarly, Ω as the union of all other connected components of the set D \A is
also open. Assume that Ω 6= ∅.

Put Ω
0

:= Ω \ ∂Ω, Ω
0
∗ := Ω∗ \ ∂Ω∗, i.e. Ω

0
and Ω

0
∗ are the interiors of

closures of Ω and Ω∗, respectively. Then Ω
0 6= ∅, since Ω ⊆ Ω

0
, B := ∂Ω∩D =

∂Ω∗ ∩D = A \ {(A ∩ Ω
0
) ∪ (A ∩ Ω

0
∗)}, and due to the first part of the proof,

A0 := A \ ∂A = ∅, i.e. A = ∂A. Note also that B 6= ∅ by connectedness of D,

since otherwise D = Ω
0 ∪ Ω

0
∗.

Considering the continual domain D as a metric space and Ω
0

as its

subset, by Proposition 2.2, there exists a continuum in Ω
0 ∩ D = Ω ∩ D,

such that γ ∩ Ω
0 6= ∅ and γ ∩ ∂Ω ∩ ∂Ω∗ ∩ D 6= ∅, because ∂Ω ⊆ ∂Ω and

∂Ω∗ ⊆ ∂Ω∗. Let x0 ∈ γ ∩ ∂Ω ∩ ∂Ω∗ ∩ D, x∗ ∈ Ω∗ xn ∈ Ω∗, xn → x0 under
n→∞. Note that Ω∗ is continually connected by Corollary 4.2, and, therefore,
there is a sequence of continua γn in Ω∗, connecting the points x∗ and xn.
Then Mp(Γ(γ, γn;D)) → ∞ as n → ∞, since D is a continually weakly flat
space; cf. Remark 4.1. On the other hand, Γ(γ, γn;D \ A) = ∅, and, hence,
Mp(Γ(γ, γn;D \ A)) = 0. This contradicts the assumption that D \ A is not
connected. Thus, D \A is a continual domain, which completes the proof.
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The proof of the following lemma follows the lines of the proof of Lemma 9.4
in [18], although it requires some modifications and efforts needed for contin-
ually weakly flat spaces.

Lemma 6.1. Let X and X ′ be continually weakly flat spaces with respect
to p-modulus, p ∈ (1,∞), D be a continual domain in X, A ⊂ D be a continual
NED set in X, and f be a continually ring Q-homeomorphism from G = D \A
to X ′. If the limit set

A′ := C(A, f) = {x′ ∈ X ′ : x′ = lim
k→∞

f(xk), xk ∈ G, lim
k→∞

xk ∈ A}

is a continual NED set in X ′ and G′ = f(G), then D′ = G′ ∪A′ is a continual
set in X ′. Moreover, there are continual domains D∗ in X, satisfying A ⊂ D∗,
D∗ ⊂ D and A′ ∩A∗ = ∅, where A∗ := f(∂D∗).

Proof. First, we note that the continual NED set A is closed in the com-
pact space X and, therefore, ε0 = dist (A, ∂D) > 0. Thus, A lies in the open
set

Ω = {x ∈ X : dist (x,A) < ε}
for any (fixed) ε ∈ (0, ε0), which is also located in D. Since A is compact,
A is contained in a finite number of components of (continual) connectedness
Ω1, . . . ,Ωm of the set Ω. Let x0 be an arbitrary point of the continual domain
D and let xk ∈ Ωk, k = 1, . . . ,m. Then there exist continua γk in D, containing

x0 and xk, k = 1, . . . ,m. Note that the set C =
m⋃
k=1

γk is also a continuum in

D and δ0 = dist (C, ∂D) > 0; see e.g. [15, Thm 1, Ch. 5, § 47].

Consider open sets Dδ = {x ∈ D : dist (x, ∂D) > δ} . The triangle in-
equality implies that the set

C0 = C
⋃(

m⋃
k=1

Ωk

)
lies in Dδ for any δ ∈ (0, d0), where d0 = min (ε0 − ε, δ0). Moreover, C0 is
contained in one component of (continual) connectedness D∗δ of the set Dδ,
since the set C0 is (continually) connected; cf. [4, Proposition I.11.11] and
Corollary 4.1.

By the construction, D∗δ ⊂ D, and D∗δ are continual domains in X, and,
hence, continually weakly flat spaces with respect to p-modulus, p ∈ (1,∞). By
Proposition 6.1, the sets Gδ = D∗δ \ A are continual domains with continually
weakly flat boundaries A in the spaces D∗δ , δ ∈ (0, d0).
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Let fδ = f |Gδ and gδ = (fδ)
−1 : G′δ → Gδ, where G′δ = fδ(Gδ). Then, the

symmetry

A′ = C(A, fδ), A = C(A′, gδ), ∀ δ ∈ (0, d0) ,

has place; cf. [16, Proposition 13.5]. Note that ∂D∗δ , δ ∈ (0, d0) are compact
subsets of the continual domain G, and, therefore, f(∂D∗δ ) are compact subsets
of the continual domain G′ = f(G), which do not intersect with A′ (see again
[16, Proposition 13.5]). Thus, dδ = dist (A′, f(∂D∗δ )) > 0 for any δ ∈ (0, d0). By
Lemma 4.1, the space X ′ is continually connected, and, therefore, for any point
x0 ∈ A′ there exists a continual domain U ⊂ B(x0, dδ), which is a neighborhood
of x0, and, by Proposition 6.1, V = U \A′ is also a continual domain which is a
continual subdomain of G′ by construction. Thus, D′ = G′ ∪A′ is a continual
domain in X ′. The proof is complete.

Applying Lemma 5.1, Proposition 6.1 and Lemma 6.1, we obtain the
following statement for the continual NED sets; cf. Remarks 13.5 and 13.6 in
[16].

Corollary 6.1. Let X and X ′ be compact continually weakly flat spaces
with respect to p-modulus, p ∈ (1,∞), D be a continual domain in X, A ⊂ D
be a continual NED set in X. Suppose that f is a continually ring Q-homeo-
morphism, acting from G = D \ A to X ′, such that the limit set C(A, f) is a
continual NED set in X ′. If at some point x0 ∈ A the condition (13) holds,
then f admits a continue extension to the point x0.

Remark 6.1. In particular, f extends by continuity to x0 ∈ A, if for this
point one from the conditions (14)–(15), (16), (17) or (18) holds assuming
Q ∈ FMO(x0).

Based on [18, Lemma 9.6] and applying the properties of continually ring
Q-homeomorphisms with respect to p-modulus, we get the following result.

Corollary 6.2. Let X and X ′ be compact continually weakly flat spaces
with respect to p-modulus, p ∈ (1,∞), D be a continual domain in X, A ⊂ D
be a continual NED set in D, and f be a continually ring Q-homeomorphism
from G = D \A to X ′ with a continual NED set A′ = C(A, f) . If Q ∈ L1

µ(D),
then the inverse homeomorphism g = f−1 : G′ → G, G′ = f(G), admits a
continuous extension g : D′ → D, where D′ = G′ ∪A′.

Remark 6.2. Thus, if Q ∈ L1
µ(G) satisfies either the condition (18) or one

of conditions (14)–(17) with Q ∈ FMO(x0), the inequality of doubling measure

µ(B(x0, 2r)) ≤ γ · µ(B(x0, r)) ∀ r ∈ (0, r0)
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at each point x0 ∈ A, then any continually ring Q-homeomorphism f acting
from a continual domain G = D \A to X ′ with continual NED domains A and
A′ = C(A, f), has a homeomorphic extension f : D → D′, where D′ = G′ ∪A′
and G′ = f(G).

By Theorem 13.12 in [16] and due to the corresponding properties of
continually ring Q-homeomorphisms with respect to p-modulus, one yields

Corollary 6.3. Let X and X ′ be compact continually weakly flat spaces
with respect to p-modulus, p ∈ [2,∞), D be a continual domain in X, A ⊂ D
be a continual NED set in X, and f be a continually ring Q-homeomorphism
from G = D \ A to X ′ with the continual NED set A′ := C(A, f) . If Q has a
finite mean oscillation and X is a p-regular by Ahlfors at any point x0 ∈ A,
then f admits a homeomorphic extension f : D → D′, where D′ = G′ ∪ A′,
G′ = f(G).

The above results can be transferred to the case of smooth Riemannian
manifolds which are closely related to various problems of modern theoretical
physics and to the Loewner spaces, Carnot and Heisenberg groups as well.
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