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1. INTRODUCTION

In the last years one may see a strong development of the theory of
differential equations and inclusions of fractional order ([3, 5, 15, 16, 17] etc.).
The main reason is that fractional differential equations are very useful tools
in order to model many physical phenomena.

In the fractional calculus there are several fractional derivatives. From
them, the fractional derivative introduced by Caputo allows to use Cauchy
conditions which have physical meanings. Recently, a generalized Caputo-
Katugampola fractional derivative was proposed in [14] by Katugampola and
afterwards he provided the existence of solutions for fractional differential equa-
tions defined by this derivative. This Caputo-Katugampola fractional deriva-
tive extends the well known Caputo and Caputo-Hadamard fractional deriva-
tives into a single form. Even if Katugampola fractional integral operator is
an Erdélyi-Kober type operator ([10]) it is argued ([14]) that is not possible
to derive Hadamard equivalence operators from Erdélyi-Kober type operators.
Also, in some recent papers [1, 14, 18], several qualitative properties of solutions
of fractional differential equations defined by Caputo-Katugampola derivative
were obtained.

The present paper is concerned with fractional differential inclusions of
the form

Dα,ρ
c x(t) ∈ F (t, x(t)) a.e. ([0, T ]), x(0) = x0, x′(0) = x1 (1.1)
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where α ∈ (1, 2], ρ ≥ 1, Dα,ρ
c is the Caputo-Katugampola fractional derivative,

F : [0, T ]×R→ P(R) is a set-valued map and x0, x1 ∈ R.
The aim of this paper is twofold. On one hand, we briefly present some

existing results in the literature concerning problem (1.1). Namely, we recall
an existence result of Filippov type, a continuous selection of the solution set
and a sufficient condition for local controllability along a reference trajectory
in terms of certain variational fractional differential inclusion associated to
problem (1.1).

On the other hand, we extend the results concerning the differentiability
of solutions of differential inclusions with respect to initial conditions to the
solutions of problem (1.1). In Control Theory, mainly, if we want to obtain
necessary optimality conditions, it is essential to have several “differentiability”
properties of solutions with respect to initial conditions. One of the most
powerful result in the theory of differential equations, the classical Bendixson-
Picard-Lindelöf theorem states that the maximal flow of a differential equation
is differentiable with respect to initial conditions and its derivatives verify
the variational equation. This result has been generalized in various ways to
differential inclusions by considering several variational inclusions and proving
corresponding theorems that extend Bendixson-Picard-Lindelöf theorem. The
results we extend known as the contingent, the intermediate (quasitangent)
and the circatangent variational inclusion are obtained in the “classical case”
of differential inclusions. For this results and for a complete discussion on this
topic we refer to [2].

The proofs of our results follows by an approach similar to the classical
case of differential inclusions ([2, 12]) and use a recent result ([6]) concerning
the existence of solutions of problem (1.1).

The paper is organized as follows: in Section 2 we present preliminary
results to be used in the next section, Section 4 is devoted to a short survey of
the results existing for our problem and in Section 4 we prove our main results.

2. PRELIMINARIES

Let Y be a normed space, X ⊂ Y and x ∈ X (the closure of X).
From the multitude of the tangent cones in the literature (e.g., [2]) we re-

call only the contingent, the quasitangent and Clarke’s tangent cones, defined,
respectively by

KxX = {v ∈ Y ; ∃sm → 0+, ∃vm → v : x+ smvm ∈ X},
QxX = {v ∈ Y ; ∀sm → 0+, ∃vm → v : x+ smvm ∈ X},

CxX = {v ∈ Y ;∀(xm, sm)→ (x, 0+), xm ∈ X, ∃ym ∈ X :
ym − xm
sm

→ v}.
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This cones are related as follows: CxX ⊂ QxX ⊂ KxX.

Corresponding to each type of tangent cone, say τxX, one may introduce
(e.g., [2]) a set-valued directional derivative of a multifunction G(·) : X ⊂ Y →
P(Y ) (in particular of a single-valued mapping) at a point (x, y) ∈ Graph(G)
as follows

τyG(x; v) = {w ∈ Y ; (v, w) ∈ τ(x,y)Graph(G)}, v ∈ τxX.

We recall that a set-valued map, A(.) : Rn → P(Rn) is said to be a
convex (respectively, closed convex) process if Graph(A(.)) ⊂ Rn × Rn is a
convex (respectively, closed convex) cone.

Let I := [0, T ], denote by C(I,R) the Banach space of all continuous
functions from I to R endowed with the norm |x|C = supt∈I |x(t)|dt and by
L1(I,R) we denote the Banach space of Lebegue integrable functions u(.) :
I → R endowed with the norm |u|1 =

∫ 1
0 |u(t)|dt.

Definition 2.1 ([14]). a) The generalized left-sided fractional integral of
order α > 0 of a Lebesgue integrable function f : [0,∞)→ R is defined by

Iα,ρf(t) =
ρ1−α

Γ(α)

∫ t

0
(tρ − sρ)α−1sρ−1f(s)ds,

provided the right-hand side is pointwise defined on (0,∞) and Γ(.) is (Euler’s)
Gamma function defined by Γ(α) =

∫∞
0 tα−1e−tdt.

b) The generalized fractional derivative, corresponding to the generalized
left-sided fractional integral of a function f : [0,∞)→ R is defined by

Dα,ρf(t) = (t1−ρ
d

dt
)n(In−α,ρ)(t) =

ρα−n+1

Γ(n− α)
(t1−ρ

d

dt
)n
∫ t

0

sρ−1f(s)

(tρ − sρ)α−n+1
ds

if the integral exists and n = [α] + 1.

c) The Caputo-Katugampola generalized fractional derivative is defined
by

Dα,ρ
c f(t) = (Dα,ρ[f(s)−

n−1∑
k=0

f (k)(0)

k!
sk])(t)

We note that if ρ = 1, the Caputo-Katugampola fractional derivative
becames the well known Caputo fractional derivative. On the other hand,
passing to the limit with ρ → 0+, the above definition yields the Hadamard
fractional derivative.

Definition 2.2. A function x(.) ∈ C(I,R) is called a solution of problem
(1.1) if there exists a function f(.) ∈ L1(I,R) with f(t) ∈ F (t, x(t)), a.e. (I)
such that Dα,ρ

c x(t) = f(t), a.e. (I) and x(0) = x0, x
′(0) = x1.
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We shall use the following notations for the solution sets of (1.1).

S(x0, x1) = {(x(.), f(.)); (x(.), f(.)) is a trajectory-selection pair of (1.1)}.

Hypothesis 2.3. i) F (., .) : I ×R → P(R) has nonempty closed values
and for every x ∈ R, F (., x) is measurable.

ii) There exist L(.) ∈ L1(I, (0,∞)) such that for almost all t ∈ I, F (t, .)
is L(t)-Lipschitz in the sense that

dH(F (t, x1), F (t, x2)) ≤ L(t)|x1 − x2| ∀ x1, x2 ∈ R,

where dH(A,C) is Pompeiu-Hausdorff distance between closed sets A,C ⊂ R

dH(A,C) = max{d∗(A,C), d∗(C,A)}, d∗(A,C) = sup{d(a,C); a ∈ A}.

On C(I,R)× L1(I,R) we consider the following norm

|(x, f)|C×L = |x|C + |f |1 ∀ (x, f) ∈ C(I,R)× L1(I,R).

3. A SURVEY ON SOME RECENT RESULTS

The next result ([5]) is an extension of Filippov’s theorem concerning the
existence of solutions to a Lipschitzian differential inclusion ([11]) to fractional
differential inclusions of the form (1.1). We recall that for a differential inclu-
sion defined by a lipschitzian set-valued map with nonconvex values, Filippov’s
theorem ([11]) consists in proving the existence of a solution starting from a
given almost solution. Moreover, the result provides an estimate between the
starting almost solution and the solution of the differential inclusion.

Consider y0, y1 ∈ R, g(.) ∈ L1(I,R) and y(.) is a solution of the problem

Dα,ρ
c y(t) = g(t) y(0) = y0, y′(0) = y1.

Denote

η =
1

1− Iα,ρL(T )
(|x0 − y(0)|+ T |y′(0)− x1|+ Iα,ρq(T )).

Theorem 3.1. Assume that Hypothesis 2.3 is satisfied, assume that
Iα,ρL(T ) < 1 and let y(.) ∈ C(I,R) be such that there exists q(.) ∈ L1(I,R)
with Iα,ρq(T ) < +∞ and d(Dα,ρ

c y(t), F (t, y(t))) ≤ q(t) a.e. (I).

Then there exists x(.) : I → R a solution of problem (1.1) satisfying for
all t ∈ I

|x(t)− y(t)| ≤ η ∀t ∈ I,

|f(t)− g(t)| ≤ L(t)η + q(t) a.e. (I).
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The proof of Theorem 3.1 may be found in [5].
At the same time, one may obtain the existence of solutions continuously

depending on a parameter for problem (1.1). This result may be regarded also
as a continuous version of Theorem 3.1. The proof is essentially based on the
Bressan-Colombo selection theorem concerning the existence of continuous se-
lections of lower semicontinuous multifunctions with decomposable values([4]).

Hypothesis 3.2. (i) S is a separable metric space, a(.), b(.) : S → R and
c(.) : S → (0,∞) are continuous mappings.

(ii) There exists the continuous mappings g(.), p(.) : S → L1(I,R), y(.) :
S → C(I,R) such that

(Dy(s))α,ρc (t) = g(s)(t) a.e. t ∈ I, ∀s ∈ S,
d(g(s)(t), F (t, y(s)(t)) ≤ p(s)(t) a.e. t ∈ I, ∀ s ∈ S.

We use next the following notation

ξ(s) =
1

1− |Iα,ρL|
(|a(s)− y(s)(0)|+ T |b(s)− (y(s))′(0)|+ c(s) + |Iα,ρp(s)|),

where s ∈ S, |Iα,ρL| := supt∈I |Iα,ρL(t)| and |Iα,ρp(s)| := supt∈I |Iα,ρp(s)(t)|.

Theorem 3.3. Assume that Hypotheses 2.3 and 3.2 are satisfied.
If |Iα,ρL| < 1, then there exist a continuous mapping x(.) : S → C(I,R)

such that for any s ∈ S, x(s)(.) is a solution of problem

Dα,ρ
c z(t) ∈ F (t, z(t)), z(0) = a(s), z′(0) = b(s)

such that
|x(s)(t)− y(s)(t)| ≤ ξ(s) ∀(t, s) ∈ I × S.

As a consequence of this result we obtained a continuous selection of the
solution set of problem (1.1).

Hypothesis 3.4. Hypothesis 2.3 is satisfied, |Iα,ρL| < 1, there exists
p0(.) ∈ L1(I,R+) with d(0, F (t, 0) ≤ p0(t) a.e. (I).

Corollary 3.5. Assume that Hypothesis 3.4 is satisfied. Then there
exists a function s(., .) : I ×R2 → R with the following properties

a) s(., (ξ, η)) ∈ S(ξ, η), ∀(ξ, η) ∈ R2.
b) (ξ, η)→ s(., (ξ, η)) from R2 into C(I,R) is continous.

The proof of Theorem 3.3 and Corollary 3.4 may be found in [6].

In order to obtain a sufficient condition for local controllability along a
reference trajectory of differential inclusion (1.1) we use the notion of derived
cone to an arbitrary subset of a normed space introduced by M. Hestenes in
[13].
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A subset D ⊂ Rn is said to be a derived set to X ⊂ Rn at x ∈ X if for any
finite subset {w1, ..., wk} ⊂ D, there exist s0 > 0 and a continuous mapping
α(.) : [0, s0]k → X such that α(0) = x and α(.) is (conically) differentiable at
s = 0 with the derivative col[w1, ..., wk] in the sense that

lim
Rk

+3θ→0

||α(θ)− α(0)−
∑k

i=1 θiwi||
||θ||

= 0.

A subset C ⊂ Rn is said to be a derived cone of X at x if it is a derived
set and also a convex cone.

Among other properties of derived cones we recall the one in the next
lemma and proved in [13].

Lemma 3.6. Let X ⊂ Rn. Then x ∈ int(X) if and only if C = Rn is a
derived cone at x ∈ X to X.

We consider next the reachable set of (1.1) defined by

RF (T,X0, X1) := {x(T ); x(.) is a solution of (1.1)}.

We define a certain variational fractional differential inclusion and we shall
prove that the reachable set of this variational inclusion from derived cones
C0 ⊂ R to X0 and C1 ⊂ R to X1 at time T is a derived cone to the reachable
set RF (T,X0, X1).

Hypothesis 3.7. i) Hypothesis 2.3 is satisfied, |Iα,ρL| < 1 and X0, X1 ⊂
R are closed sets.

ii) (z(.), f(.)) ∈ C(I,R)× L1(I,R) is a trajectory-selection pair of (1.1)
and a family A(t, .) : R → P(R), t ∈ I of convex processes satisfying the
condition

A(t, u) ⊂ Qf(t)F (t, .)(z(t);u) ∀u ∈ dom(A(t, .)), a.e. t ∈ I

is assumed to be given and defines the variational inclusion

Dα,ρ
c w(t) ∈ A(t, w(t)). (3.1)

We mention that for any set-valued map F (., .), one may find an infinite
number of families of convex process A(t, .), t ∈ I, satisfying condition (3.1).
For example, we may take an “intrinsic” family of such closed convex process;
namely, Clarke’s convex-valued directional derivatives Cf(t)F (t, .)(z(t); .).

Theorem 3.8. Assume that Hypothesis 3.7 is satisfied, let C0 ⊂ R be a
derived cone to X0 at z(0) and C1 ⊂ R be a derived cone to X1 at z′(0). Then
the reachable set RA(T,C0, C1) of (3.1) is a derived cone to RF (T,X0, X1) at
z(T ).
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The proof of Theorem 3.8, which essentially uses Theorem 3.3, may be
found in [7].

From Theorem 3.8 and Lemma 3.6 it follows a sufficient condition for
local controllability of the fractional differential inclusion (1.1) along a reference
trajectory, z(.) at time T , in the sense that

z(T ) ∈ int(RF (T,X0, X1)).

Theorem 3.9. Let z(.), F (., .) and A(., .) satisfy Hypothesis 3.7, let C0 ⊂
R be a derived cone to X0 at z(0) and C1 ⊂ R be a derived cone to X1 at z′(0).
If, the variational fractional differential inclusion in (3.1) is controllable at T
in the sense that RA(T,C0, C1) = R, then the differential inclusion (1.1) is
locally controllable along z(.) at time T .

4. THE MAIN RESULTS

Let (y(.), g(.)) be a trajectory-selection pair of problem (1.1). We wish
to “linearize” (1.1) along (y(.), g(.)) by replacing it by several fractional varia-
tional inclusions.

Consider, first, the quasitangent variational inclusion{
Dα,ρ
c w(t) ∈ Qg(t)(F (t, .))(y(t);w(t)) a.e. (I)

w(0) = u, w′(0) = v,
(4.1)

where u, v ∈ R.

Theorem 4.1. Consider the solution map S(., .) as a set valued map from
R×R into C(I,R)× L1(I,R) and assume that Hypothesis 2.3 is satisfied.

Then, for any u, v ∈ R and any trajectory-selection pair (w, π) of the
linearized inclusion (4.1) one has

(w, π) ∈ Q(y,g)S((y(0), y′(0); (u, v)).

Proof. Let u, v ∈ R and let (w, π) ∈ C(I,R)× L1(I,R) be a trajectory-
selection pair of (4.1). By the definition of the quasitangent derivative and
from the Lipschitzianity of F (t, .), for almost all t ∈ I, we have

limh→0+ d(Dα,ρ
c w(t), F (t,y(t)+hw(t))−Dα,ρc y(t)

h ) =

limh→0+ d(π(t), F (t,y(t)+hw(t))−g(t)
h ) = 0.

(4.2)

Moreover, since g(t) ∈ F (t, y(t)) a.e. (I), from Hypothesis 2.3, for all
enough small h > 0 and for almost all t ∈ I, one has

d(Dα,ρ
c (y(t) + hw(t)), F (t, y(t) + hw(t))) = d(g(t) + hπ(t), F (t, y(t)+

hw(t))) ≤ h(|π(t)|+ L(t)|w(t)|)
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By standard arguments (e.g., Lemmas 1.4 and 1.5 in [12]) the function
t → d(g(t) + hπ(t), F (t, y(t) + hw(t))) is measurable. Therefore, using the
Lebesgue dominated convergence theorem we infer∫ T

0
ρ1−α

Γ(α) (T ρ − sρ)α−1sρ−1d(Dα,ρ
c (y(t) + hw(t)), F (t, y(t) + hw(t)))dt ≤

ρ1−α

Γ(α) T
ρα−1

∫ T
0 d(Dα,ρ

c (y(t) + hw(t)), F (t, y(t) + hw(t)))dt = o(h),

(4.3)

where limh→0+
o(h)
h = 0.

We apply Theorem 3.1 and by (4.3) we deduce the existence of M ≥ 0
and of trajectory-selection pairs (yh(.), gh(.)) of the second-order differential
inclusion in (1.1) satisfying

|yh − y − hw|C + |gh − g − hπ|1 ≤Mo(h),

yh(0) = y(0) + hu, y′h(0) = y′(0) + hv,
which implies

lim
h→0+

yh − y
h

= w in C(I,R),

lim
h→0+

gh − g
hn

= π in L1(I,R).

Therefore

lim
h→0+

dC×L((w, π),
S((y(0) + hu, y′(0) + hv))− (y, g)

h
) = 0

and the proof is complete.

We consider next the variational inclusion defined by the Clarke direc-
tional derivative of the set-valued map F (t, .), i.e., the so called circatangent
variational inclusion{

Dα,ρ
c w(t) ∈ Cg(t)(F (t, .))(y(t);w(t)) a.e. (I)

w(0) = u, w′(0) = v.
(4.4)

Theorem 4.2. Consider the solution map S(., .) as a set valued map from
R×R into C(I,R)× L1(I,R) and assume that Hypothesis 2.3 is satisfied.

Then, for any u, v ∈ R and any trajectory-selection pair (w, π) of the
linearized inclusion (4.4) one has

(w, π) ∈ C(y,g)S((y(0), y′(0); (u, v)).

Proof. Let u, v ∈ R, let (w, π) ∈ C(I,R) × L1(I,R) be a trajectory-
selection pair of (4.4), let (yn, gn) be a sequence of trajectory-selection pairs
of (1.1) that converges to (y, g) ∈ C(I,R)× L1(I,R) and let hn → 0+. Then
there exists a subsequence gj(.) := gnj (.) such that

lim
j→∞

gj(t) = g(t) a.e. (I) (4.5)
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Denote λj := hnj . From (4.4) and from the definition of the Clarke
directional derivative, for almost all t ∈ I we have

limh→0+ d(Dα,ρ
c w(t),

F (t,yj(t)+λjw(t))−Dα,ρc yj(t)
λj

) =

limh→0+ d(π(t),
F (t,yj(t)+λjw(t))−gj(t)

λj
) = 0.

(4.6)

Since gj(t) ∈ F (t, yj(t)) a.e. (I), for almost all t ∈ I, we get

d(Dα,ρ
c (yj(t) + λjw(t)), F (t, yj(t) + λjw(t))) = d(gj(t) + λjπ(t), F (t, yj(t)

+λjw(t))) ≤ λj(|π(t)|+ L(t)|w(t)|).

The last inequality together with Lebesgue’s dominated convergence the-
orem implies∫ T

0
ρ1−α

Γ(α) (T ρ − sρ)α−1sρ−1d(Dα,ρ
c (yj(t) + λjw(t)), F (t, yj(t) + λjw(t)))dt ≤

ρ1−α

Γ(α) T
ρα−1

∫ T
0 d(Dα,ρ

c (yj(t) + λjw(t)), F (t, yj(t) + λjw(t)))dt = o(λj),

(4.7)

where limj→∞
o(λj)
λj

= 0.

We apply Theorem 3.1 and by (4.7) we deduce the existence of M ≥ 0 and
of trajectory-selections pairs (yj(.), gj(.)) of the fractional differential inclusion
in (1.1) satisfying

|yj − yj − λjw|C + |gj − gj − λjπ|1 ≤Mo(λj),

yj(0) = y(0) + λju, y′j(0) = y′(0) + λjv.

It follows that

lim
j→∞

yj − y
λj

= w in C(I,R),

lim
j→∞

gj − g
λj

= π in L1(I,R),

which completes the proof.

Finally, we consider the contingent variational inclusion{
Dα,ρ
c w(t) ∈ coKg(t)(F (t, .))(y(t);w(t)) a.e. (I)

w(0) = u, w′(0) = v.
(4.8)

Theorem 4.3. Consider the solution map S(., .) as a set valued map
from R×R into C(I,R)×L∞(I,R), with L∞(I,R) supplied with the weak-*
topology and assume that Hypothesis 2.3 is satisfied.

Then for any u, v ∈ R one has

K(y,g)S((y(0), y′(0); (u, v)) ⊂
{(w, π); (w, π) is a trajectory-selection pair of (4.8)}.
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Proof. Let u, v ∈ R and let (w, π) ∈ K(y,g)S((y(0), y′(0); (u, v)). Accord-
ing to the definition of the contingent derivative there exist hn → 0+, un →
u, vn → v, wn(.) → w(.) in C(I,R), πn(.) → π(.) in weak-* topology of
L∞(I,R) and c > 0 such that

|πn(t)| ≤ c a.e. (I),
g(t) + hnπn(t) ∈ F (t, y(t) + hnwn(t)) a.e. (I),
wn(0) = un, w

′
n(0) = vn.

(4.9)

Therefore,
wn(.) converges pointwise to w(.)
πn(.) converges weak in L1(I,R) to π(.)

(4.10)

We apply Mazur’s theorem (e.g., [9]) and we find that there exists

vm(t) =
∞∑
p=m

apmπp(t)

vm(.) → π(.) (strong) in L1(I,R), where apm ≥ 0,
∑∞

p=m a
p
m = 1 and for any

m, apm 6= 0 for a finite number of p.
Therefore, a subsequence (again denoted) vm(.) converges la π(.) a.e..

From (4.9) for any p and for almost all t ∈ I

w′p(t) ∈
1

hp
(F (t, y(t) + hpwp(t))− g(t)) ∩ cB

Let t ∈ I be such that vm(t)→ π(t) and g(t) ∈ F (t, y(t)). Fix n ≥ 1 and
ε > 0. From (3.9) there exists m such that hp ≤ 1/n and |wp(t)− w(t)| ≤ 1/n
for any p ≥ m.

If, we denote

φ(z, h) :=
1

h
(F (t, y(t) + hz)− g(t)) ∩ cB

then
vm(t) ∈ co(∪h∈(0, 1

n
],z∈B(w(t), 1

n
)φ(z, h))

and if m→∞, we get

π(t) ∈ co(∪h∈(0, 1
n

],z∈B(w(t), 1
n

)φ(z, h)).

Since, φ(z, h) ⊂ cB, we infer that

π(t) ∈ co ∩ε>0,n≥1 (∪h∈(0, 1
n

],z∈B(w(t), 1
n

)φ(z, h) + εB).

On the other hand,

∩ε>0,n≥1(∪h∈(0, 1
n

],z∈B(w(t), 1
n

)φ(z, h) + εB) ⊂ Kg(t)F (t, .)(y(t);w(t))

and the proof is complete.
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