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1. INTRODUCTION

This is a survey type material containing a presentation of a few of my
own favorite elementary results in Group Theory. They were found during the
past 20 years or so and they are the outcome of work I have done mostly as a
member of a team or another of co-authors.

One may consider a group-theoretical result to be elementary if its proof
is as close to first principles as reasonably feasible. Results with proofs using
deep theorems like the CFSG (this stands for the Classification of the Finite
Simple Groups) or the Odd Order Theorem can hardly be seen as elementary.
The statement itself might sometimes be viewed as elementary if it involves
simple, familiar concepts as commutativity, order of elements, commutators,
automorphisms etc. All group theory texts contain a healthy dose of elemen-
tary results simply because some (as for example Lagrange’s theorem, the
isomorphism theorems etc.) are unavoidable, while others have short proofs
that illustrate essential techniques.

Elementary Group Theory, whatever it might mean, is similar to elemen-
tary Number Theory in one respect: conceptual proofs, using few calculations,
are quite common and this creates a powerful impression of beauty and ele-
gance. Two good sources of elementary results are the classic group theory
texts and the work of the old masters.

The term elementary corresponds to a subjective concept which depends
on context and level of expertise. The larger context for the stated results is
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presented here, for it has the rôle of the out of focus background on which the
main crisp subject is projected.

Throughout this paper G stands for “group”. When G appears in text
or in a statement with no qualification, it means that G is an arbitrary group.

2. A DROP OF ORDER IN A CUP OF CHAOS

Let G be finite and let S(G) denote the lattice of all subgroups of G. This
is a complete lattice with a quite irregular structure. For example, an open
question is if the number of maximal subgroups of G, i.e. of the dual atoms
of S(G) is less than or equal to |G| − 1. The lattice S(G) is not modular in
general and a classic result of Ø. Ore states that S(G) is distributive if and
only if G is cyclic.

The Frattini subgroup of G is the intersection Φ(G) of all maximal sub-
groups of G. For a subgroup H of G one considers the intersection H◦ of all
maximal subgroups of G not containing H. It is plain that Φ(G) 6 H◦ for
every H ∈ S(G). The subgroup generated by H and H◦ might or might not
be equal to G and this leads to considering the subset L(G) of S(G) whose
elements are the subgroups H of G with the property that Φ(G) 6 H and
G = 〈H,H◦〉. When G is a nontrivial finite group the set L(G) contains at
least two elements, namely Φ(G) and G. For many finite groups G the set
L(G) consists only of Φ(G) and G - this happens whenever G/Φ(G) is sim-
ple. However, L(G) could be large; in fact, L(G) is largest possible when L(G)
equals the set of all subgroups of G containing Φ(G) and this happens precisely
when G is cyclic.

The surprising fact is that L(G) has very regular properties – see [4] for
details.

Theorem 1. If G is finite, then L(G) is a sub-lattice of S(G), it consists
of characteristic subgroups of G and it is a Boolean algebra.

Theorem 1 says that the “wild” lattice S(G) of a finite group G contains
a generic sub-lattice (which is defined canonically) which can be seen as a sort
of a core of crystalline order. The algebraic structure of G gets more regular as
L(G) gets larger. For example, when G is a finite nilpotent group the elements
of L(G) are the pre-images in G of the Hall subgroups of the factor group
G/Φ(G).
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3. A CURIOUS GENERIC SECTION

A homomorphic image of a subgroup of G is called a section of G. In
particular, if H /K /G then K/H is a section of G. In the preceding situation,
if both H and K are generic subgroups of G, i.e. they are defined in terms of
G for any abstract group G, one may say that the section K/H is a generic
section of G. For example, if Z(G) is the center of G and Z2(G) is the second
center of G, the section Z2(G)/Z(G) is a generic section of G.

Let R2(G) be the set of all elements g ∈ G satisfying xxg = xgx for every
x ∈ G. The fact that R2(G) is a subgroup of G came as a surprise, as it was
published in 1961 by W. Kappe in [10]. The group R2(G) is called the group of
right 2-Engel elements of G; it is a characteristic subgroup of G and it contains
Z2(G). If G′ denotes the commutator subgroup of G, i.e. the subgroup of
G generated by the commutators [x, y] := x−1y−1xy where x, y ∈ G, then
Z2(G) is also contained in the centralizer CG(G′) of G′ in G. The factor group

E(G) := R2(G)∩CG(G′)
Z2(G) is thus a generic section of the abstract group G and

can be regarded as an invariant of G.

A group G is a torsion group (a periodic group) if every element of G
has finite order. Some of the torsion groups have the property that the orders
of their elements are bounded by a maximum value, say n. This means that
xn = 1 for every x ∈ G and that n is the smallest positive integer with this
property. In this case we call n the exponent of G and we write n = exp(G).

The next result from [1] is surprising because it shows that all groups
have a generic section of very restricted structure.

Theorem 2.

exp(E(G)) ≤ 2.

Very often E(G) = 1 and in this case R2(G) ∩ CG(G′) = Z2(G) . This
happens, for example, when G is a finite group of odd order. When E(G) 6= 1,
then E(G) is a (possibly infinite) elementary abelian 2-group. The proof of
Theorem 2 relies on commutator calculations and it is thus elementary.

4. AFFINE ACTIONS

Things are getting more abstract here, so this is a good place to introduce
some general notation. When S is a finite non-empty set and A is a group
acting on the set S, the number tA(S) will denote the number of orbits of A in
S. For s ∈ S the notation OA(s) is used for the orbit {sa | a ∈ A} of s under
the action of A. For a subset T of S one considers the subgroup NA(T ) of A
consisting of all elements of A that leave T invariant and the subgroup CA(T )
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of A consisting of those elements of A that fix T element-wise and note that
CA(T ) is a normal subgroup of NA(T ).

If G,A are groups and if f : A → Aut(G) is a group morphism, the
image f(A) is a subgroup of Aut(G) and acts naturally on G as a group of
automorphisms. In this situation we say that A acts on G via automorphisms.
And so, by a slight abuse of language, when we say that A acts on G via
automorphisms we actually refer to the action of f(A) on G. The typical
situation is that of G acting via conjugation on a normal subgroup H of G.

In all results presented in the sequel about fixed points and orbits one can
replace A 6 Aut(G) with A acts on G via automorphisms and the conclusions
are preserved. The statements are cast here in automorphism groups terms for
the sake of simplicity.

If V is a K-vector space the semi-direct product [V ]GL(V ) with respect
to the natural action of GL(V ) on V is called the affine group of V . As it
happens, this definition is a particular case of a more general one that works
for arbitrary groups. What is interesting is that one obtains a whole class of
such general affine actions and that the whole story is related to a class of
measures in the particular case of finite groups.

One starts with an arbitrary group G and with an arbitrary subgroup
A 6 Aut(G). For g ∈ G and for a ∈ A write [g, a] := g−1ga where ga is the
image of g under the automorphism a. In this situation it is customary to
write gab := (ga)b for a, b ∈ A. Suppose that H is an A-invariant subgroup of
G, that is, [h, a] ∈ H for all h ∈ H and all a ∈ A. Such A-invariant subgroups
of G are in great supply in general. For if H is a subgroup of G, then the
intersection of all images Ha for a running over A, denoted by coreA(H), is
clearly A-invariant.

Since H is A-invariant, A acts on H via automorphisms and one considers
the semi-direct product X = [H]A = A[H] = {(a, h) ∈ A × H} endowed
with the group operation defined by (a, h)(b, k) := (ab, hbk) for a, b ∈ A and
h, k ∈ H. The next observation is that the group X acts on the whole group
G in a natural way. Indeed, for g ∈ G and for (a, h) ∈ X, we let g(a,h) := gah.
It is easy to check that this is indeed an action of X on G, albeit not an action
via automorphisms. It is also clear that the orbit OX(g) of g ∈ G under the
action of X is just OA(g)H.

When A consists only of the identity automorphism idG of G this is
denoted by A = 1. In this particular case of A := 1 and taking H := G as the
A-invariant subgroup in the above construction we get Cayley’s right regular
representation: x(1,h) := xh for all g, h ∈ G.

It is only natural to call this action of X on G an affine action – it
depends, of course, on the choice of A and H. As we will see, this affine action
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has interesting applications when the group G is finite.

Let C(G,A) denote the set of all commutators [g, a] for g ∈ G and a ∈ A
and let [G,A] := 〈C(G,A)〉. A natural question related to the action of A
on G is to determine, for g ∈ G whether g ∈ C(G,A). This is a difficult
problem in general even when A is a nice group of automorphisms. There is
no doubt that the most important subgroup of Aut(G) is the group Inn(G) of
the inner automorphisms of G, consisting of the maps Tg : G → G defined by
xTg := g−1xg for every x ∈ G. In this case, for x ∈ G and for Tg ∈ Inn(G) the
element [x, Tg] = [x, g] = x−1g−1xg is the usual commutator of x and g.

From now on G will denote in this section a finite group. In this particular
case and for g ∈ G one can define m(g) to be the number of ordered pairs
(x, y) ∈ G × G such that g = [x, y]. Of course, m(g) > 0 if and only if
g ∈ C(G) = C(G, Inn(G)) = {[x, y] | x, y ∈ G}. The precise value of m(g) was
calculated by Frobenius as a sum in terms of characters and it is a nice exercise
to show that m(g) is a multiple of the order of the centralizer CG(g) of g in G.
No general expression is known for m(g) apart from that found by Frobenius;
the only exception is the trivial element 1, for m(1) = |G|k(G), where k(G) is
the number of conjugacy classes of G.

The preceding remarks suggest to define, for a finite group G, a subgroup
A of Aut(G) and for g ∈ G the number mA(g) := |{(a, x) ∈ A×G | g = [x, a]}|.
Then g → mA(g) is a measure on G and if S is a subset of G one defines mA(S)
to be simply the sum of the measures of all elements in S. It should be clear
that mA(G) = m(C(G,A)) = |G||A| and that for a subset S of G we have
mA(S) = |G||A| if and only if C(G,A) ⊆ S.

So, for an arbitrary finite group G, and for an arbitrary subgroup A of
Aut(G) we have a measure (depending on A) on G. If H is an A-invariant
subgroup of G, then A is acting on the set G/H = {xH | x ∈ G} via (xH)a :=
xaH with a number tA(G/H) of orbits. All of the above are now coming
together in a surprising way, linking affine actions with number of orbits and
with measures. The next theorem is the only new result presented here; it
gives the natural general framework for the consequences in this section.

Theorem 3. Let G be finite, let A 6 Aut(G), let H be an A-invariant
subgroup of G and let X = [H]A act naturally on G. Then

tX(G) = tA(G/H) and |X|tX(G) = mA(H).

The second equality appears in [6], being proved by using the Cauchy-
Frobenius lemma. The first equality is left as an exercise to the reader.

Theorem 3 has several direct consequences. The first gives the exact
number of commutators contained in a normal subgroup of a finite group.
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Recall that if G is finite the number k(G) is the number of conjugacy classes
of G.

Corollary 1. If G is finite and if H is a normal subgroup of G, then the
number of ordered pairs (x, y) ∈ G×G with [x, y] ∈ H equals |H||G|k(G/H).

Another consequence gives a characterization of the finite abelian groups
in terms of numerical invariants.

Corollary 2. If G is finite, then |G|k(Φ(G)) ≥ k(G)|Φ(G)| and equality
holds if and only if G is abelian.

The characterization of the finite groups of nilpotency class at most two
given in [7] uses similar numerical invariants.

Corollary 3. If G is finite, then

|Z2(G)| ≤ |Φ(G)|k(G/Φ(G))

and the equality holds if and only if G = Z2(G).

It is well known that ifG is a finite group and if χ is an irreducible complex
character of G then the kernel of χ, i.e. the set of all elements g ∈ G with the
property that χ(g) = χ(1), is a normal subgroup of G. Moreover, every normal
subgroup of G is the intersection of certain such kernels. The next consequence
from [7] is not elementary because it uses characters. However, it has a strong
combinatorial flavour and the proof uses only rudiments of character theory.

Corollary 4. If G is finite and if H is the intersection of more than
half of the kernels of complex irreducible characters of G, then every element
of the normal subgroup H is a commutator in G.

If H,K are subgroups of G it is a natural question to ask whether the
set C(G) of all commutators in G is contained in the union H ∪ K. This is
certainly a nontrivial question, for it is well-known that C(G) is not always
a subgroup of G. Also, assuming that C(G) is contained in the said union,
another question is to decide if C(G) is contained either in H or in K. Of
course, the answer to this second question is affirmative when C(G) = G′.

More generally, consider two subgroups H,K of G, a subgroup A of
Aut(G) and the set C(G,A) = {[g, a] | g ∈ G, a ∈ A}. When is C(G,A)
contained in H ∪ K? And, if C(G,A) ⊆ H ∪ K is it true that C(G,A) is
contained in either H or K? When G is finite a definitive answer to the last
question is given in [8].

Corollary 5. If G is finite and A 6 Aut(G), let H,K be subgroups of
G with X = coreA(H) and Y = coreA(K). Then

|G| ≥ |X|tA(G/X) + |Y |tA(G/Y )− |X ∩ Y |tA(G/(X ∩ Y ))
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and the equality holds if and only if either H or K contains [G,A].

Results similar to the second part of Corollary 5 are obtained in [8] for
the more general case of periodic groups.

5. ON FIXED THINGS

Let A 6 Aut(G). Two A-invariant subgroups of G are important in
what follows. The first is the subgroup CG(A) of all elements of G fixed by
all elements of A and the second is the subgroup [G,A] generated by all the
commutators [g, a] for g ∈ G and all a ∈ A. The subgroup [G,A] is also a
normal subgroup of G. When A := Inn(G) we have CG(Inn(G)) = Z(G) is
the center of G and [G, Inn(G)] = [G,G] = G′ is the commutator subgroup of
G.

One good source of general elementary results is to look at the pair (G,A)
where G is an arbitrary group and A is an arbitrary subgroup of Aut(G). There
is a fascinating interplay between the structure of G and that of its group of
automorphisms Aut(G); the study of the pair (G,Aut(G)) was in full swing at
the beggining of the twentiest century and theorems by O. Hölder, W. Burnside,
P. Hall are elegant classic gems included in most of the serious group theoretical
texts.

There is an extensive literature studying the situation where a ∈ Aut(G)
and a is fixed-point-free, i.e. CG(a) = 1. The most well-known result is a
theorem of J.G. Thompson (formerly a conjecture of Frobenius) asserting that
if G is finite and a is fixed-point-free automorphism of prime order, then G is
nilpotent. If the prime order condition is dropped, the finite group G is not
necessarily nilpotent and when the order of a is 2 a theorem of W. Burnside
states that G is abelian and of odd order.

If X is a finite group, let F (X) denote the Fitting subgroup of X, i.e.
the largest normal nilpotent subgroup of X. The next result shows that all
non-abelian finite groups have a common property.

Theorem 4. If G is finite and nonabelian and if a ∈ Inn(G)F (Aut(G)),
then CG(a) 6= 1.

In fact, as shown in [3], the only finite groups G admitting a fixed-point-
free automorphism in the Fitting subgroup of Aut(G) are either abelian of odd
order or direct products of an abelian group of odd order and the Klein group
with four elements. This can be viewed as a far reaching generalization of the
mentioned theorem of Burnside.
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Here is an interesting question: can we say something nontrivial about
all groups with at least three elements? Three is important here because if
|G| ≥ 3 then Aut(G) is non-trivial. The answer if affirmative and it involves
such a group G and a subgroup A of Aut(G) such that Inn(G) 6 A.

One constructs the semi-direct product AG = GA. The elements of AG
are pairs (a, x) ∈ A × G and the multiplication is given by (a, x)(b, y) :=
(ab, xby). The essential observation appears in the particular case of A =
Aut(G) in [11] and it is mentioned there in passing as if being well-known; I
wish to thank E. Wilcox for mentioning that bibliographical source to me.

It is easy to check that the map t : AG → AG defined by (a, x)t :=
(aTx, x

−1) is in fact an automorphism of AG. It is also easy to see that t fixes
both A and Ω1(Z(G)) and this means that whenever G is not an elementary
abelian 2-group then t is an automorphism of AG of order 2. In the case when
G is an elementary abelian 2-group, AG still has an automorphism of order 2,
namely the inner automorphism of AG induced by an involution of G.

There are infinitely many examples of finite p-groups G (where p is an
odd prime) such that Aut(G) is also a p-group. Therefore it is not true that
every group of order at least 3 has an automorphism of order 2. The next
result gives a very large class of groups having a canonical automorphism of
order 2. Here canonical means that the image of every element is given by a
formula depending only on the element itself. A famous and very important
example of a canonical automorphism of order 2 is x→ x−1 where x ∈ G and
G is a free abelian group. And of course, when G is non-abelian, the inner
automorphisms of G are canonical, too.

Theorem 5. If G is a group with at least 3 elements and if Inn(G) 6
A 6 Aut(G), then the group AG has a canonical automorphism of order 2.

There exists a large collection of results of the following type: if G is a
group, if A 6 Aut(G) and if one knows something about A and CG(A), then
something is said about the structure of G. Conditions like (|G|, |A|) = 1
and/or CG(A) = 1 are frequently present and sometimes extra conditions on
A are also imposed. And so, one may ask if anything general and nontrivial
can be said about the action of A 6 Aut(G) on G.

The first remark has to do with the affine action in section 3. If G is
a group , and if A 6 Aut(G), let F := CG(A) denote the subgroup of the
fixed points of A in G. Then clearly F is A-invariant and so X = AF = FA
acts on G as indicated in Theorem 3. Moreover, if O(G,A) is the set of all
orbits of A in G, then F acts on the set O(G,A) in the following manner: if
OA(g) ∈ O(G,A) and if f ∈ F , we let (OA(g))f := OA(g)f = OA(gf). This
means that F permutes the orbits of A in G. The stabilizer SF (OA(g)) of the
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orbit OA(g) is seen to be F ∩g−1OA(g) and therefore it is a subgroup of F . On
the other hand, it is isomorphic to the factor group NA(gF )/CA(gF ), which is
a section of A.

The following result holding for arbitrary G was obtained in [2].

Theorem 6. Let A 6 Aut(G) and F = CG(A). For every g ∈ G

F ∩ g−1OA(g) ∼= NA(gF )/CA(gF ).

Theorem 6 is quite powerful when G is finite, because the action of F on
the orbits of A in G sends an orbit to an orbit of the same length. M. Isaacs
found in [9] the following very general consequence.

Corollary 6. If G is finite and if A 6 Aut(G), then the number of or-
bits of A in G is a multiple of the order of the factor group CG(A)[G,A]/[G,A].

Corollary 6 says nothing when CG(A) is contained in [G,A], but the next
consequence, also from [9], is surprising indeed.

Corollary 7. Let G be finite with a prime number p of conjugacy classes
and suppose that the center of G is not contained in the commutator subgroup
of G. Then |G| = p.

Another application of Theorem 6 concerns the finite p-groups. When p
is a prime and G is a finite p-group it is not uncommon to have (p, k(G)) = 1.
For example, both non-abelian groups of order 8 have 5 conjugacy classes. In
this situation one can say something non-trivial.

Corollary 8. If G is a finite p-group and if (p, k(G)) = 1, then every
element of Z(G) is a commutator in G.

A few more consequences may be found in [2] and if one applies The-
orem 6 in the holomorph of a finite group as was done in [5] one obtains a
surprising property of automorphisms of finite groups. Let G be finite and let
a ∈ Aut(G). If H is an a-invariant normal subgroup of G, then a induces nat-
urally an automorphism of the factor group G/H, which is denoted, by abuse
of language, also by a. The fact is that the fixed point subgroups CG(a) and
CG/H(a) are known to be feebly related, in the sense that |CG(a)| ≥ |CG/H(a)|.
When H := Z = Z(G), however, one can say much more: in fact, |CG/Z(a)|
divides |CG(a)|. I am stating here the most important particular case of a
result in [5].

Theorem 7. Let G be finite, let Z := Z(G), let a ∈ Aut(G) and let
Za := Z ∩ {[g, a] | g ∈ G}. Then

|CG(a)| = |CG/Z(a)||Z : Za|.
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Easy examples show that Theorem 7 is no longer true if one takes some
other characteristic subgroup of G in place of the center Z(G) and this shows
the special rôle the center plays among the generic subgroups of G.

Since the holomorph H := [G]Aut(G) was mentioned above, I mention
here a surprisingly simple application of the holomorph to a 100 years old open
problem. It is well-known that finite cyclic groups have abelian automorphism
groups and that finite abelian noncyclic groups have non-abelian automorphism
groups. More than 100 years ago, G. A. Miller produced an example of a finite
nonabelian p-group G with Aut(G) abelian. Infinitely many examples were
constructed over the years (they must all be nilpotent of class two) but no
classification is in sight. Consider the holomorph H = AG where A = Aut(G)
and observe that both subgroups G and A of H act on H via conjugation. If
one denotes by tG(H) the number of G-orbits on H and by tA(H) the number
of A-orbits on H, then (by applying the Cauchy-Frobenius lemma three times)
one obtains the characterization in [5].

Theorem 8. Let G be finite, let A := Aut(G) and let H be the holomorph
of G. Then tG(H) ≥ tA(H) and the equality holds if and only if Aut(G) is
abelian.

Theorem 8 is just another good example of a general inequality involving
invariants. The extreme (equality) case is again characterizing an interesting
class of finite groups. This seems to be the case in group theory and it was one
of the main reasons for looking for general inequalities. Recall that what I call
the Cauchy-Frobenius lemma is what used to be called “Burnside’s lemma” -
it involves the number of orbits and fixed points for the action of a group on a
finite set.

Returning to the main theme of this section, which is fixed points, con-
sider again a finite group G, a subgroup A of Aut(G) and the subgroup
F = CG(A) of the fixed points of A in G. We have seen that F acts nat-
urally on the set of orbits of A in G. Another consequence of that action is a
surprising property of the order of F which was established in [6]. The proof
given there by G. Walls is surprisingly short.

Theorem 9. Let G be finite, let A be a subgroup of Aut(G) and let
F := CG(A). Let T be a set of representatives for the orbits of A in G. Then,
for every positive integer k,

|F | |
∑
x∈T
|OA(x)|k.

Of course, Theorem 9 says nothing when F = CG(A) = 1. Note, however,
that very often F 6= 1 and in this case there exists at least one prime p which
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divides |F |. As an application, let in Theorem 9 A := Inn(G), F := Z(G) and
k = p− 1 to get the following consequence.

Corollary 9. Let G be finite and let p be a prime dividing |Z(G)|. Then
the number of conjugacy classes of G whose length is co-prime to p is a multiple
of p.

So, as we see, F has a significant influence on the number tA(G) of the
orbits of A in G. And then one may ask if the converse is also true, that is, if
having information on tA(G) can be translated somehow into information on
CG(A). As a case in point, suppose that G is finite, that A 6 Aut(G) and that
tA(G) is odd. This is not a strong condition. For it is trivial to show that if
|G| is odd, then k(G) is odd too and there exist many other finite groups of
even order with an odd number of conjugacy classes. And after all, tA(G) is
either odd or even. The following was established in [8].

Theorem 10. Let G be finite, let A 6 Aut(G) and suppose that tA(G)
is odd. Suppose that H is a normal subgroup of G and that A acts trivially on
H, i.e. H 6 CG(A). Then either |H/Z(H)| is odd, or Z(H) 6= 1.

The condition that H is a normal subgroup of G is a strong one. How-
ever, the situation when a subgroup of Aut(G) acts trivially on some normal
subgroup is very common indeed - one just have to take a look at group coho-
mology.

The deep Odd Order Theorem of W. Feit and J.G. Thompson states that
groups of odd order are solvable. Combining it with Theorem 10 it follows
that if the finite group G has a nontrivial minimal normal subgroup H acted
upon trivially by some subgroup of Aut(G) that has an odd number of orbits
in G, then H must be an elementary abelian p-group for some prime p. This
very particular application is yet another illustration of the connection between
orbits and fixed points of group automorphisms.

6. KRUTIK SETS AND A LEMMA OF BURNSIDE

Few things are more rewarding than extending a result of an old master
and the reason is that the result must be itself old. One such old result is a
well-known lemma of W. Burnside, stating that if G is finite, if P is a Sylow
p-subgroup of G and if x, y are elements of CG(P ) that are conjugate in G,
then they are conjugate in NG(P ).

This situation is described shortly by saying that NG(P ) controls G-fusion
in CG(P ) and it refers to the action of G on G via conjugation. This gives the
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impression that Burnside’s result is a property of the base group G while, in
fact, it is a property of the acting group G.

To substantiate the last claim, consider a finite non-empty set S, a finite
group A acting on S and a non-empty subset X of S. If X is not A-invariant,
there exists some x ∈ X and some a ∈ A such that xa /∈ X and this suggests
considering the subset KA(x,X) := {a ∈ A | xa ∈ X}. Let’s call KA(x,X) a
Krutik set. Thus, a Krutik set is a subset of A and it depends, of course, on
the choice of x in S and of the subset X containing x.

Another notion related to the above situation is that of fusion control.
Let’s say that a subgroup B of A controls A-fusion in X if whenever xa ∈ X
for a ∈ A and x ∈ X there exists b ∈ B such that xa = xb. Given a subset X
of S it is important in many situations to determine a minimal subgroup of A
that controls A-fusion in X. Stated in these very general terms, this is clearly
an impossible task. However, this can be done for at least one special choice
of X, which was suggested by Burnside’s lemma – see [6] for a short proof.

Theorem 11. Let S be a finite non-empty set and let A be a finite group
acting on S. Let P be a Sylow p-subgroup of A and suppose that the set CS(P )
of elements of S fixed by all elements of P is not empty. Then, NA(P ) controls
A-fusion in CS(P ), NA(CS(P )) = CA(CS(P ))NA(P ) and for every x ∈ CS(P )
we have KA(x,CS(P )) = CA(x)NA(P ).

In the above statement, NA(P ) is the normalizer of P in A and CA(x) is
the subgroup of those elements of A fixing x. If one looks at the statement,
the only condition that is there is that P fixes at least one element of S. This
is not a very strong condition: because the order of P is a p-power, CS(P ) is
non-empty whenever (|S|, p) = 1. And, of course, if S itself is a group and
if A 6 Aut(G) acting naturally on S, then again |CS(P )| ≥ 1. Theorem 11
shows clearly that this control of fusion is about the group A that is acting on
the set S.

Similarly, if G is finite if P is a Sylow p-subgroup of G and if A is a
finite group acting via automorphisms on G, then NA(P ) = NA(NA(P )). The
well-known equality NG(P ) = NG(NG(P )) obscures the fact that this happens
in the group A := G that acts on G via conjugation.

7. SOME OPEN QUESTIONS

Group Theory thrives through the plethora of elegant open problems.
Their statements look deceptively simple and that adds to their appeal.

I start with an open question about commutators in finite groups posed
by Des MacHale.
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Question 1. If G is finite and if exactly one element of G is not a
commutator, is it true that |G| = 2?

This is one of my favorite open questions; the surprise element is in the
fact that, if true, a group-theoretical property singles out just one group.

An older open question was proposed by L. Kazarin.

Question 2. Let G be finite such that G = AB where A and B are
subgroups of G of co-prime order. Is it true that k(G) ≤ k(A)k(B)?

Very similar to the above is a question of L. Pyber. If G is a finite group,
let G+ be the direct product of copies of the Sylow p-subgroups of G, one for
each prime dividing |G|. Pyber was asking the following.

Question 3. If G is finite, is it true that k(G) ≤ k(G+)?

Another elegant question was posed by A. Mann.

Question 4. Is it true that the dihedral group of order 8 is the only finite
non-trivial p-group isomorphic to its own automorphism group?

I have, of course, several open problems and questions of my own. The
first is a nice pendant for MacHale’s question and I like to call it “poor man’s
Odd Order Theorem”. The important Odd Order Theorem asserts that if G
is non-trivial and of odd order, then G′ 6= G and thus a lot of elements in G
are not commutators.

Problem 1. If G is non-trivial and of odd order, find an elementary
proof to show that there exists an element in G that is not a commutator in G.

The mentioned result of Frobenius saying that the number of pairs (a, b) ∈
G × G with [a, b] = 1 is equal to |G|k(G) is suggesting a more complicated
problem. Recall that [x, y, z] := [[x, y], z] and solve the following.

Problem 2. If G is finite, find the number of triples (a, b, c) ∈ G×G×G
such that [a, b, c] = 1.

The next open question is suggested by the finite dihedral groups.

Question 5. If G is finite and at least half of the elements in G have
the same order, is it true that G solvable?

When G is finite and s is an integer such that (s, |G|) = 1, the map
sending g ∈ G to gs is clearly a permutation of the set G and it is clear that
this map commutes with all automorphisms of G. Since Aut(G) is clearly a
subgroup of the group SG of all permutations of the set G, the next question
makes sense:
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Question 6. What can be said about CSG
(Aut(G)) when G is finite?

The terms of Question 6 are rather vague. In fact: can we say anything in
general? For if we denote the group of those power maps by V , it is clear that
both Z(Aut(G)) and V are contained in CSG

(Aut(G)). It is of course possible
for some finite groups G to have CSG

(Aut(G)) = V Z(Aut(G). These would be
groups G with small such centralizers. But it is also conceivable that for some
other groups G the preceding equality doesn’t hold. This is, I guess, a typical
problem that can be explored by using computational group theory packages.
Another question involves the Frattini subgroup of Aut(G).

Question 7. Let G be finite and let a ∈ Aut(G). Determine conditions
on the action of a on G to force a ∈ Φ(Aut(G)).

Back in 1990 M. Newman and J. Neubüser proposed to me to construct an
automorphism with special properties. Let G be a 2-group with two generators,
so G/Φ(G) is the Klein four group. This factor group has an automorphism
a which permutes cyclically its three maximal subgroups. Sometimes, this
automorphism a extends to an automorphism of the full group G (as in the case
when G is the quaternion group of order 8) and sometimes it does not (as when
G is the dihedral group of order 8). The natural problem suggested by these
remarks was initially to classify the finite 2-groups with two generators having
such a “crown automorphism” a which permutes all maximal subgroups of G
in a cyclical manner. This was completely solved in the particular case of the
finite 2-group G with two generators being also of nilpotency class maximum 2.
Since the finite p-groups of class 2 with 2 generators are known, my impression
is that the following problem poses only technical difficulties.

Problem 3. Classify all finite p-groups of nilpotency class maximum 2
and with two generators which have a crown automorphism (i.e. an automor-
phism permuting the maximal subgroups of G cyclically).

Consider next the set of all automorphisms a of G satisfying the equality
xxa = xax for all x ∈ G and denote this set by A(G). Gh. Silberberg gave
an example of a finite 2-group G for which A(G) is not a subgroup of Aut(G).
Theorem 1.3 of [1] shows that when Z(G) = 1 and A(G) is not reduced to the
identity automorphism of G then A(G) is an elementary abelian 2-group.

An important subgroup of Aut(G) is the centralizer Autc(G) of Inn(G)
in Aut(G). Since a ∈ Autc(G) if and only if [x, a] ∈ Z(G) for all x ∈ G, it
follows that Autc(G) = 1 whenever Z(G) = 1. Corollary 1.4 of [1] states that
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if Autc(G) = 1 then A(G) is a group of exponent at most 2. If true, this would
be a generalization of the stated Theorem 1.3 of [1].

This is a good opportunity to make two corrections. E. Jabara discovered
a long time ago that the first concluding remark of [1] is false. Also, M. Jafari
discovered a gap in the proof of the Corollary 1.4 of [1] – thanks are due to
both Enrico and Mohammed for the attention given to [1].

As M. Jafari observed, the proof given in [1] is not complete. It is shown
there correctly that in the given conditions and for a, b ∈ A(G) one must have
a2 = b2 = [a, b] = 1 – here 1 is the notation for the identity automorphism
idG. This shows that, if non-empty, the set of the nontrivial elements of A(G)
is a set of commuting involutions in Aut(G). And, unfortunately, this is not
implying directly that A(G) is a subgroup of Aut(G) as claimed in Corollary
1.4 of [1].

G. Walls informed me recently that if one imposes the additional condition
that G′ contains no involutions, then A(G) is indeed a subgroup of Aut(G).
This is because it is easy to check that for every x ∈ G and every a, b ∈ A(G)

we have [x, xab]
2

= 1. Consequently, if G′ has no involutions, one obtains that
if a, b ∈ A(G) then ab ∈ A(G). The general case is still open, so I mention it
as an open question.

Question 8. Is it true that if Autc(G) = 1 then A(G) is a subgroup of
Aut(G)?

An interesting open problem has its origin in elementary Number Theory.
It is easy to see that if n is an odd positive integer then every subgroup of the
cyclic group Cn of order n is the fixed point subgroup of some a ∈ Aut(Cn).

Problem 4. Classify all finite groups G with the property that for every
subgroup H of G there exists some automorphism a of G such that H = CG(a).

The last question in this section is probably the hardest. Consider a finite
group G and a subgroup A of Aut(G) such that A acts regularly on G. This
means that CG(a) = 1 whenever a is a non-trivial automorphism in A. In this
situation it is easy to check that |A| divides |G|−1. The interesting question is
if the converse is true when A = Aut(G): if |Aut(G)| divides |G| − 1, is it true
that Aut(G) acts regularly on G? As it turns out, this is just a translation into
group-theoretical terms of a famous open 1932 problem of D.H. Lehmer: is it
true that if n > 1 is an integer and if ϕ(n) divides n− 1 then n is a prime?

Question 9. If G is finite and non-trivial and if |Aut(G)| divides |G|−1
is it true that |G| is a prime?
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