
AN EQUATIONAL APPROACH TO ENRICHED DISTRIBUTIVITY

ADRIANA BALAN and ALEXANDER KURZ

Communicated by Dan Timotin

The familiar adjunction between ordered sets and completely distributive lat-
tices can be extended to generalised metric spaces, that is, categories enriched
over a quantale (a lattice of “truth values”), via an appropriate distributive
law between the “down-set” monad and the “up-set” monad on the category of
quantale-enriched categories. If the underlying lattice of the quantale is com-
pletely distributive, and if powers distribute over non-empty joins in the quan-
tale, then this distributive law can be concretely formulated in terms of opera-
tions, equations and choice functions, similar to the familiar distributive law of
lattices.
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1. INTRODUCTION

The double dualization monad. The contravariant adjunction [−,2] a
[−,2] : Ordop → Ord produces a monad on Ord, the category of antisymmetric
ordered sets and monotone maps, whose algebras are the completely distributive
lattices [23]. The latter are monadic also over Set [27], hence form an (infini-
tary) variety. Recall that a completely distributive lattice A is a complete
lattice satisfying ∧

k∈K

∨
Ak =

∨
f∈F

∧
f(K)

for every family of subsets (Ak)k∈K of A, where F = {f : K → A | f(k) ∈ Ak}
denotes the set of choice functions. There is also a constructive definition
of completely distributive lattices available in arbitrary toposes [23]: if DA
denotes the usual lattice of downsets of an ordered set A, and yA : A→ DA is
the (Yoneda) embedding of principal downsets, then A being complete means
that yA has a left adjoint supA which computes suprema of downsets, and being
completely distributive means that supA has itself a left adjoint mapping each
element to the downset of elements totally below it.1

1 An element a ∈ A is totally below b ∈ A if for every subset S ⊆ A such that b ≤
∨
S

there is some x ∈ S with a ≤ x [9].
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As observed in [31], the dual adjunction between Ord and Ordop exhibited
above is in fact a special case of [−,Ω] a [−,Ω] : Ω-catops → Ω-cats, for Ω = 2.
Here Ω-cats is the category of skeletal categories enriched over a commutative
quantale Ω. As in the ordered case, the category of algebras for the induced
monad can be equivalently described using a distributive law between the en-
riched downset monad D and the enriched upset monad U [2, 23, 38] and is
monadic both over Ω-cats and over Set [28].

Quantales. Historically, quantales were introduced in the 1980s [24] as
a logical-theoretic framework for studying certain spaces arising from quantum
mechanics. They can be perceived as lattices of “truth-values” or “distances”,
equipped with an extra operation expressing conjunction (logical interpreta-
tion) or addition of distances (metric interpretation). Alternatively, quantales
are also complete idempotent semirings, hence appearing in tropical and idem-
potent analysis.

Quantale-enriched categories. These structures generalise both met-
ric spaces and ordered sets [20] within the realm of enriched category theory,
making possible a theory of quantitative domains [37, 39]. The category Ω-Sup
of (co)complete skeletal quantale-enriched categories and cocontinuous func-
tors, however, lives in the algebraic world: the objects are just complete sup-
lattices endowed with an action of the quantale, or, in other words, complete
semimodules over complete idempotent semirings [15, 26, 36]. The simplest
example, namely cocomplete enriched categories over the two-element quan-
tale 2, are nothing but complete sup-lattices. It is the action of the quantale
which enhances the path to the many-valued realm.

Completely distributive quantale-enriched categories. Adding
one more layer of structure finally brings us to the object of study of the
present paper: Ω-CD, the category of completely distributive skeletal quantale-
enriched categories and continuous and cocontinuous enriched functors. There
are (at least) three possible approaches/motivations for studying Ω-CD:

• Completely distributive quantale-enriched categories arise naturally in
quantitative domain theory and many-valued logics (see e.g. [8, 11, 39, 40]).

• Categorically, they are (co)complete skeletal quantale-enriched cate-
gories for which taking suprema distributes over limits, e.g. [17, 37], and they
are also the projective objects of the (infinitary) variety Ω-Sup.

• Algebraically, completely distributive quantale-enriched categories are
precisely the algebras for the quantale-enriched version of the double dualisa-
tion monad described above over Ω-cats [2, 38].

Moreover, Ω-CD is also monadic over Set [28].
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Consequently, Ω-CD is equationally presentable by Linton [21]. But Lin-
ton’s theorem does not help us to find a convenient equational presentation.

The present paper contributes with an equational presentation for com-
pletely distributive quantale-enriched categories under some natural require-
ments on the quantale which, in particular, are satisfied in the case Ω = 2.

2. PRELIMINAIRES

In this section we gather the necessary technicalities from quantale en-
riched category theory that will make this paper reasonably self-contained.
Most of the material is standard; for the general theory of enriched categories
we refer to Kelly’s monography [16], while for quantale/quantaloid-enriched
categories the reader might consult e.g. [12, 17, 28, 34, 35, 36, 37, 39].

2.1. Quantales and quantale-enriched categories.

A commutative quantale is a complete sup-lattice (Ω,∨,∧,⊥,>) and a
commutative monoid (Ω,⊗, e),2 such that v ⊗− preserves arbitrary joins, for
all v ∈ Ω. In particular it has a right adjoint [v,−]:

v ⊗ w ≤ u ⇐⇒ w ≤ [v, u] .

If we interpret v ⊗ w as a “conjunction” and [v, w] as an “implication”, then
v⊗ [v, u] ≤ u becomes the usual “modus ponens” of logic. Hence the elements
of the quantale can be perceived as “truth values”.

Example 2.1. 1. The simplest example of a (commutative) quantale is
the two-element chain Ω = (2,∧, 1), with meet as multiplication.

2. The (extended) positive real numbers Ω = ([0,∞]op,+, 0), with addi-
tion and zero, form a commutative quantale, with [v, u] = u−v if v ≤ u else 0.

3. The three-element chain 3 = {0 < 1
2 < 1} supports two quantale

structures for which the tensor is idempotent [3]: Taking ⊗ to be the meet,
one obtains the Heyting algebra Ω = (3,∧, 1).

The second idempotent multiplication ⊗ on 3
has unit 1

2 and [−,−] as indicated in the table on the
right. In particular, the resulting quantale (3,⊗, 1

2)
is a Sugihara monoid [25].

[−,−] 0 1
2 1

0 1 1 1
1
2 0 1

2 1
1 0 0 1

2 The unit e does not need to be the top element in Ω, but if it is the case, the quantale
is called integral.
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Besides the two idempotent structures exhibited above, there exists only
one more quantale structure on 3 (non-idempotent and integral), given by the
 Lukasiewicz truncated addition v � w = max(0, v + w − 1).

4. There are also non-distributive commutative quantales, among which
we mention the simplest, namely the lattices M3 and the N5, both with idem-
potent tensor as indicated below

>

>⊗a = a e b = >⊗b

⊥ = a⊗b

>
b = >⊗b

e

a = a⊗b = a⊗>
⊥

For more examples we refer to [7].

An Ω-category A consists of a set A, together with a map3 A : A×A→ Ω
satisfying

(1) e ≤ A (a, a) and A (a, b)⊗A (b, c) ≤ A (a, c)

for all a, b, c ∈ A. An Ω-functor f : A → B is a map between the underlying
sets such that A (a, b) ≤ B(f(a), f(b)) holds. Finally, an Ω-natural trans-
formation f → g is given whenever e ≤ B(f(a), g(a)) holds for all a ∈ A.
Thus, there is at most one Ω-natural transformation between f and g. We
shall denote by Ω-cat the category of Ω-categories and of Ω-functors (actu-
ally, it is a locally ordered category). As a last piece of notation, let [A ,B]
be the Ω-category having as objects Ω-functors f : A → B, with Ω-homs
[A ,B](f, g) =

∧
a B(f(a), g(a)).

Example 2.2. 1. The quantale Ω becomes an Ω-category with Ω(v, w) =
[v, w].

2. Each set A can be perceived as a an Ω-category dA when it is equipped
with dA(a, a) = e and dA(a, b) = ⊥ for a 6= b. Such an Ω-category is called
discrete. With the obvious action on arrows, this extends to a functor d : Set→
Ω-cat.

3. Ordered sets (A,≤) are enriched categories over the two-element quan-
tale 2: the reflexivity and transitivity axioms correspond exactly to (1) [20].

If Ω is the real half line ([0,∞]op,+, 0) as in Example 2.1.2, a small Ω-
category A is a generalised metric space:

0 ≥ A (a, a), A (a, b) + A (b, c) ≥ A (a, c) .

3 In the sequel we shall refer to this map as the Ω-hom, Ω-metric or Ω-distance.
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The generalisation of the usual notion is three-fold. First, A (−,−) :
A × A → [0,∞] is a pseudo-metric in the sense that two distinct points may
have distance 0. Second, A (−,−) is a quasi-metric in the sense that distance
is not necessarily symmetric. Third, distances are allowed to be infinite, which
has the important consequence that the category of generalised metric spaces
has colimits (whereas metric spaces do not even have coproducts). An Ω-
functor is then exactly a non-expanding map.

In view of the above examples, it is helpful to think of Ω-categories as Ω-
valued orders [12]. Actually, each Ω-category A does carry an induced order4

(2) a ≤ b ⇐⇒ e ≤ A (a, b) .

In particular, the underlying order induced by the Ω-category structure on Ω it-
self, as in Example 2.1.1, is the original order of the quantale. An Ω-category is
said to be skeletal if its underlying order is anti-symmetric:
A (a, b) ∧A (b, a) ≥ e implies a = b. Let Ω-cats denote the full subcategory of
skeletal Ω-categories.

Notice that we use the same symbol ≤ for inequality in both Ω and A ,
and rely on the context to tell them apart. We shall proceed similarly for joins
and meets in the underlying order of an Ω-category, whenever these exist.

2.2. A calculus of enriched downsets and upsets.

An Ω-functor ϕ : A op → Ω, usually called a (contravariant) presheaf
in category theory, can be perceived as an Ω-valued downset: the relation
A (a, b) ≤ [ϕ(b), ϕ(a)], equivalent to A (a, b) ⊗ ϕ(b) ≤ ϕ(a), reads in case
Ω = 2 as (a ≤ b and b ∈ ϕ implies a ∈ ϕ), that is, ϕ is a downset in the usual
sense. Here we implicitly identified a downset with its associated characteristic
function. To preserve this intuition, we shall denote by DA the Ω-category of
contravariant presheaves [A op,Ω]. Notice that DA is skeletal, for its underly-
ing order is pointwise, inherited from Ω. The Ω-functor known as the Yoneda
embedding, yA : A → DA , yA (a) = A (−, a), generalises the embedding of
an ordered set into the lattice of its downsets. The correspondence A 7→ DA
extends to a functor Ω-cat → Ω-cat: for each Ω-functor f : A → B, put
Df(ϕ) =

∨
a∈A B(−, f(a))⊗ϕ(a). In fact, D is a Kock-Zöberlein monad [23],

with unit yA : A → DA and multiplication µA (Φ) =
∨
ϕ∈DA ϕ⊗Φ(ϕ), hence

it satisfies DyA a µA a yDA .

4 That is, a reflexive and transitive relation.
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Dually, covariant presheaves, that is, Ω-functors ψ : A → Ω, are the
Ω-enriched analogue of upsets; put UA = [A ,Ω]op (the op corresponding to
the containment order for usual upsets), and y′A : A → [A ,Ω]op, y′A (a) =
A (a,−) the other Yoneda embedding.

Given an Ω-category A , to each ordinary map f : A→ Ω (an Ω-subset5

of A), one can associate an Ω-downset f↓ : A op → Ω by the formula

(3) f↓ =
∨
a∈A

f(a)⊗A (−, a) .

Readers familiar with category theory will recognise in the above formula the
left Kan extension of f along the inclusion of the discrete Ω-category dA
into A ; in the particular case Ω = 2, f↓ is the down-closure of a subset f .

Example 2.3. Consider the  Lukasiewicz chain Ω = 3,
together with the singleton subset {1

2} represented via its
characteristic map as the discrete Ω-subset f : Ω→ Ω,

a 0 1
2 1

f↓(a) 1 1 1
2

f(1
2) = 1, f(0) = f(1) = 0. Then its ordinary downclosure is {0, 1

2}, while the
Ω-enriched f↓ is computed in the table above: in the enriched context, the
Ω-valued downclosure f↓ of the subset {a} carries more information (it has a
richer structure) than the ordinary one.

2.3. Limits and colimits in Ω-categories. (Co)completeness of
Ω-categories.

In this subsection we shall briefly recall the usual notions of weighted
colimits and cocompleteness to be used in the sequel.

A colimit of an Ω-functor f : K → A , weighted by an Ω-functor ϕ :
K op → Ω, consists of an object colimϕf of A , such that

(4) A (colimϕf, a) = [K op,Ω](ϕ,A (f−, a)) =
∧
k∈K

[ϕ(k),A (f(k), a)]

holds, Ω-natural in a ∈ A .
An Ω-category is called cocomplete if it has all Ω-enriched colimits; an Ω-

functor is cocontinuous if preserves all Ω-enriched colimits. Denote by Ω-Sup
the category of cocomplete skeletal Ω-categories and cocontinuous Ω-functors.

It will be convenient for us to use the alternative characterisation of a
cocomplete Ω-category as one having all colimits of the identity functor [34].
That is, for each ϕ : A op → Ω there is an object colimϕidA in A such that

A (colimϕidA , a) = DA (ϕ, yA (a)) =
∧
b∈A

[ϕ(b),A (b, a)] .

5 For Ω = [0, 1], this corresponds to the usual notion of a fuzzy subset [10, 43].
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Interpreting the above formula in the ordered case, we see that colimϕidA ≤ a
holds if and only if b ∈ ϕ implies b ≤ a for all b. Hence, intuitively, colimϕidA

computes the Ω-suprema of the Ω-contravariant presheaf ϕ : A op → Ω (think
again of ϕ as an ”Ω-valued downset”) and will be denoted supA ϕ. Then co-
completeness of A can be rephrased as the property of the Yoneda embedding
of having a left adjoint (namely, supA : DA → A ).

Example 2.4. We list below two types of weighted colimits:

1. If K is the unit Ω-category6 1, we may identify f with an object a of
A and ϕ with an element v of the quantale Ω. The resulting colimit, usually
called the tensor (or copower) of v with a, will be denoted v ∗ a instead of
colimϕf . Explicitly, the tensor v ∗ a is uniquely determined by the relation
A (v ∗ a, b) = [v,A (a, b)] for all a, b ∈ A .

2. A conical colimit is a colimit weighted by a presheaf ϕ : K op → Ω with
constant value e, the unit of the quantale; its defining property is therefore
A (colimϕf, a) =

∧
k∈K A (f(k), a) for all a ∈ A . In particular, with respect

to the induced order on A , colimϕf ≤ a holds if and only if f(k) ≤ a holds for
every k; that is, colimϕf is the join

∨
k∈K f(k) of the family (f(k))k∈K in the

underlying ordered set of the Ω-category A .

The importance of the previous two types of colimits resides in the char-
acterisation of a cocomplete Ω-category as an Ω-category having all tensors and
all conical colimits [16, 35]. For later use, we just mention how the Ω-suprema
of a contravariant presheaf ϕ : A op → Ω is obtained via joins and tensors:

(5) supA ϕ =
∨
a∈A

ϕ(a) ∗ a .

In particular, a skeletal cocomplete Ω-category is a complete lattice with
respect to the induced order.

Remark 2.5. A careful analysis of the defining property of a weighted
colimit (4) shows that without loss of generality, the domain Ω-category K
of the weight can be chosen discrete. This is because the quantale in which
we enrich is actually a poset. The fact that weighted colimits can be discrete
means that we can treat them as operations, and this will be useful in the
sequel.

Dually, one can define weighted limits (in particular, cotensors v � a,
meets

∧
k ak and infima infA ψ of Ω-valued upsets ψ : A → Ω) and talk about

completeness of Ω-categories and continuity of Ω-functors. For more details,
we refer to e.g. [34, 35], and only recall here the formula allowing to compute

6 Having only one object, with corresponding Ω-hom given by the unit of the quantale e.
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the limit of an Ω-functor G : K → A weighted by w : K → Ω, by meets and
cotensors:

(6) limwG =
∧
k∈K

w(k) �G(k) .

To deepen the analogy with order and lattice theory, we add that an Ω-
category A is complete if and only if it is cocomplete [34].7 Alternatively, A is
cocomplete if it is complete as a lattice and has all tensors and cotensors [35].
This last result has the advantage of characterising Ω-Sup, the category of
cocomplete skeletal Ω-categories and cocontinuous Ω-functors by operations
and equations, as we shall recall next. Formally, the forgetful functor Ω-Sup→
Set is monadic. This goes back to [15] and [26], but see also [13, 36].

Equational presentation of cocomplete Ω-categories. A cocomplete
skeletal Ω-category can alternatively be described as a complete join-lattice
(A,
∨
,⊥) endowed with an action of Ω, (v, a) 7→ v ∗ a [35], satisfying the

following equations:

(7)

e ∗ a = a v ∗ (w ∗ a) = (v⊗w) ∗ a(∨
i∈I

vi

)
∗ a =

∨
i∈I

(vi ∗ a) v ∗

(∨
i∈I

ai

)
=
∨
i∈I

(v ∗ ai) .

Also, cocontinuous Ω-functors are precisely the join-lattice homomor-
phisms preserving the action of Ω.

Remark 2.6. Readers familiar with ring and module theory will certainly
identify cocomplete skeletal Ω-categories as complete semimodules over Ω,
Ω being perceived as a complete idempotent semiring, and cocontinuous Ω-
functors as complete homomorphisms of Ω-semimodules [4].

As mentioned above, a (skeletal) Ω-category A is complete if and only if
it is cocomplete. In particular, cocompleteness implies existence of arbitrary
meets and cotensors. For example, the cotensor v�− is a unary operation on
A , right adjoint to v ∗ −

v ∗ a ≤ b ⇐⇒ a ≤ v � b .

Also, meets and cotensors automatically satisfy equations dual to those

7 Although the two notions are equivalent, we shall continue to refer to “cocomplete”
Ω-categories, as we are mainly interested in suprema of Ω-downsets and in cocontinuous
Ω-functors.
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in (7) (formally deduced by adjunction), namely

(8)

e� a = a v � (w � a) = (v⊗w) � a(∨
i∈I

vi

)
∗ a =

∧
i∈I

(vi � a) v �

(∧
i∈I

ai

)
=
∧
i∈I

(v � ai) .

The Ω-category structure can be recovered from the equational presenta-
tion above [26] as

(9) A (a, b) =
∨
{v | v ∗ a ≤ b} =

∨
{v | a ≤ v � b} .

For further use, let us also record the relation

(10)
∨
a∈A

A (a, b) ∗ a = b

which generalises the obvious statement that in an ordered set, the join of all
elements below some b is b itself.

Remark 2.7. It will be beneficial in the next section to use an equivalent,
but more symmetric presentation of (the objects of) Ω-Sup: the objects are
complete lattices (hence having both arbitrary joins

∨
and meets

∧
), together

with a family of adjoint unary operators indexed by Ω (tensors v ∗ − and
cotensors v�−), satisfying both (7) and (8), in addition to the usual complete
lattice equations. Notice that arrows in Ω-Sup do not preserve all operations
described above, but only joins and tensors8.

Example 2.8. 1. Perhaps the simplest example of a cocomplete Ω-category
is Ω itself, with the Ω-category structure described in Example 2.1.1. Trivially,
the unit category 1 is also cocomplete.

2. For any Ω-category A , the associated Ω-category of Ω-downsets DA
is cocomplete and skeletal. In fact, DA is the free cocompletion of A [16, 34].9

For later use, recall how suprema and limits are computed in DA :

(11) supDA Φ = µA (Φ) =
∨

ϕ∈DA

Φ(ϕ)⊗ ϕ

respectively

(12) limwG =
∧
k∈K

[w(k), G(k)(−)]

where Φ : (DA )op → Ω, w : K → Ω and G : K → DA are Ω-functors.

8 Consequently, meets and cotensors are only laxly preserved.
9 In particular, taking the domain to be discrete, we obtain the cocomplete [dA,Ω] = ΩA.

The case A = ∅ produces the cocomplete terminal Ω-category 1>.
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3. For each Ω-category A , there is an adjunction commuting with both
Yoneda embeddings

A
yA

vv
y′A
((

[A op,Ω]
//

⊥ [A ,Ω]opoo

where the horizontal left adjoint maps an Ω-downset ϕ to

↑ϕ =
∧
a∈A

[ϕ(a),A (a,−)]

(the analogue of the (up)set of upper bounds), respectively an Ω-enriched upset
ψ : A → Ω is mapped by the right adjoint to the Ω-downset of its lower bounds

↓ψ =
∧
a∈A

[ψ(a),A (−, a)] .

The fixed points of these adjunction determine a (complete and) cocomplete
skeletal Ω-category into which A embeds continuously and cocontinuously,
known as the Isbell completion (the Ω-categorical analogue of the Dedekind-
MacNeille completion of an ordered set) [32, 34, 39]. For example, in case
Ω = ([0,∞],≥R,+, 0), the Isbell completion is known in the theory of metric
spaces as the tight span [41].

3. COMPLETELY DISTRIBUTIVE QUANTALE ENRICHED
CATEGORIES

There are several ways of introducing completely distributive Ω-categories.
Here, we chose to take the perhaps simplest approach, following [30]:

Definition 3.1. A completely distributive Ω-category10 is a cocomplete Ω-
category A , such that supA : DA → A has an Ω-enriched left adjoint.

Completely distributive Ω-categories have been studied in the past by
several authors, see e.g. [2, 17, 36, 38]. As the name suggests, for Ω = 2

we recover the well-known completely distributive lattices (the left adjoint to
supA mapping an element to the downset of those totally below it). We shall
denote by Ω-CD the category of completely distributive skeletal Ω-categories
and continuous and cocontinuous Ω-functors.

Remark 3.2. We shall see in Section 3.1 how the choice for arrows in Ω-CD
is imposed by the axiomatisation (15): all operations encountered must be
preserved. Actually, there is a deeper categorical reason behind that: Ω-CD is

10 Also know as a totally continuous Ω-category.
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the category of algebras for the lifting of the Ω-downset monad D to Ω-Inf, the
category of algebras for the Ω-upset monadU [2, 38]. Consequently, the arrows
in Ω-CD are simultaneously U-homomorphisms and D-homomorphisms, that
is, continuous and cocontinuous Ω-functors.

Example 3.3. For any Ω-category A , DA is completely distributive, the
left adjoint of supDA being DyA [17, 37]. In particular, for any set A, the
Ω-valued powerset ΩA = [dA,Ω] is completely distributive. Taking A to be a
singleton shows that the quantale Ω is itself completely distributive as an Ω-
category, while A = ∅ produces the completely distributive terminal Ω-category
1>. Also, the unit Ω-category 1 is completely distributive.

Remark 3.4. 1. A cocomplete skeletal Ω-category is completely distribu-
tive if and only if it is a projective object in Ω-Sup [36].

2. Unlike the case for lattices, complete distributivity is no longer a self-
dual notion in general;11 in fact, in [17] it is proven that for an integral quantale
Ω, every completely distributive Ω-category is also completely co-distributive
if and only if Ω is a Girard quantale [42].

3. Complete distributivity of a cocomplete Ω-category does not necessar-
ily entail the complete distributivity of the underlying lattice. For example, Ω
itself is always completely distributive as an Ω-category [37], but not necessar-
ily distributive as a lattice, as we have seen from Example 2.1. However, there
exists a positive result in this sense, due to [17]: every completely distributive
Ω-category A is completely distributive as a lattice if and only if Ω itself is a
completely distributive lattice.

Actually, if the reader is interested in cocomplete Ω-categories which are
not completely distributive, there is a simple way of producing such examples:
take any complete lattice A which is not completely distributive, e.g. the dia-
mond lattice M3, and a quantale Ω which is completely distributive as a lattice.
Then the tensor product of A and Ω in the category of complete sup-lattices is
a cocomplete Ω-category – it is the free cocomplete Ω-category over the com-
plete sup-lattice A [15, 26], but not completely distributive as a lattice [33].
Therefore this tensor product is neither Ω-completely distributive.

3.1. The equational theory of completely distributive Ω-categories

In [28] it is shown that the category Ω-CD is monadic over Set, hence
a(n infinitary) variety [21]. In particular, the free completely distributive Ω-
category over a set A is DU(dA) [2, 38], similarly to the ordered case [22].

11 Neither is this the case when working in an arbitrary topos [6].
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We shall see in the sequel how Ω-CD can be described by a nice set of
operations and equations, provided certain assumptions on the quantale are
fulfilled. We begin with a simple result, which will turn out to be useful in
computations:

Lemma 3.5. Let A be a complete Ω-category. Then

[v, w] ∗ a ≤ v � (w ∗ a)

holds for any v, w ∈ Ω and a ∈ A . More generally, we have(∧
i

[vi, wi]

)
∗ a ≤

∧
i

(
vi � (wi ∗ a)

)
for all v, w ∈ Ω and all a ∈ A .

Proof. The following standard sequence of implications below proves the
first assertion:

v ⊗ [v, w] ≤ w
v ∗ ([v, w] ∗ a) = (v ⊗ [v, w]) ∗ a ≤ w ∗ a

[v, w] ∗ a ≤ v � (w ∗ a)

The second statement is an immediate consequence.

Assumption. In what follows, we shall consider Ω to be a commutative
quantale, such that

1. Ω is completely distributive as a lattice.

2. All cotensors [v,−] : Ω→ Ω, for v ∈ Ω, preserve non-empty joins, that is,

[v,
∨
i∈I

wi] =
∨
i∈I

[v, wi]

holds in Ω for non-empty I.

Remark 3.6. 1. Observe that in any quantale, [⊥, v] = > holds for all
v, hence in particular [⊥,⊥] = >.12 Also, [v,⊥] = ⊥ holds for all v 6= ⊥
in Ω if and only if the quantale has no zero divisors.13 Therefore extending
Assumption 2 as to include the empty join, that is, the bottom element of the
quantale, would not be reasonable.

2. The above assumptions are satisfied for all quantales in Example 2.1.1-
3 and also by all finite semilinear commutative residuated lattices (in particular
by the finite commutative MTL-algebras) [5, 14].

12 Hence [⊥,−] preserves the empty join only if the quantale is trivial.
13 That is, v ⊗ w = ⊥ implies v = ⊥ or w = ⊥.
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Using the symmetric presentation of cocomplete Ω-categories, as empha-
sised in Remark 2.7, we can now state the main result of this paper:

Theorem 3.7. Let A = (A,
∨
,
∧
, (v∗−)v∈Ω, (v�−)v∈Ω) be a cocomplete

skeletal Ω-category. If A is completely distributive, then it satisfies

(13)
∧
k∈K

ψ(k) �

(∨
a∈A

G(k)(a) ∗ a

)
=
∨
f∈F

∧
k∈K

ψ(k) �

(
G(k)(fk) ∗ fk

)
for every pair of functions ψ : K → Ω, G : K → ΩA, where F denotes the set
of functions K → A.

Proof. Recall that a cocomplete Ω-category A is completely distributive
if and only if supA : DA → A has an Ω-enriched left adjoint, equivalently, if
supA : DA → A preserves weighted limits. That is,

supA (limψG) = limψ(supA ◦G)

holds for every Ω-functors ψ : K → Ω and G : K → DA . Expressing supA

by tensors and joins, and the weighted limits above by cotensors and meets as
in (5), (6), (11), (12), we obtain

(14)
∨
a

(∧
k

[ψ(k), G(k)(a)]

)
∗ a =

∧
k

ψ(k) �

(∨
a

G(k)(a) ∗ a

)
.

As explained in Remark 2.5, we can replace K by a discrete Ω-category (a set)
without loss of generality. Hence instead of an Ω-functor ψ : K → A , we shall
consider a mere function ψ : K → A.

The natural next step will then be to substitute the Ω-functor G : K →
DA = [A op,Ω] by a function G : K → ΩA = [A,Ω]. But in this case there is a
price to pay: the passage from the family of Ω-downsets (G(k) : A op → Ω)k to
a family of Ω-subsets (G(k) : A → Ω)k forces the appearance of the Ω-down-
closure of each Ω-subset G(k) ∈ ΩA in (14), namely

(15)
∨
a

(∧
k

[ψ(k), G(k)↓(a)]

)
∗ a =

∧
k

ψ(k) �

(∨
a

G(k)↓(a) ∗ a

)
But since “the supremum of an Ω-subset is the supremum of its Ω-down-
closure”, that is,∨

a

G↓(k)(a) ∗ a =
∨
a

(∨
b

G(k)(b)⊗A (a, b)

)
∗ a

=
∨
b

G(k)(b) ∗

(∨
a

A (a, b) ∗ a

)
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=
∨
b

G(k)(b) ∗ b (by (10))

we see that the right hand side of Equation (15) above remains unchanged by
substituting G(k)↓ by G(k) and that the complete distributivity equation (14)
becomes

(16)
∨
a

(∧
k

[ψ(k),
∨
b

G(k)(b)⊗A (a, b)]

)
∗ a =

∧
k

ψ(k) �

(∨
a

G(k)(a) ∗ a

)
.

Notice that the left hand side involves now not only the tensor and the inter-
nal hom of the quantale, but also the Ω-category structure of A , which, as
expressed in Equation (9), leads beyond equational logic. At this stage, the
assumptions on Ω come into place for the following sequence of computations:∨

a

(∧
k

[ψ(k),
∨
b

G(k)(b)⊗A (a, b)]

)
∗ a

=
∨
a

(∧
k

∨
b

[ψ(k), G(k)(b)⊗A (a, b)]

)
∗ a (by Assumption.(2))

=
∨
a

∨
f

∧
k

[ψ(k), G(k)(fk)⊗A (a, fk)]

 ∗ a (by Assumption.(1))

≤
∨
a,f

∧
k

ψ(k) �

((
G(k)(fk)⊗A (a, fk)

)
∗ a

)
(by Lemma 3.5)

=
∨
a,f

∧
k

ψ(k) �

(
G(k)(fk) ∗

(
A (a, fk) ∗ a

))

≤
∨
f

∧
k

(
ψ(k) �

(
G(k)(fk) ∗ (

∨
a

A (a, fk) ∗ a)

))

=
∨
f

∧
k

ψ(k) �

(
G(k, fk) ∗ fk

)
(by (10))

Therefore
∧
k

ψ(k) �

(∨
a

G(k)(a) ∗ a

)
≤
∨
f

∧
k

ψ(k) �

(
G(k)(fk) ∗ fk

)
holds.

The opposite inequality is trivial, as for each f ∈ F we always have∧
k

ψ(k) �

(
G(k)(fk) ∗ fk

)
≤
∧
k

ψ(k) �

(∨
a

G(k)(a) ∗ a

)
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hence

(17)
∨
f

∧
k

ψ(k) �

(
G(k)(fk) ∗ fk

)
≤
∧
k

ψ(k) �

(∨
a

G(k)(a) ∗ a

)
and the proof is finished.

Remark 3.8. 1. We already know from [17] that assuming the quantale to
be completely distributive entails that each completely distributive Ω-category
is also completely distributive as a lattice. To see Theorem 3.7 at work, we
shall recover the cited result of Lai and Zhang by choosing trivial weights
ψ(k) = e and discrete Ω-subsets G(k) corresponding to a family of ordinary
subsets (Ak)k∈K of A; that is,

G(k)(a) =

{
e for a ∈ Ak
⊥ otherwise

∀ k

Then Equation (13) becomes∧
k

∨
Ak =

∨
{f :K→A | fk∈Ak}

∧
k

fk .

The reader will recognise the usual law of complete distributivity via choice
functions.

2. Again by [17], each completely distributive Ω-category is a homomor-
phic image of a subobject of a product of copies of Ω.14 This can be imme-
diately seen as follows: first, any completely distributive Ω-category A is a
retract of DA via supA : DA → A , which is both continuous and cocontin-
uous, hence A is a quotient of DA in Ω-CD. Second, the inclusion functor
DA → [dA,Ω] = ΩA is both continuous and cocontinuous (with adjoints pro-
vided by Kan extensions), hence DA is a subobject of ΩA in Ω-CD. That is,
Ω-CD = HSP(Ω). In particular, an equation holds in a completely distributive
Ω-category A if and only if it holds in Ω. This is perhaps best illustrated by
the following Corollary (compare also with [18, Corollary 4.14]):

Corollary 3.9. Let A = (A,
∨
,
∧
, (v ∗ −)v∈Ω, (v �−)v∈Ω) be a cocom-

plete skeletal Ω-category. Then A satisfies (13) if and only if A is completely
distributive as a lattice and cotensors in A preserve non-empty joins:

(18) v �
∨
i

ai =
∨
i

(v � ai)

14This is the Ω-enriched generalization of Raney’s well-known result that a complete lattice
is completely distributive if and only if it is the homomorphic image of a ring of sets [29].
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Proof. The complete distributivity of A as a lattice has been discussed
above. Take now K = {0}, ψ(0) = v, G(k)(ai) = e and G(k)(−) = ⊥ otherwise
to obtain (18). Conversely, using that cotensors preserve non-empty joins, that
each complete Ω-category is non-empty, and finally the complete distributivity
of the underlying lattice (A ,

∨
,
∧

), we have that

∧
k

ψ(k) �

(∨
a

G(k)(a) ∗ a

)
=

∧
k

∨
a

(
ψ(k) � (G(k)(a) ∗ a)

)

=
∨
f

∧
k

(
ψ(k) � (G(k)(fk) ∗ fk)

)

for each functions ψ : K → Ω, G : K → ΩA, hence we recover the complete
distributivity law with obtained in Theorem 3.7.

Remark 3.10. Earlier we mentioned that the equational theory of Ω-CD is
generated by Ω, regardless of Assumption. Hence there is no hope for obtaining
various variants of distributivity laws (like the one discussed below) unless these
already hold in Ω.

For example, observe that the parentheses in expressions involving tensors
and cotensors, e.g. v� (w ∗a), do not change in the above law (13) of complete
Ω-distributivity. One may then ask whether the distributivity-like property

v � (w ∗ a) = [v, w] ∗ a

could be of interest for Ω-CD. But the corresponding relation for Ω itself,
namely [v, w⊗u] = [v, w]⊗u, implies that the quantale is trivial. To see this,
observe that e ≤ [v, v] = [v, e ⊗ v] = [v, e] ⊗ v ≤ e. Therefore Ω is an ordered
abelian group [19], hence it cannot be bounded as a lattice unless it is trivial [1].

Consequently, completely distributive Ω-categories are not so distributive
after all.

Before ending the paper, we point out one more issue: comparing the
constructive versus the non-constructive equations of Ω-completely distribu-
tivity, namely (16) and (13), as recalled below, we see that the left hand sides
coincide.

(19)

∧
k∈K

ψ(k) �

(∨
a∈A

G(k)(a) ∗ a

)
=

∨
a∈A

(∧
k∈K

[ψ(k), G(k)↓(a)]

)
∗ a

∧
k∈K

ψ(k) �

(∨
a∈A

G(k)(a) ∗ a

)
=

∨
f∈F

∧
k∈K

ψ(k) � (G(k)(fk) ∗ fk) .
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A careful inspection of the proof of Theorem 3.7 reveals that the inequal-
ity ∨

a∈A

(∧
k∈K

[ψ(k), G(k)↓(a)]

)
∗ a ≤

∨
f∈F

∧
k∈K

ψ(k) � (G(k)(fk) ∗ fk)

holds in Ω-CD if Assumption holds. We shall now see an example where the
inequality is not true.

Example 3.11. Take one of the two non-distributive quantales M3 and N5

from Example 2.14. Then Ω-distributivity (16) always holds in Ω, but (13),
which implies lattice-distributivity, does not hold in the non-distributive lat-
tices M3 and N5. Let us consider for example Ω = M3. Put K = {0, 1} and
take the constant trivial weight ψ(0) = ψ(1) = e. Also, consider the following
K-indexed family of Ω-subsets of Ω itself, seen as an Ω-category:

G(k)(x) =

{
e k = 0, x = e or k = 1, x ∈ {a, b}
⊥ otherwise

.

Equation (13) then becomes e∧(a∨b) = (e∧a)∨(e∧b), which interpreted
in Ω = M3 is false.

During the evaluation the right-hand side of (13), observe that the ordered
downsets G(0)↓ and G(1)↓ are, respectively, {⊥, e} and {⊥, a, b}, hence their
intersection is adequately computed by (e ∧ a) ∨ (e ∧ b) = ⊥. But to compute
the “enriched meet”, we need to go back to the formula of the “weighted
downsets” (3).

[−,−] ⊥ a e b >
⊥ > > > > >
a b > b b >
e ⊥ a e b >
b a a a > >
> ⊥ a ⊥ b >

x ⊥ a e b >
G(0)↓(x) > b e a ⊥
G(1)↓(x) > > > > >

The table above on the left exhibits the internal hom for the quantale struc-
ture of M3 of Example 2.14. Therefore G(0)↓(x) = [x, e] and G(1)↓(x) =
[x, a] ∨ [x, b]. We see that the enrichment does change G(1)↓ significantly.
One reason is – as for example the calculation G(1)↓(e) = (G(1)(a)⊗ [e, a]) ∨
(G(1)(b)⊗ [e, b]) = [e, a] ∨ [e, b] = a ∨ b = > shows – that due to the ten-
sor products e ⊗ a = a and e ⊗ b = b the element e can be “drawn into”
the downset {⊥, a, b} even if e is not below a or b. Another reason, is that
while [>, a] evaluates to zero over 2, it evaluates to [>, a] = a over M3, so
that G(1)↓(>) = [>, a] ∨ [>, b] = a ∨ b = >. In fact, the only difference to
the right-hand side of (13) is the presence of the Ω-down-closure in the above
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calculation, but these, read in the appropriate enriched way, do enlarge the
downsets just enough to make the equality work again.
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