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In this paper, we study the opening of a spectral gap for a class of 2-dimensional
periodic Hamiltonians which include those modelling multilayer graphene. The
kinetic part of the Hamiltonian is given by σ ·F (−i∇), where σ denotes the Pauli
matrices and F is a sufficiently regular vector-valued function which equals 0 at
the origin and grows at infinity. Its spectrum is the whole real line. We prove
that a gap appears for perturbations in a certain class of periodic matrix-valued
potentials depending on F , and we study how this gap depends on different
parameters.
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1. INTRODUCTION, MODEL AND MAIN RESULT

Graphene is a two-dimensional material made of carbon atoms on a hon-
eycomb lattice. Among its remarkable properties is its energy band structure,
with two bands crossing at the Fermi level [4]. This particular structure has
suggested to model the dynamics of one electron in a graphene sheet by the
free massless two-dimensional Dirac operator.

An interesting problem is to study the electronic properties of a material
which is not a single sheet of graphene but several stacked layers of graphene.
In this case, the dynamics of the electron can be approximated by an effective
Hamiltonian which typically is a Nth order Dirac-like operator, N being the
number of layers (see [7] and references therein).

One of the major problems linked with graphene is to tune an energy
bandgap at the Fermi level, making graphene a semiconductor. To realize this,
one of the possibilities is to use the so-called graphene antidot lattices, which
consist of a sheet of graphene periodically patterned with obstacles such as
holes. In the case of single-layer graphene antidot lattices, the gap opening has
been numerically achieved in [5] and was proved in [1] with a mathematical
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approach. See also [2, 3] and references therein for rigorous studies of spectral
properties of Dirac operators modelling graphene antidot lattices.

The goal of this article is to generalize such gap opening results to higher-
order Hamiltonians, including the ones for multilayer graphene.

Namely, we want to study gap opening in the spectrum under periodic
pertubations of the Hamiltonian

H0 = σ · F (−i∇)

on L2(R2,C2), where σ = (σ1, σ2, σ3) denotes the usual Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and F : R2 → R3. More precisely, this means that for any ψ ∈ Dom(H0)

H0ψ(x) =
(
F−1 [σ · F (·)Fψ]

)
(x),

where F denotes the Fourier transform on L2(R2,C2)

Fψ(p) =
1

2π

∫
R2

e−ip·xψ(x)dx.

We suppose that the function F fulfils the following assumptions.

Hypothesis 1. (i) F belongs to C3(R2, R3).

(ii) There exist constants K ′0, Ki > 0 such that for all p ∈ R2,

K ′0|p|d 6 |F (p)| 6 K0|p|d ,
|DiF (p)| 6 Ki < p >

d−|i|(1)

for some d > 0 and any multi-index i such that 1 6 |i| 6 3. Here < p >=√
1 + |p|2 and Di denotes the multi-index partial derivative operator.

(iii) There exists a 2× 3 rank 2 matrix A such that in a neighbourhood
of 0,

F (p) = |p|d−1Ap+O(|p|d+1).

Proposition 1. The operator H0 is unitarily equivalent to a multiplica-
tion operator by σ3|F |. It is then self-adjoint on Dom(H0) = F−1(Dom(|F (·)|))
and its spectrum is given by the essential range of ±|F |, which is R under Hy-
pothesis 1 (i) and (ii).

Proof. The proof, identical to the one for the free Dirac operator, comes
directly from the definition of H0 through the Fourier transform which is uni-
tary (cf. [11]).
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In order to open a gap around the zero energy, we will perturb H0 with
a periodic potential defined as follows. Let

χ = (χ1, χ2, χ3) : R2 → R3

where each χi is a bounded function with compact support included in the set
Ω =]− 1

2 ,
1
2 ]2.

Let β > 0 and α ∈]0, 1]. The perturbed Hamiltonian is

H(α, β) = H0 + β
∑
γ∈Z2

χ

(
x− γ
α

)
· σ.

The operator H(α, β) is Z2-periodic and self-adjoint on Dom(H0).

Remark 1. In [1], the authors treated the particular case corresponding
to the free massless Dirac operator where F (p) = (p1, p2, 0) and χ1 = χ2 = 0.

Let us denote Φi =
∫

Ω χi(x)dx, 1 6 i 6 3, and let us introduce the
three-dimensional vector

Φ = (Φi)16i63 ∈ R3.

We denote by Φ|| the projection of Φ on Ran(A) and by Φ⊥ the projection on

Ran(A)⊥.
Here is the main result of our paper.

Theorem 2. Suppose that Φ⊥ 6= 0. Let d′ = min(d, 2). There exist some

constants λ0, C > 0 and δ ∈]0, 1[ with Cδ < |Φ⊥|
2 such that for any α ∈]0, 1/2]

and β > 0 satisfying α2β < λ0, αd
′
β < δ we have that the interval[

−α2β

(
|Φ⊥|

2
− Cαd′β

)
, α2β

(
|Φ⊥|

2
− Cαd′β

)]
belongs to the resolvent set ρ(H(α, β)).

Remark 3. In [1], this condition is achieved since the kinetic part is in
the subspace spanned by σ1 and σ2 and the potential is in Span(σ3).

As in [1], we use the Floquet-Bloch transformation to come to a problem
on the unit square, where the gradient has a well-known eigenbasis. Then, we
use a Feshbach map argument, separating the problem between constant and
non-constant modes. While the estimate on the constant subspace is direct, we
need to use decay of the resolvent of the free operator and repeated applications
of the resolvent equation to prove the invertibility on the orthogonal.

The paper is organized as follows. In Section 2 we perform a detailed
analysis of the integral kernel of the free resolvent, including its local singu-
larities and off-diagonal decay. In Section 3 we give the proof of the main
theorem, while in the Appendix we summarize the results we need from the
Bloch-Floquet transformation.
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2. RESOLVENT DECAY AND INTEGRAL KERNEL

In this chapter, we study the behaviour of the integral kernel for the
free resolvent. Due to the expression of the kinetic energy, we do not have an
explicit formula for this integral kernel. Nevertheless, we can prove that the
integral kernel exists, it has integrable local singularities and has a sufficiently
fast off-diagonal polynomial decay.

The result states as follows.

Proposition 2. Let Md be the function defined on R2 × R2 by:

Md(x,x
′) =


1

|x−x′|2−d + 1 if |x− x′| 6 1 and d 6= 2;

− log |x− x′|+ 1 if |x− x′| 6 1 and d = 2;
1

|x−x′|3 if |x− x′| > 1.

The operator (H0 − i)−1 has an integral kernel, denoted by (H0 − i)−1(x,x′),
such that

(2)
∣∣(H0 − i)−1(x,x′)

∣∣ 6Md(x,x
′) .

The proof of this Proposition is based on the following Lemma, and is
postponed to the end of this section.

Lemma 1. There exists some C > 0 such that for all f and g ∈ L2(R2,C2)
we have

(3) |〈f , (H0 ± i)−1g〉| 6 C
∫
R2

∫
R2

|f(x)|Md(x,x
′)|g(x′)|dxdx′.

Remark 4. If d > 2 then Md is bounded while if d < 2, Md has a local
singularity of the type 1

|x−x′|2−d . This is why we denote d′ = min(d, 2); we can

then write if d 6= 2 Md 6
2

|x−x′|2−d′ .

Proof of Lemma 1. For p ∈ R2, we define the 2× 2 matrix

G(p) = (σ · F (p)− i)−1.

The operator of multiplication by G is bounded on L2(R2, C2).
Remind that < p >=

√
1 + |p|2. We define, for ε > 0, the regularized

kernel

Kε(x,x
′) =

1

2π

∫
R2

eip·(x−x′)G(p)e−ε<p>dp = F−1(Ge−ε<·>)(x− x′).

The estimates (1) of Hypothesis 1(ii) implies that for any multi-index N
such that |N | 6 3 there exists CN > 0 such that

(4) |DNG(p)| 6 CN
< p >|N |+d

.
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For x = (x1, x2) and x′ = (x′1, x
′
2), choose l ∈ {1, 2} such that |x − x′| 6√

2|xl − x′l|. By repeated integrations by part, we find that for any integer
M 6 3 we have :

(5) (xl − x′l)MKε(x,x
′) = iM

1

2π

∫
R2

eip·(x−x′) ∂
M

∂pMl

(
G(p)e−ε<p>

)
dp.

Hence we have

(6) |xl − x′l|M |Kε(x,x
′)| 6 1

2π

∫
R2

∣∣∣∣ ∂M∂pMl
(
G(p)e−ε<p>

)∣∣∣∣ dp.
Pick M = 3. We have then, by product rule and denoting E(p) = e−ε<p>,

∂3

∂p3
l

(G(p)E(p)) =
∂3G(p)

∂p3
l

E(p) + 3
∂2G(p)

∂p2
l

∂E(p)

∂pl

+ 3
∂G(p)

∂pl

∂E(p)2

∂p2
l

+G(p)
∂E(p)3

∂p3
l

.

Furthermore, we have:

∂E(p)

∂pl
=− εpl

E(p)

< p >
,

∂2E(p)

∂p2
l

=− ε E(p)

< p >
+ εp2

l

E(p)

< p >3
+ ε2p2

l

E(p)

< p >2
,

∂3E(p)

∂p3
l

= 3εpl
E(p)

< p >3
+ 3ε2pl

E(p)

< p >2
− 3εp3

l

E(p)

< p >5

− 3ε2p3
l

E(p)

< p >4
− ε3p3

l

E(p)

< p >3
.

(7)

Moreover, since xke−x is bounded on R+ for all k, there exist some constants
ck such that for all ε > 0 and p ∈ R2

(8) εke−ε<p> 6 ck < p >
−k .

In the sequel, denoting by C a generic constant independent of ε, we obtain
from (7), the above bound (8), and the fact that |E(p)| 6 1 and |pl|

<p> 6 1, that
for j ∈ {1, 2, 3},

(9)

∣∣∣∣∣∂jE(p)

∂pjl

∣∣∣∣∣ 6 C

< p >j
.

From (4) and (9) we obtain for j ∈ {0, 1, 2, 3},∫
R2

∣∣∣∣ ∂j∂pjj
G(p)

∣∣∣∣ ∣∣∣∣ ∂3−j

∂pj3−jE(p)

∣∣∣∣dp 6 C
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Hence, according to (6), we have |Kε(x,x
′)| 6 C

|xl−x′l|3
and thus

(10) |Kε(x,x
′)| 6 C

|x− x′|3
.

This estimate is only useful if |x− x′| > 1.

Let us now study the case |x− x′| 6 1. We write

2πKε(x,x
′) =

∫
|p|61

eip·(x−x′)G(p)e−ε<p>dp

+

∫
16|p|6|x−x′|−1

eip·(x−x′)G(p)e−ε<p>dp

+

∫
|x−x′|−16|p|

eip·(x−x′)G(p)e−ε<p>dp.

(11)

We simply bound the first term in the right hand side of (11) by

(12)

∣∣∣∣∣
∫
|p|61

eip·(x−x′)G(p)e−ε<p>dp

∣∣∣∣∣ 6
∫
|p|61

|G(p)|dp ,

which is finite and independent of ε.

To bound the second term in the right hand side of (11), we use from
Hypothesis 1(ii) that |G(p)| 6 C

|p|d which yields

(13)

∣∣∣∣∣
∫

16|p|6|x−x′|−1

eip·(x−x′)G(p)e−ε<p>dp

∣∣∣∣∣ 6 2π

∫ |x−x′|−1

1

C

rd
rdr

which is bounded by C
(

1
|x−x′|2−d − 1

)
for d 6= 2 and by C log

(
|x− x′|−1

)
for

d = 2.

To estimate the third term in the right hand side of (11), we need some
more care. We choose l ∈ {1, 2} as before such that |x− x′| 6

√
2|xl − x′l|.

Let us calculate∫
|p|>|x−x′|−1

−(xl − x′l)2eip·(x−x′)G(p)e−ε<p>dp ,

which corresponds to the integral that we want to estimate multiplied by −(xl−
x′l)

2. For θ ∈ [0, 2π) we define the vector p(θ) = (|x−x′|−1 cos θ, |x−x′|−1 sin θ)
and we denote by pl(θ) its l-th component. Then, integrating by part with
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respect to the pl variable and applying Gauss divergence theorem, we have∫
|p|>|x−x′|−1

−(xl − x′l)2eip·(x−x′)G(p)e−ε<p>dp

= −
∫ 2π

0
e−ε<p(θ)>i(xl − x′l)eip(θ)·(x−x′)G(p(θ))pl(θ)dθ

−
∫
|p|>|x−x′|−1

i(xl − x′l)eip·(x−x′) ∂

∂pl

(
G(p)e−ε<p>

)
dp.

(14)

Using the estimate (4), we get that the first term is bounded by

(15) 2π
C0

(|x− x′|−1)d
|x− x′|−1|xl − x′l| 6 2πC0|x− x′|d.

To estimate the second term in the right hand side of (14), we use a new
integration by parts:

−
∫
|p|>|x−x′|−1

i(xl − x′l)eip·(x−x′) ∂

∂pl

(
G(p)e−ε<p>

)
dp

=

∫ 2π

0
eip(θ)·(x−x′) ∂

∂pl

(
Ge−ε<·>

)
(p(θ))pl(θ)dθ

+

∫
|p|>|x−x′|−1

eip·(x−x′) ∂
2

∂p2
l

(
G(p)e−ε<p>

)
dp.

(16)

Using again that∣∣∣∣ ∂∂pl (G(p)e−ε<p>
)∣∣∣∣ 6 C

|p|d+1
and

∣∣∣∣ ∂2

∂p2
l

(
G(p)e−ε<p>

)∣∣∣∣ 6 C

|p|d+2
,

we can bound the first term in the right hand side of (16) by

(17) 2π|x− x′|−1 C

|x− x′|−(d+1)
= 2πC|x− x′|d

and the second one by

(18)

∫
|p|>|x−x′|−1

C

|p|d+2
dp =

2πC

d
|x− x′|d

Putting together the estimates (15), (17) and (18), we find that

(19)

∣∣∣∣∣
∫
|p|>|x−x′|−1

eip·(x−x′)G(p)e−ε<p>dp

∣∣∣∣∣ 6 C|x− x′|d−2.

Adding the estimates (12), (13) and (19), we find that there exists a
constant C > 0 such that uniformly in ε

|Kε(x,x
′)| 6 C

(
1

|x− x′|2−d
+ 1

)
,
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if |x− x′| 6 1, which together with the result (10) which holds for |x− x′| > 1
allows us to conclude that uniformly in ε we have

|Kε(x,x
′)| 6 CMd(x,x

′) ,

where Md is the function defined in the statement of the Lemma.

We are now ready to prove the estimate (3) for (H0 − i)−1. Let f and g
be in the Schwartz space S (R2,C2). Then,

〈f , (H0 − i)−1g〉 =

∫
R2

f̂(p)G(p)ĝ(p)dp

by Parseval’s identity. By dominated convergence, we have

(20)

∫
R2

f̂(p)G(p)ĝ(p)dp = lim
ε→0+

∫
R2

f̂(p)G(p)e−ε<p>ĝ(p)dp

and, by Parseval’s identity again and denoting by ∗ the convolution product
between L1(R2,M2(C)) and L2(R2,C2),∫

R2

f̂(p)G(p)e−ε<p>ĝ(p)dp =

∫
R2

f(x)(Kε(·, 0) ∗ g)(x)dx

=

∫
R2

∫
R2

f(x)Kε(x,x
′)g(x′)dxdx′.

Knowing that

∀ε > 0, |Kε(x,x
′)| 6Md(x,x

′) ,

we get, using (20), that

|〈f , (H0 − i)−1g〉| 6
∫
R2

|f(x)|Md(x,x
′)|g(x′)|dxdx′ .

This concludes the proof of Lemma 1.

We are now ready to give the proof of Proposition 2.

Proof of Proposition 2. By equation (5), we know that for x 6= x′,

Kε(x,x
′) =

i

(xl − x′l)3

1

2π

∫
R2

eip·(x−x′) ∂
3

∂p3
l

(
G(p)e−ε<p>

)
dp.

The integrand converges pointwise to eip·(x−x′) ∂
3G(p)
∂p3l

. Moreover, using (4), it is

dominated by some integrable function independent of ε. Then, by dominated
convergence, Kε converges pointwise to some function of x and x′ which will
be denoted by (H0 − i)−1(·, ·) and which trivially satisfies Inequality (2).
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Then, by dominated convergence, we have that for all f and g ∈ L2(R2,C2)

〈f , (H0 − i)−1g〉 =

∫
R2

∫
R2

f(x)(H0 − i)−1(x,x′)g(x′)dxdx′ ,

and

|(H0 − i)−1(x,x′)| 6Md(x,x
′).

3. PROOF OF THE MAIN THEOREM

Let S (R2,C) be the Schwartz space of test functions, and let us fix
Ω = (−1

2 ,
1
2 ]2. We define the Bloch-Floquet transformation by the map

U : S (R2, C) ⊂ L2(R2, C)→ L2(Ω2)

(Uψ)(x,k) =
∑
γ∈Z2

e2iπk·(x+γ)ψ(x + γ) ,(21)

extended by density to L2(R2,C). It is possible to show (cf. [8]) that U is a
unitary operator and that for f ∈ L2(Ω2), x ∈ Ω and γ ∈ Z2,

(U∗f)(x + γ) =

∫
Ω
e−2iπk·(x+γ)f(x,k)dk.

We then define the Bloch-Floquet transformation componentwise on L2(R2,C2)
which will be abusively again denoted by U .

Applying this tranformation (see Proposition 4 in the appendix), we find

UH(α, β)U∗ =

∫ ⊕
Ω
hk(α, β)dk ,

hk(α, β) = σ · F (−i∇per − 2πk) + βχα(x) · σ,
(22)

where for each k the fiber Hamiltonian hk(α, β) is an operator defined on
L2(Ω,C2). Similarly, we wil denote

h
(0)
k = σ · F (−i∇per − 2πk).

The operator ∇per means here the gradient on L2(Ω,C2) with periodic bound-
ary conditions and χα(x) = (χ1,α(x), χ2,α(x), χ3,α(x)) := χ(x/α).

The spectra of H(α, β) and hk(α, β) are related through (see [10, Theo-
rem XIII.85])

Spec(H(α, β)) =
⋃
k∈Ω

Spec(hk(α, β)).(23)
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Picking Ψm = e2iπm·x for m ∈ Z2 and x ∈ Ω, we get that the family
of vectors Ψm is a basis of eigenvectors of F (−i∇per) satisfying if we denote
F = (F1, F2, F3)

Fi(−i∇per)Ψm = Fi(2πm)Ψm for i = 1, 2, 3.

We then define, for m ∈ Z2, the projections

Pm = |Ψm〉〈Ψm| ⊗ 1C2 and Q0 = Id− P0 .

We will use the Feshbach map method (see for example Lemma 6.1 of [9])
to reduce the spectral problem to problems on P0L

2(Ω,C2) and Q0L
2(Ω,C2).

This method claims that z ∈ ρ(hk(α, β)) if Q0(hk(α, β)− z)Q0 is invertible on
Q0L

2(Ω,C2) and the operator FP0(z) defined on P0L
2(Ω,C2) and given by

(24)
FP0(z) = P0(hk(α, β)−z)P0−β2P0χα ·σQ0(Q0(hk(α, β)−z)Q0)−1Q0χα ·σP0

is also invertible.

We will first prove that P0hk(α, β)P0 has a spectral gap of order α2β near
0 and then that the second term in the right hand side of (24) is small enough
not to close the gap provided that z is in the interval given in the theorem.
To show the invertibility of P0(hk(α, β)− z)P0, we have to bound from below
|F (p) + λΦ|, where we remind that we have denoted Φ = (Φi)16i63, Φ|| the

projection of Φ on Ran(A) and Φ⊥ its projection on Ran(A)⊥.

Lemma 2. Let α ∈]0, 1[ and β > 0. Then, for every k ∈ Ω and Ψ ∈
P0L

2(Ω,C2), we have for α2β small enough:

‖P0hk(α, β)P0Ψ‖ > |Φ⊥|
2

α2β‖Ψ‖.

Proof. We have, for k ∈ Ω :

P0hk(α, β)P0 = (σ · F (−2πk) + α2βΦ · σ)P0.

Let us denote λ = α2β. For Ψ ∈ P0L
2(Ω,C2),

‖P0hk(α, β)P0Ψ‖2 = ‖σ · (F (−2πk) + λΦ)P0Ψ‖2

> inf
p∈R2

|F (p) + λΦ|2‖Ψ‖2.

The lower bound in the lemma would follow if we can prove the following
statement: there exists λ0 > 0 such that

inf
p∈R2

|F (p) + λΦ| > |Φ⊥|
2

λ ,

for 0 6 λ 6 λ0.
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In order to prove this, pick M such that K ′0M
d− |Φ| = |Φ⊥|

2 where K ′0 is
the constant appearing in the first inequality in (1) of Hypothesis 1(ii).

For |p| >Mλ1/d we have by the first inequality in (1):

(25) |F (p) + λΦ| > K ′0|p|d − λ|Φ| > (K ′0M
d − |Φ|)λ > |Φ⊥|

2
λ.

For |p| 6 Mλ1/d, by Hypothesis 1(iii), we have for some K > 0 and λ
small enough:

|F (p) + λΦ| =
∣∣∣|p|d−1Ap+ λΦ|| + λΦ⊥

∣∣∣+O(|p|d+1) > λ|Φ⊥| −K|p|d+1

> λ|Φ⊥| −KMd+1λ(d+1)/d.

Define λ0 such that

|Φ⊥| −KMd+1λ
1/d
0 =

|Φ⊥|
2

.

For λ 6 λ0, the above estimate implies

(26) |F (p) + λΦ| > λ

2
|Φ⊥| ,

for all p ∈ R2.

Equations (25) and (26) together conclude the proof.

The invertibility of Q0(hk(α, β)−z)Q0 on Q0L
2(Ω,C2) will require more

technicality. We begin with the following estimates. Recall that d′ = min(d, 2).

Lemma 3. There exists C such that for |α| 6 1
2 and ∀k ∈ Ω we have

‖
√
|χα|P0‖ 6 α;(27)

‖|χα|1/2(h
(0)
k − i)

−1|χα|1/2‖ 6 Cαd
′
;(28)

‖|χα|1/2(h
(0)
k − i)

−1‖ 6 C
√
αd′ ,(29)

where h
(0)
k has been defined in Equation (3).

Proof. As in [1], in order to show (27) we compute for f , g ∈ L2(Ω,C2):

|〈f ,
√
|χα|P0g〉| 6 |〈f ,

√
|χα|Ψ0〉| |〈Ψ0, g〉| 6 ‖χα‖

1/2
1 ‖f‖2‖g‖2 6 α‖f‖2‖g‖2.

For the next two inequalities, we need some notation: given an integral
operator T , we denote its integral kernel by T (x,x′). We now use the following
identity proved in Proposition 3 in the appendix:

(h
(0)
k − i)

−1(x,x′) =
∑
γ∈Z2

e2iπk·(x+γ−x′)(H0 − i)−1(x + γ,x′).
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In the following, we will denote by C any constant independent of α and
k. Assume first that d 6= 2. Let Υ, Ψ ∈ L2(Ω,C2) with Υ with support in
Ωα = [−α

2 ,
α
2 )2. According to Lemma 1 and Proposition 2, we have:

|〈Υ, (h
(0)
k − i)

−1Ψ〉| 6
∑
γ∈Z2

∫∫
Ωα×Ω

|Υ(x)||(H0 − i)−1|(x + γ,x′)|Ψ(x′)|dxdx′

6
∑
γ 6=0

∫∫
Ωα×Ω

|Υ(x)| C

|x + γ − x′|3
|Ψ(x′)|dxdx′

+

∫∫
Ωα×Ω

|Υ(x)| C

|x− x′|2−d′
|Ψ(x′)|dxdx′.

In order to bound the first term, we see that there exists a constant C such
that for all |α| 6 1

2 , x ∈ Ωα, x′ ∈ Ω and γ ∈ Z2 \ {0}, we have

1

|x + γ − x′|3
6

C

|γ|3
.

Thus the first term is bounded by

C‖Υ‖L1‖Ψ‖L1 .

For the second term, we have to bound∫∫
Ωα×Ω

|Υ(x)| 1

|x− x′|2−d′
|Ψ(x′)|dxdx′.

Hardy-Littlewood-Sobolev inequality (cf. [6, Theorem 4.3]) gives that
there exists C such that:∫∫

Ωα×Ω
|Υ(x)| 1

|x− x′|2−d′
|Ψ(x′)|dxdx′ 6 C‖Υ‖ 4

2+d′
‖Ψ‖ 4

2+d′
.

By Hölder’s inequality,

‖|χα|1/2f‖ 4
2+d′

=

(∫
Ω
|χα|

2
2+d′ |f |

4
2+d′

) 2+d′
4

6

(
‖|χα|

2
2+d′ ‖ 2+d′

d′
‖|f |

4
2+d′ ‖ 2+d′

2

) 2+d′
4

= ‖|χα|‖
1/2
2
d′
‖f‖2.

A simple change of variable gives us that ‖|χα|‖ 2
d′

= αd
′‖|χ|‖ 2

d′
6 αd

′‖|χ|‖∞.

Hence, picking Υ = Ψ = |χα|1/2f in the above estimates yields∣∣∣〈f , |χα|1/2(h
(0)
k ± i)

−1|χα|1/2f〉
∣∣∣ 6 C‖χαf‖21 + Cαd

′‖f‖22.
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An application of Cauchy-Schwarz inequality gives that

‖|χα|f‖1 6 ‖|χα|‖L2‖f‖2 6
√

3α‖f‖2.

This concludes the proof of (28).

The proof of (29) is similar: we have to take Υ = |χα|f and Ψ = f . We
do not give further details.

If d = 2, we can prove these inequalities for any d̃ < 2 and then take the
supremum.

Lemma 4. For f ∈ Q0Dom(h
(0)
k ), we have ‖h(0)

k Q0f‖ > πdK ′0‖f‖.

Proof. As we show in Proposition 4 in the appendix, we have, for m ∈ Z2

and k ∈ Ω,

Pmh
(0)
k Pm = σ · F (2π(m− k))Pm.

Hence, according to inequality (1) of Hypothesis 1(ii), we have for f ∈
Q0Dom(h

(0)
k ) :

‖h(0)
k Q0f‖2 =

∑
m 6=0

‖σ · F (2π(m− k))Pmf‖2 > K ′20
∑
m6=0

(2π|m− k|)2d‖Pmf‖2

> K ′20 π
2d
∑
m 6=0

‖Pmf‖2.

For a self-adjoint operator T and an orthogonal projection Q, we define
the resolvent set

ρQ(T ) := {z ∈ C such that Q(T − z)Q : RanQ→ RanQ is invertible} .

We set

R0(z) :=
(
Q0(h

(0)
k − z)Q0�RanQ0

)−1
, z ∈ ρQ0(h

(0)
k ),

R(z) := (Q0(hk(α, β)− z)Q0�RanQ0)−1 , z ∈ ρQ0(hk(α, β)).

For i ∈ {1, 2, 3}, we define the operators Ui : L2(Ω,C2) → RanQ0 and
Wi : RanQ0 → L2(Ω,C2) by:

Wi =
√
β(
√
|χi,α|σi)Q0 and Ui =

√
βQ0 sgn(χi,α)

√
|χi,α|.

Lemma 5. There exists C > 0 independent of α ∈]0, 1/2] and β > 0 such
that for any |z| 6 K ′0πd/2 and any j, l

‖WjR0(z)Ul‖ 6 Cαd
′
β.
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Proof. Due to Lemma 4, we have for |z| 6 K ′0πd/2,

(30) ‖R0(z)‖ 6 2

K ′0π
d
.

Using the first resolvent identity, we get for j, l = 1, 2, 3:

WjR0(z)Ul = WjR0(i)Ul + (z − i)WjR0(i)2Ul

+(z − i)2WjR0(i)R0(z)R0(i)Ul.
(31)

We shall separately estimate each term on the right hand side of (31).

Since h
(0)
k commutes with the projections Pm we have

(32) R0(i) = (h
(0)
k − i)

−1 − (P0(h
(0)
k − i)P0�RanP0)−1.

Note that, due to the definition of Ul and Wj , for any z such that |z| 6
K ′0π

d/2

(33) Wj(P0(h
(0)
k − z)P0�RanP0)−1Ul = 0.

The identity (32) together with inequalities (28) and (33) imply that there
exists c > 0, such that for |α| < 1/2 and all k ∈ Ω

‖WjR0(i)Ul‖ = ‖Wj(h
(0)
k − i)

−1Ul‖

6 cβαd
′
.

(34)

This bounds the first term on the right hand side of (31).
To estimate the second one we first notice that

(h
(0)
k − i)

−2 = (Q0(h
(0)
k − i)Q0�RanQ0)−2 + (P0(h

(0)
k − i)P0�RanP0)−2.

It is easy to see that the equation (33) remains true with a power -2. Then,

‖(z − i)WjR0(i)2Ul‖ = ‖(z − i)Wj(h
(0)
k − i)

−2Ul‖

6

√
1 +

K ′20 π
2d

4
β‖
√
|χα|(h

(0)
k − i)

−1‖ ‖(h(0)
k − i)

−1
√
|χα|‖

6 Cβαd
′
,

(35)

for some C > 0 independent of α and β, where we used (29) in the last
inequality.

Finally, we bound the last term on the right hand side of (31). Observe
that from inequalities (27) and (29) we obtain that there exists c, C > 0 such
that for all α 6 1/2

‖
√
|χα|R0(i)‖ 6 ‖

√
|χα|(h

(0)
k − i)

−1‖+ ‖
√
|χα|P0(P0(hk − i)P0)−1‖

6 c
√
αd′ + cα 6 C

√
αd′ .
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Therefore, using (30) and (29)

‖(z − i)2WjR0(i)R0(z)R0(i)Ul‖

6 β|z − i|2‖
√
|χα|R0(i)‖ ‖R0(z)‖ ‖R0(i)

√
|χα|‖

6 Cβ|z − i|2αd′ .

Summing the latter bound together with (34) and (35) (in view of (31)) con-
cludes the proof.

Lemma 6. Let

S = {z ∈ ρQ0(h
(0)
k ) : sup

j,l
‖WjR0(z)Ul‖ < 1/3}.

Then, for every z ∈ S, we have z ∈ ρQ0(hk(α, β)).

Proof. Let z ∈ S ∩ R. Put zε = z + iε. The set S being open, for ε > 0
small enough zε ∈ S. We denote U = (U1, U2, U3) and W = (W1,W2,W3).
Applying the second resolvent identity several times, we find for any N > 0:

R(zε) = R0(zε)

(
N∑
n=0

(−1)n
(
UW TR0(zε)

)n
+ TN+1

)
with

TN+1 = (−1)N+1
(
UW TR0(zε)

)N
UW TR(zε).

But we have that(
UW TR0(zε)

)N
=

∑
i1,...,iN

Ui1Wi1R0(zε)Ui2 ...WiN−1R0(zε)UiNWiNR0(zε)

and then ∥∥∥(UW TR0(zε)
)N∥∥∥ 6 C3N

(
sup
j,l
‖WjR0(zε)Ul‖

)N−1

which tends to 0 as N →∞ since zε ∈ S.

Then, at fixed ε, we have

(36) R(zε) = R0(zε)

∞∑
n=0

(−1)n
(
UW TR0(zε)

)n
.

Using the definition of S and equation (30), we obtain that this resolvent
is bounded uniformly in ε, so we can take the limit ε→ 0 and thus

∀z ∈ S; z ∈ ρQ0(hk(α, β)).
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We are now ready to study the invertibility of Feshbach’s operator FP0(z)
for αd

′
β small enough. To this purpose, we use the two following lemmas

(similar to Lemmas 2.2 and 2.3 of [1]):

Lemma 7. There exists a constant δ ∈]0, 1[ such that, for all α ∈]0, 1/2[
and β > 0 satisfying αd

′
β < δ, Q0(hk(α, β) − z)Q0 is invertible on the range

of Q0 for all z ∈ [−K ′0πd/2,K ′0πd/2] and k ∈ Ω.

Proof. Notice that the proof of this lemma follows from Lemma 6 since
z ∈ S provided αd

′
β is small enough, according to Lemma 5.

Put

BP0(z) = β2P0χα · σQ0(Q0(hk(α, β)− z)Q0)−1Q0χα · σP0.

Lemma 8. There exist two constants δ ∈]0, 1[ and C > 0 such that, for
all α ∈]0, 1/2[ and β > 0 satisfying αd

′
β < δ, we have

‖BP0(z)ψ‖ 6 Cβ2α2+d′‖ψ‖

for all z ∈ [−K ′0πd/2,K ′0πd/2], k ∈ Ω and ψ ∈ L2(Ω,C2).

Proof. According to equation (36), we have that

R(z) = R0(z) +R0(z)
∑
n>1

(−1)n
(
UW TR0(z)

)n
= R0(z)−R0(z)

∑
n>0

(−1)nU
(
W TR0(z)U

)n
W TR0(z)

= R0(z)−R0(z)U(I3 +W TR0(z)U)−1W TR0(z).

We remark that W TR0(z)U is an operator acting on
(
L2(Ω,C2)

)3
.

The definition of BP0 and these equalities give us 2 terms to estimate.
On the one hand,

β2‖P0χα · σR0(z)χα · σP0‖ 6 β‖P0|χα|1/2‖
∑
i,j

‖WiR0(z)Uj‖‖|χα|1/2P0‖

6 cβ2α2+d′ ,

where we used Lemma 5 and (27).

On the other hand, assuming that αd
′
β is so small that ‖W TR0(z)U‖ <

1/2 we have

β2‖P0χα · σR0(z)U(I3 +W TR0(z)U)−1W TR0(z)χα · σP0‖

6 β‖P0|χα|1/2‖
∑
i,j

‖WiR0(z)Uj‖‖(I3 +W TR0(z)U)−1‖
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×
∑
i,j

‖WiR0(z)Uj‖‖|χα|1/2P0‖ 6 cβ3α2+2d′ .

The latter inequality together with (3) finishes the proof of the lemma.

Proof of Theorem 2. In view of (23) it is enough to show the invertibility
of the Feshbach operator uniformly in k ∈ Ω. Using Lemmas 2 and 8 we get
that for any ψ ∈ P0L

2(Ω,C2)

‖FP0(z)ψ‖ > ‖(P0(hk(α, β)− z)P0)ψ‖ − ‖BP0(z)ψ‖

> (βα2 |Φ|
2
− |z| − cα2+d′β2) ‖ψ‖ .

This concludes the proof by picking αd
′
β so small that |Φ|2 > cαd

′
β. The

theorem is then proven with C = c
2 .

APPENDIX

BLOCH-FLOQUET TRANSFORMATION

In this appendix, we study the Bloch-Floquet transformation applied to
our operator H(α, β). Because the potential is bounded and Z2-periodic, it is
enough to study this transformation applied to H0. Because H0 is unbounded,
we prefer to work with its resolvent and we start with the following proposition.
Recall that we have denoted by (H0 − i)−1(x,x′) the integral kernel of (H0 −
i)−1.

Proposition 3. Let U be the Bloch-Floquet transformation as defined in
(21).

U(σ · F (−i∇)− i)−1U∗ =

∫ ⊕
Ω
gkdk ,

where, for k ∈ Ω, the operator gk : L2(Ω,C2) → L2(Ω,C2) has an integral
kernel given by

gk(x,x′) =
∑
γ∈Z2

e2iπγ·ke2iπx·k(H0 − i)−1(x + γ,x′)e−2iπx′·k.

Proof. Let f ∈ C∞(Ω × R2)2 such that f is Z2-periodic with respect to
the second variable and x ∈ R2. To avoid heavy notation, we will denote
K0(x,x′) = (H0 − i)−1(x,x′). We can then write

((σ · F (−i∇)− i)−1U∗f)(x) =

∫
R2

K0(x,x′)(U∗f)(x′)dx′
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=
∑
γ′∈Z2

∫
Ω
K0(x,x′ + γ ′)

∫
Ω
e−2iπ(x′+γ′)·k′f(x′,k′)dk′dx′.

The Fourier coefficients f̂(x′,γ ′) =
∫

Ω e
−2iπ(x′+γ′)·k′f(x′,k′)dk′ decay

faster than any polynomial in γ ′ uniformly in x′. The integral kernel K0(x +
γ,x′ + γ ′) has a decay like |γ − γ ′|−3 when |γ − γ ′| is larger than 3 uniformly
in x and x′. Moreover, K0(x + γ,x′+ γ ′) is absolutely integrable with respect
to x′ and ∫

Ω
|K0(x + γ,x′ + γ ′)|dx′ 6 C

uniformly in x ∈ Ω and |γ −γ ′| 6 3. These facts justify the interchange of the
various series below:

(U(σ · F (−i∇)− i)−1U∗f)(x,k)

=
∑
γ∈Z2

e2iπk·(x+γ)
∑
γ′∈Z2

∫
Ω
K0(x + γ,x′ + γ ′)f̂(x′,γ ′)dx′

=
∑
γ′∈Z2

∑
γ∈Z2

e2iπk·xe2iπk·(γ−γ′)
∫

Ω
K0(x + (γ − γ ′),x′)e2iπγ′·kf̂(x′,γ ′)dx′

=
∑
γ′∈Z2

∑
γ̃∈Z2

e2iπk·γ̃e2iπk·x
∫

Ω
K0(x + γ̃,x′)e2iπk·γ′ f̂(x′,γ ′)dx′

=

∫
Ω

∑
γ∈Z2

e2iπk·(x−x′)e2iπk·γK0(x + γ,x′)
∑
γ′∈Z2

e2iπk·(γ′+x′)f̂(x′,γ ′)dx′.

In the last line, we identify the Fourier series representation of f(x′, ·) at
the point k. We finally obtain∫

Ω

∑
γ∈Z2

e2iπk·(x+γ−x′)K0(x + γ,x′)f(x′,k)dx′ =

∫
Ω
gk(x,x

′)f(x′,k)dx′,

which concludes the proof of Proposition 3.

Proposition 4. We have

UH0U∗ =

∫ ⊕
Ω
h

(0)
k dk ,

with
h

(0)
k = σ · F (−i∇per − 2πk).

Proof. According to Theorem XIII.85 of [10], to prove (22), we need to
show that, for k ∈ Ω gk : L2(Ω,C2)→ L2(Ω,C2) satisfies

gk = (h
(0)
k − i)

−1.
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To this purpose, we will denote by (ej)j=1,2 the vectors of the standard
basis in C2 and Ψm = e2iπm·x. We will prove that for all m ∈ Z2 and j ∈ {1, 2}
we have

gk(Ψm ⊗ ej) = (h
(0)
k − i)

−1(Ψm ⊗ ej) = (σ · F (2π(m− k))− i)−1(Ψm ⊗ ej).

Recall the notation G(p) = (σ · F (p)− i)−1 ∈ B(C2). We have that

{gk(Ψm ⊗ ej)}(x)

=

∫
Ω
gk(x,x

′)(Ψm ⊗ ej)(x′)dx′

= Ψm(x)

∫
Ω

dx′
∑
γ∈Z2

e2iπk·(x+γ−x′)e2iπm·(−x+x′) 1

2π
F−1(G)(x− x′ + γ)ej .

(37)

Because both m and γ are in Z2 we have e2πim·γ = 1, hence in (37) we can
replace e2iπm·(−x+x′) with e−2iπm·(x+γ−x′). Thus, after a change of variables
we obtain

{gk(Ψm ⊗ ej)}(x) = Ψm(x)
1

2π

∫
R2

e−2iπ(m−k)·yF−1(G)(y)dy ej

= G(2π(m− k)) (Ψm ⊗ ej)(x).

This ends the proof of the proposition.
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