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We introduce two new classes of integers. The first class consists of numbers N
for which there exists at least one integer A, such that the sum of A and the
sum of digits of N , added to the reversal of the sum, gives N . The second class
consists of numbers N for which there exists at least one integer A, such that
the sum of A and the sum of the digits of N , multiplied by the reversal of the
sum, gives N . All palindromes that either have an even number of digits or an
odd number of digits and the middle digit even belong to the first class, and all
squares of palindromes with at least two digits belong to the second class. These
classes contain and are strictly larger than the classes of b-ARHardy numbers,
respectively b-MRH numbers introduced in Niţică [6].
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1. INTRODUCTION

Let b ≥ 2 be a numeration base. In Niţică [6], motivated by a property
of the taxicab number, 1729, we introduce the classes of b-additive Ramanujan-
Hardy (or b-ARH) numbers and b-multiplicative Ramanujan-Hardy (or b-MRH)
numbers. The first class consists of numbers N for which there exists at least
one integer M , called additive multiplier, such that the product of M and the
sum of base b digits of N , added to the reversal of the product, gives N . The
second class consists of numbers N for which there exists at least one integer
M , called multiplicative multiplier, such that the product of M and the sum of
base b digits of N , multiplied by the reversal of the product, gives N . We show
in [6, 8] the existence of infinite sets of b-ARH and b-MRH numbers and infinite
sets of multipliers. Nevertheless, several questions asked in [6, 8] remain open.
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Viorel Niţică passed away on June 20, 2021

REV. ROUMAINE MATH. PURES APPL. 67 (2022), 1-2, 1–20

http://oeis.org/A005349
http://oeis.org/A067030
http://oeis.org/A305130
http://oeis.org/A305131
http://oeis.org/A306830
http://oeis.org/A323190
http://oeis.org
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In particular we would like to find obstructions to the existence of multipliers
and infinite sets of multipliers of fixed multiplicity.

In this paper we change the definitions above. We replace the product
between the sum of digits and the multiplier by the sum of the sum of digits
and a positive extra term. This gives two new classes of numbers, b-wARH and
b-wMRH. These are strictly larger than those above. We believe that the study
of these classes will bring some insight into the remaining open questions in
[6, 8]. Another motivation for the study of these classes of numbers is the study
of numerical palindromes. All palindromes that either have an even number
of digits or an odd number of digits and the middle digit even belong to the
first class, and all squares of palindromes with at least two digits belong to
the second class. Some results in [6] bring new examples of b-Niven numbers.
These are numbers divisible by the sum of their base b digits. See, for example,
[1, 2, 3, 4, 7]). In particular, any b-MRH number is a b-Niven number. We
expect the study here to shine new facets of this notion.

A computer search produced many wARH numbers. There are 77 inte-
gers less than 10000 having this property; see sequence A305131 in the OEIS
[5] and Table 1 in this paper. For example, 121212 has extra term 60597. The
sum of the digits is 9, one has 9+60597 = 60606, and 60606+60606 = 121212.

A computer search produced also many wMRH numbers. There are 365
integers less than 10000 having the property; see sequence A306830 in the OEIS
[5] and Table 2 in this paper. For example, 2268 has extra term 18. The sum
of the digits is 18, one has 18 + 18 = 36, and 36× 63 = 2268.

The paper is dedicated to the study of these classes of numbers. As a
by-product we also clarify some relationships between the classes of numbers
introduced here and in [6], and the well studied class of b-Niven numbers. The
Venn diagrams in Figure 1, in which the universal set is the set of integers,
record some relationships and lead to some open questions. The inclusion
of the set of b-ARH numbers into the site of b-wARH numbers is proved in
Proposition 7 and the inclusion of the set of b-MRH numbers into the set of
b-wMRH numbers is proved in Proposition 16. We believe that each proper
subset in the Venn diagrams contains an infinity of integers. Those subsets
for which we already know this fact are marked by a full black dot. For
the others, the question is open. See Corollary11 for an infinity of b-wARH
numbers that are not b-Niven numbers. No large prime number can be either
b-Niven or b-wMRH numbers. See the proof of Proposition 25 for an infinity
of b-wMRH numbers that are not b-Niven numbers, and consequently neither
b-MRH numbers.
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2. STATEMENTS OF THE MAIN RESULTS

In what follows let b ≥ 2 be an arbitrary numeration base.

Definition 1. If N is a positive integer written in base b, we call reversal
of N and let NR denote the integer obtained from N by writing its digits in
reverse order.

We observe that addition and multiplication are independent of the nu-
meration base. The operation of taking the reversal is not.

Let sb(N) denote the sum of the base b digits of an integer N .

Definition 2. A positive integer N written in base b is called weak
b-additive Ramanujan-Hardy number, or simply b-wARH number, if there ex-
ists an integer A ≥ 0, called additive extra term, such that

(1) N = A+ sb(N) + (A+ sb(N))R,

where (A+ sb(N))R is the reversal of base b-representation of A+ sb(N).

Definition 3. A positive integer N written in base b is called weak
b-multiplicative Ramanujan-Hardy number, or simply b-wMRH number, if there
exists an integer A, called multiplicative extra term, such that

(2) N = (A+ sb(N)) · (A+ sb(N))R,

where (A+ sb(N))R is the reversal of base b-representation of A+ sb(N).

To simplify the notation, let s(N), wARH, wMRH denote s10(N), 10-
wARH, 10-wMRH.

We observe that the notions of b-wARH and b-wMRH numbers are de-
pendent on the base.
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Example 4. The number [121]10 is an wARH number with A = 103, but
[121]9 is not a 9-wARH number. The number [121]10 is an wMRH number
with A = 7, but [121]9 is not a 9-wMRH number.

Once these notions are introduced and examples of such numbers found,
several natural questions arise. Do there exist infinitely many b-wARH num-
bers? Do there exist infinitely many b-wMRH numbers? Do there exist in-
finitely many additive extra terms? Do there exist infinitely many multiplica-
tive extra terms? All these questions are positively answered below.

In what follows, if x is a string of digits, we let (x)∧k denote the string
obtained by repeating x k-times. We also let [x]b denote the value of the string
x in base b.

The following proposition is of independent interest and it is also needed
later.

Proposition 5. Let N be a base b integer. Then:

a) 2sb(N) ≤ N, if N has at least two digits;

b) 2sb(N) + b− 1 ≤ N · b+ b−1
2 , if N has at least two digits;

c) If N has at least three digits, then

(3) sb(N
2) ≤ N.

The Proof of proposition 5 is done in Section 3

Remark 6. In Proposition 5, c), the condition that N has at least 3 digits
is necessary, as shown by N = [13]11.

The following proposition gives many examples of b-wARH numbers.

Proposition 7. a) Let N be a base b palindrome either with an even
number of digits or with an odd number of digits and the digit in the middle
position even. Then N is a b-wARH number.

b) Let N be a b-ARH number, Then N is a b-wARH number.

Corollary 8. For any string of digits I there exists an infinity of b-
wARH numbers that contain I in their base b-representation.

Proof. The string I is part of an infinity of base b palindromes with an
even number of digits.

Corollary 9. For any integer N there exists an infinity of integers M
such that N ·M is a b-wARH number. Consequently, all integers are divisors
of b-wARH numbers.
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Proof. It is proved in [8, Theorem 5] that for any integer N there exists
an infinity of integers M such that N ·M is a palindrome. If the palindrome has
an even number of digits, we are done. Otherwise, if P = N ·M is an arbitrary
palindrome with k digits, consider the product P · [1(0)∧k−11]b, which is a
palindrome with 2k digits.

Corollary 10. For any b ≥ 2 there exist an infinity of arithmetic pro-
gressions of length b of b-wARH numbers.

Proof. If I is a string of base b-digits of length at least 1, consider the
following arithmetic progression of palindromes:

[I00IR]b, [I11IR]b, [I22IR]b, [I33IR]b, . . . . . . , [I(b−2)(b−2)IR]b, [I(b−1)(b−1)I]b.

Corollary 11. There exists an infinity of b-wARH numbers that are
not b-Niven numbers.

Proof. For any k ≥ 1 define Nk = [1(0)∧k(b − 1(b − 1)(0)∧k1]b. Then
sb(Nk) = 2b and Nk is not divisible by b. But Nk are palindromes with even
number of digits, so they are b-wARH numbers.

We show in [6, Theorem 26] the existence of an infinity of integers that
are not b-ARH. The following result has a similar proof.

Proposition 12. There exists an infinity of numbers that are not b-
wARH numbers.

The following result complements [6, Corollary 19], which applies only
for b even.

Proposition 13. There exists an infinity of b-wARH numbers that are
not b-MRH numbers.

Proposition 13 is proved in Section 5.

Question 14. Does there exist an infinity of b-wARH numbers that are
not b-ARH numbers?

Proposition 15. For any b ≥ 2 there exists an infinity of b-wARH num-
bers and an infinity of extra terms.

Proof. Consider the sequence Nk = [1(0)∧k(0)∧k1]b, k ≥ 1, with additive
terms Ak = b2k − 2.

The following proposition gives many examples of b-wMRH numbers.
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Proposition 16. a) Let P be a a base b-palindrome with at least two
digits and let N = P 2. Then N is a b-wMRH number.

b) Let N be a b-MRH number. Then N is a b-wMRH number.

Corollary 17. For any string of base b digits I there exists an infinity
of b-wMRH numbers that contain I in their base b-representation.

Proof. It is enough to show that the string I is part of an infinity of base
b squares of base b palindromes. If [I]b is even, let [J ]b be a k0 digit string such

that 2J = I. Then I is part of the base b-representation of
(
[1(0)∧kJ(0)∧k1]b

)2
,

for all k ≥ 3k0. If [I]b is odd, let [J ]b be a k0 digit string such that 2J + 1 = I.

Then I is part of the base b-representation of
([
J(0)∧k1(0)∧k1(0)∧kJ

]
b

)2
for

all k ≥ 3k0.

Corollary 18. For any integer N there exists an infinity of integers M
such that N ·M is a b-wMRH number. Consequently, all integers are divisors
of b-wMRH numbers.

Proof. It is proved in [8, Theorem 5] that for any integer N there exists
an infinity of integers M such that N ·M is a palindrome. Then the product
N ·M · (N ·M) is a b-MRH number.

It is well known that there exists an infinity of numbers that are not b-
Niven. As a b-MRH number is b-Niven, this gives an infinity of numbers that
are not b-MRH numbers.

Proposition 19. There exists an infinity of numbers that are not b-
wMRH numbers.

Proof. No prime number is b-wMRH number.

Remark 20. The condition in Proposition 16 that P has at least 2 digits
is necessary. Some squares of one digit numbers are b-wMRH number, for
example 81, and some are not, for example 25.

Proposition 21. For any b ≥ 2 there exists an infinity of b-wMRH
numbers and an infinity of extra terms.

Proof. Consider the sequence Nk =
(
[1(0)∧k1]b

)2
, k ≥ 1, with additive

terms Ak = bk − 4, if b ≥ 3 and Ak = bk − 3, if b = 2.

Combining Proposition 7, c) and [6, Theorems 13,15 ] one has the follow-
ing result.
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Theorem 22. a) Consider the numbers

(4) Nk = [(1)∧k]b,

where b is even, k = [1(0)∧p]b, p ≥ 1, p an arbitrary natural number. All
numbers Nk are b-wARH numbers. Each Nk has a subset of additive multipliers

of cardinality 2
k−2p

2 consisting of all integers k·([(1)∧pI]b), where I is a sequence
of 0 and 1 of length k − 2p in which no two digits symmetric about the center
of the sequence are identical.

b) Consider the numbers

(5) Nk = [(1)∧p(10)∧k−2p0(1)∧p]b,

where b is even and k = [1(0)∧p]b, p ≥ 1, p arbitrary natural number. All
numbers Nk are b-wARH numbers. For each Nk the set of additive extra terms

has cardinality (b−1)
k−2p

2 and consists of all integers 2 · ([(1)∧pI0]b − 1), where
I is a concatenation of k−2p two digits strings of type 0α, α 6= 0, in which any
pair of nonzero digits symmetric about the center of I0 have their sum equal
to b.

Corollary 23. If b is even, there exists infinitely many b-wARH num-
bers that have at least two extra terms.

Question 24. Do there exist infinitely many b-wMRH numbers that have
at least two extra terms?

Proposition 25. There exists an infinity of b-wMRH numbers that are
not b-MRH numbers.

Question 26. Does there exist an infinitely of b-wARH numbers that are
not b-wMRH?

Motivated by the results in Theorem 22, we introduce the following no-
tions.

Definition 27. If N is a b-wARH number, let the multiplicity of N be the
cardinality of the corresponding set of additive extra terms.

Definition 28. If N is a b-wMRH number, let the multiplicity of N be
the cardinality of the corresponding set of multiplicative extra terms.

Theorem 22 has the following corollary.

Corollary 29. The multiplicity of b-wARH numbers is unbounded for
any even base.

Question 30. Is the multiplicity of b-wMRH numbers bounded?
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We show in [6, Theorem 25] an infinity of b-Niven numbers that are not
b-MRH numbers. The following question is open.

Question 31. Does there exist an infinity of b-Niven numbers that are not
b-wMRH numbers?

We show in Section 13 that 2 is not a multiplicative extra term for base
10. We do not know how to answer the following questions for any base.

Question 32. Do there exist infinitely many integers that are not additive
extra terms?

Question 33. Do there exist infinitely many integers that are not multi-
plicative extra terms?

In what follows let bxc denote the integer part, let lnx denote the natural
logarithm and let logb x denote base b logarithm of the positive real number x.

The following theorems give bounds for the number of digits in a b-wARH
number with fixed extra term. Due to independent interest and in order to
simplify the statements of other results we consider first the case when the
extra term is A = 0.

Theorem 34. Let N be a b-wARH number with k digits and additive
extra term A = 0. Then N = 0, N = [11]2, N = [22]3, or N = [1(b− 2)]b.

Theorem 35. Let N be a b-wARH number with k digits and additive
extra term A. Then

k ≤ A+ 4.

Corollary 36. For fixed additive extra term A and base b, the set of
b-wARH numbers with extra term A is finite.

Theorem 37. Let N be a b-wARH number with k digits and additive
extra term A. Under the assumption A ≥ b3 one has:

(6) k ≤ 2blogbAc.
The following theorems give bounds for the number of digits in a b-wMRH

number with fixed extra term. Due to independent interest, we leave as open
problem finding all b-wMRH numbers with extra term A = 0.

Theorem 38. Let N be a b-wMRH number with k digits and multiplica-
tive extra term A ≥ 1. Then

k ≤

{
A+ 4, if b ≥ 6;

A+ 5, if 2 ≤ b ≤ 5.

Corollary 39. For fixed multiplicative extra terms A and base b, the
set of b-wMRH numbers with extra term A is finite.



9 About some relatives of palindromes 9

Theorem 40. Let N be a b-wMRH number with k digits and multiplica-
tive extra term A ≥ 1. Under any of the following assumptions:

• b ≥ 3 and A ≥ b3;

• b = 2 and A ≥ b2;

one has

(7) k ≤ 3blogbAc.

We summarize the rest of the paper. Proposition 5 is proved in Section 3,
Proposition 7 is proved in Section 4, Proposition 13 is proved in Section 5,
Proposition 16 is proved in Section 6, Proposition 25 is proved in Section 7,
Proposition 34 is proved in Section 8, Theorem 35 is proved in Section 9,
Theorem 37 is proved in Section 10, Theorem 38 is proved in Section 11, and
Theorem 40 is proved in Section 12. In Section 13 we show examples of wARH
numbers and ask additional questions and in Section 14 we show examples of
wMRH numbers and ask additional questions.

3. PROOF OF PROPOSITION 5

Proof. a), b) Clearly b) implies a), so it is enough to prove b). Assume
N has n ≥ 2 digits. Then N ≥ bn−1 and sb(N) ≤ n(b− 1). To finish the proof,
we show by induction on n ≥ 2 that

(8) 2(b− 1)n+ (b− 1) ≤ b · (bn−1) +
b− 1

2
.

Equation (8) is true if n = 2. Assume now that it is true for n and prove
it for n+ 1. Induction hypothesis gives that:

2(b− 1)(n+ 1) + (b− 1) = 2(b− 1)n+ 2(b− 1) + (b− 1)

≤ b · (bn−1) +
b− 1

2
+ 2(b− 1).

(9)

We still need to show that:

(10) b · (bn−1) +
b− 1

2
+ 2(b− 1) ≤ b · (bn − 1) +

b− 1

2
.

After some cancellation, equation (10) becomes 2 ≤ bn, which is true for n ≥
2, b ≥ 2.

c) Assume that N has n ≥ 3 digits. Then bn−1 ≤ N ≤ bn − 1. Hence

(11) b2n−2 ≤ N2 ≥ (bn − 1)2 = b2n − 2bn + 1.
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So N has 2n− 1 digits, andsb(N
2) ≤ (b− 1)(2n− 1). To finish the proof it is

enough to show that

(12) (b− 1)(2n− 1) ≤ bn−1.

Equation (12) is true for n = 3 and b ≥ 3. We assume n ≥ 4 fixed and
prove (12) by induction on b ≥ 3. The induction hypothesis, b ≥ 3, and the
binomial expansion of (1 + b)n, imply that for all b ≥ 3 one has that:

b(2n− 1) = (b− 1)(2n− 1) + (2b− 1) ≤ bn − 1 + (2n− 1) ≤ (b+ 1)n − 1.

If b = 2 equation (12) becomes 2n− 1 ≤ 2n−1, true for n ≥ 4. There are
only 4 integers with b = 2, n = 3, and for them (3) can be checked numerically.

4. PROOF OF PROPOSITION 7

Proof. a) Assume first that N = [a1a2 . . . anan . . . a2a1]b.
Define A = [a1a2 . . . an(0)∧n]b − sb(N). Then A ≥ 0 due to Lemma 5 a)

applied to [a1a2 . . . an(0]b. One has that:

(sb(N) +A) + (sb(N) +A)R = [a1a2 . . . an(0)∧n]b + ([a1a2 . . . an(0)∧n]b)
R

= [a1a2 . . . an(0)∧n]b + [anan−1 . . . a1]b = N.

Now assume that N = [a1a2 . . . anan+1an . . . a2a1]b, where an+1 is even.
Define A = [a1a2 . . . an

(an+1

2

)
(0)∧n]b− sb(N). Then A ≥ 0 due to Lemma 5 b)

applied to [a1a2 . . . an
(an+1

2

)
]b. One has that:

(sb(N) +A) + (sb(N) +A)R = [a1a2 . . . an(0)∧n]b + ([a1a2 . . . an(0)∧n]b)
R

= [a1a2 . . . an

(an+1

2

)
(0)∧n]b + [

(an+1

2

)
anan−1 . . . a1]b = N.

b) Let N be a b-ARH number with additive multiplier M ≥ 1. Then N
is also a b-wARH number with extra term A = sb(N)(M − 1).

5. PROOF OF PROPOSITION 13

Proof. It is known that a base b number is divisible by b− 1 only if and
only if the sum of its digits is divisible by b− 1. Consider the numbers

Nk = [(b− 1)(0)∧k(b− 1)]b, k even.

It follows from Proposition 7, a), that the numbers Nk are b − wARH
numbers. If b = 2, then sb(Nk) = 2, but Nk is odd, so Nk is not a b-MRH



11 About some relatives of palindromes 11

number. Assume b ≥ 4. As sb(N) = 2(b− 1) it follows that Nk is divisible by
b−1, but not by (b−1)2. Nevertheless, if Nk is b-MRH number then it must be
divisible by (b− 1)2. If b = 3 consider the numbers Nk = [2(0)∧k2(0)∧k2]3. It
follows from Proposition 7, a), that the numbers Nk are 3− wARH numbers.
As Nk are divisible by 2, but not by 4, it follows that Nk are not 3 −MRH
numbers.

6. PROOF OF PROPOSITION 16

Proof. a) Let P base b palindrome and let N = P 2. Assume that P
has at least three digits. It follows from Lemma 5 c), that sb(N) ≤ P . Let
A = P − sb(N). Then N is a b-wMRH number with extra term A. Assume
now that P has two digits. Then P = [aa]b for 1 ≤ a ≤ b − 1. We will show
that formula (3) is still valid. Then the argument above can be applied again.
We distinguish three cases.

Case 1. 2a2 < b Then P = a(b+ 1), N = [a2(2a2)a2]b, and sb(N) = 4a2.
If a > 1 one has that:

sb(N) = 4a2 < 4 · b
2

= 2b < a(b+ 1) = P.

If a = 1 and b ≥ 3 one has that:

sb(N) = 4 ≤ b+ 1 = P.

If a = 1 and b = 2 then the condition 2a2 < b is not satisfied.

Case 2. a2 < b ≤ 2a2 We distinguish two subcases:

a) a2 + 1 < b and b) a2 + 1 = b.

Subcase a). sb(N) = a2 + 1 + 2a2 − b + a2 = 4a2 + 1 − b < 3(b − 1). If
a ≥ 3 then

sb(N) < 3(b− 1) < a(b+ 1) = P.

If a = 1, the condition b ≤ 2a2 implies that b = 2. In this case P = [11]2
and

sb(P
2) = sb([10001]2) = 2 ≤ P = 3.

If a = 2, b ∈ {6, 7, 8}. So P = [22]6, P = [22]7 or P = [22]8. These cases
can be checked numerically.

Subcase b). sb(N) = 1+2a2−b+a2 = 3a2−b−1 = 3(a2+1)−b−1 = 2(b−1).
If a ≥ 2 then

sb(N) = 2(b− 1) ≤ a(b+ 1) = P.

If a = 1 then b = 2 and P = [11]2.
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Case 3. a2 ≥ b Note that each “carry over” in the computation of P 2

reduces sb(P
2) by b and also increases it by 1. We have at least 4 carry overs,

so the largest value for sb(P
2) is 4a2 − 4b + 4. The inequality sb(P

2) ≤ P
becomes

4a2 − 4b+ 4 ≤ a(b+ 1),

or equivalently

(13) 4a2 − a(b+ 1) + 4(1− b) ≤ 0, for 1 ≤ a ≤ b− 1.

If b ≥ 3, the quadratic function in (13) has the vertex at a = b+1
2 ∈

(1, b−1), so its largest values in the interval [1,b-1] are reached in the endpoints.
Since its value in a = 1 is 7− 5b and its value in a = b− 1 is 6− 7b, it follows
that (13) holds. If b = 2 the remaining case is P = [11]2.

b) Let N be a b-MRH number with additive multiplier M ≥ 1. Then N
is a b-wMRH number with extra term A = sb(N)(M − 1).

7. PROOF OF PROPOSITION 25

Proof. It follows from Proposition 16 that it is enough to find an infinity
of squares of palindromes that are not b-Niven numbers.

If b = 2 consider

Nk =
(

[1(0)∧k1(0)∧k1]2

)2
= [1(0)∧k−11(0)∧k−111(0)∧k−11(0)∧k+11]2.

Then sb(Nk) = 6 and Nk is not divisible by 2 because it is odd. If b is even, and

b 6= 2, then consider Nk =
(
[1(0)∧k1]b

)2
= [1(0)∧k2(0)∧k1]b. Then sb(Nk) = 4

and Nk is not divisible by 2 because it is odd.

If b is odd and b congruent to 0 or 2 modulo 3, consider the numbers

Nk =
(

[1(0)∧k1(0)∧k1]b

)2
= [1(0)∧k2(0)∧k3(0)∧k2(0)∧k1]b.k + 1 odd.

Then sb(Nk) = 9 and Nk is not divisible by 3 because [1(0)∧k1(0)∧k1]b is not
divisible by 3. For the case, b ≥ 11 congruent to 1 modulo 3, consider the
numbers

Nk =
(

[2(0)∧k1(0)∧k2]b

)2
= [4(0)∧k3(0)∧k(10)(0)∧k3(0)∧k4]b.k + 1.

Then sb(Nk) = 24 and Nk is not divisible by 3 because [2(0)∧k1(0)∧k2]b is not
divisible by 3. If b ≤ 11, then b ∈ {9, 7, 5, 3} and these cases are covered above.
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8. PROOF OF THEOREM 34

Let N ≥ 1 be a b-wARH number with extra term A = 0 and k digits.
Then N is also a b-ARH number with additive multiplier M = 1. It follows
from [6, Theorem 35] that k ≤ 2 if b ≥ 4 and k ≤ 3 if b = 2 or b = 3. If
k = 1 and N > 0, then sb(N) + sb(N)R > N , so we can assume k ≥ 2. If
k = 2, then N = [αβ]b with 1 ≤ α, β ≤ b− 1. If α + β < b, then the equation
sb(N) + sb(N)R = N gives α(b − 2) = β ≤ b − 1, which implies α ≤ 2. If
α = 0, then β = 0, so N = 0. If α = 1, then β = b − 2 and N = [1(b − 2)]2.
If α = 2 then b = 3 and β = 2, so N = [22]3. Assume now α + β ≥ b. Then
αb+β = 2(1 +α+β− b) which implies 2(b− 2) ≤ 2 +β− b ≤ 1. So α = 1 and
b = 2, which implies β = 1. So N = [11]2. The remaining cases with k = 3 and
a = 2, a = 3 are finite in number and do not give any other b-wARH number.

9. PROOF OF THEOREM 35

The case A = 0 is covered by Theorem 34. Assume that N is a b-wARH
number with k ≥ 2 digits and additive extra term A ≥ 1. One has that:

(14) bk−1 ≤ N = (sb(N) +A) + (sb(N) +A)R ≤ (b+ 1) ((b− 1)k +A) .

We show by induction on k that:

(15) (b+ 1) ((b− 1)k +A) < bk−1, for k ≥ A+ 5, b ≥ 2, A ≥ 1.

As (14) and (15) are contradictory, this finishes the proof of the theorem.

For k = A+ 5, (15) gives that:

(16) (b+ 1) ((b− 1)(A+ 5) +A) < bA+4, b ≥ 2, A ≥ 1,

which we prove by induction on A.

If A = 1, (16) gives that (b + 1) (6(b− 1) + 1) < b5, which is true for
b ≥ 2.

We show the induction step in (16). From the induction hypothesis one
has that:

bA+5 = bA+4b ≥ b(b+ 1) ((b− 1)(A+ 5) +A) .

One still needs to show that

b(b+ 1) ((b− 1)(A+ 5) +A) ≥ (b+ 1) ((b− 1)(A+ 6) +A+ 1) .

The last inequality follows from b(A+ 5) ≥ A+ 6 and bA ≥ A+ 1.

We show the induction step in (15). From the induction hypothesis one
has that:

bk = bk−1b ≥ b(b+ 1) ((b− 1)k +A) .
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One still needs to show that

b(b+ 1) ((b− 1)k +A) ≥ (b+ 1) ((b− 1)(k + 1) +A) .

Last inequality is equivalent to

b(b− 1)k + bA ≥ (b− 1)(k + 1) +A,

which follows due to bk ≥ k + 1 and b ≥ 1.

10. PROOF OF THEOREM 37

Proof. Assume that N is a b-wARH number with k ≥ 2 digits and addi-
tive extra term A ≥ 1. One has (14). We show by induction on k that

(17) bk−1 > (b+ 1) ((b− 1)k +A) , A ≥ b3, k ≥ 2blogbAc, b ≥ 2,

which is in contradiction to (14) and finishes the proof of the theorem.

In order to prove (17) for k = 2blogbAc it is enough to show that

(18) b2 logb A > (b2 − 1)(2 logbA+ 1) + (b− 1)A, b ≥ 2, A ≥ b3,

which we will prove by induction on A. If A = b3, then (18) becomes b6 >
(b2 − 1) · 7 + (b − 1)b3, which is true for b ≥ 2. we how the induction step in
(18). From induction hypothesis follows that

(A+ 1)2 = a2 + 2A+ 1 > (b2 − 1)(logbA
2 + 1) + (b− 1)A+ 2A+ 1.

One still needs to check that:

(b2−1)(logbA
2+1)+(b−1)A+2A+1 ≥ (b2−1)(logb(A+1)2+1)+(b−1)(A+1).

Last equation is equivalent to (b2 − 1) logb

(
A

A+1

)
+ 2A + 1 > b − 1, which is

clearly true if A ≥ b3.
It remains to show the induction step in (17). From induction hypothesis

follows that

bk = b · bk−1 > (b+ 1)((b− 1)k +A).

One still needs to show

(b+ 1)((b− 1)k +A) ≥ (b+ 1)((b− 1)(k + 1) +A.

Last equation is equivalent to (b−1)2k+ (b−1)A ≥ b−1, which is clearly true
for A ≥ 1, b ≥ 2.
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11. PROOF OF THEOREM 38

Proof. Assume that N is a b-wMRH number with k ≥ 2 digits and addi-
tive extra term A ≥ 1. One has that:

(19) bk−1 ≤ N = (sb(N) +A) · (sb(N) +A)R ≤ b ((b− 1)k +A)2 .

In order to prove the theorem for b ≥ 6, one shows by induction on k
that:

(20) b ((b− 1)k +A)2 < bk−1, if k ≥ A+ 5, A ≥ 1, b ≥ 6.

If k = A+ 5 (20) becomes

(21) b ((b− 1)(A+ 5) +A)2 < bA+4.

We prove (21) by induction on A ≥ 1.
If A = 1, (21) becomes b ((b− 1)6 + 1)2 < b5, which is true for b ≥ 6. We

show the induction step in (21). It follows from the induction hypothesis that

bA+5 = b · bA+4 > b2 ((b− 1)(A+ 5) +A)2 .

One still needs to check that

b2 ((b− 1)(A+ 5) +A)2 ≥ b(b− 1)(A+ 6) +A+ 1)2.

Last equation is equivalent to
√
b(b− 1)(A+ 5) +

√
bA ≥ (b− 1)(A+ 6) +A+ 1

which is clearly true if b ≥ 6. We show the induction step in (20). It follows
from the induction hypothesis that

bk = b · bk−1 > b2 ((b− 1)k +A)2 .

One still needs to check that

b2 ((b− 1)k +A)2 ≥ b((b− 1)(k + 1) +A)2.

Last equation is equivalent to
√
b(b− 1)k +

√
bA ≥ (b− 1)(k + 1) +A,

which is clearly true if b ≥ 6.
Assume now 2 ≤ b ≤ 5. One shows by induction on k that:

(22) b ((b− 1)k +A)2 < bk−1, if k ≥ A+ 6, A ≥ 1.

This finishes the proof of the theorem if 2 ≤ b ≤ 5.
If k = A+ 6 then (22) becomes the following equation which is proved by

induction on A ≥ 1.

(23) b ((b− 1)(A+ 6) +A) < 5A+5, 2 ≤ b ≤ 5.
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12. PROOF OF THEOREM 40

Proof. Assume that N is a b-wMRH number with k ≥ 2 digits and ad-
ditive extra term A ≥ 1. One has (19). In order to finish the proof of the
theorem in the case b ≥ 3 one shows by induction on k that

(24) bk−1 > b(b− 1) ((b− 1)k +A) for k ≥ 3blogbAc+ 1, b ≥ 3, A ≥ b3.

To prove (24) for k = 3blogbAc + 1 it is enough to show by induction on A
that:

(25) b3 logb A−3 > (b− 1) ((b− 1)(3 logbA+ 1) +A) , b ≥ 3, A ≥ b2.

If A = b3, (24) becomes b6 > (b− 1)
(
(b− 1) · 10 + b3

)
, which is true for

b ≥ 3.
We show the induction step in (25). It follows from the induction hy-

pothesis that

b3 logb(A+1)−3 = b3 logb A−3 ·
(
A+ 1

A

)3

>

(
A+ 1

A

)3

· (b− 1) ((b− 1)(3 logbA+ 1) +A) .

One still needs to show(
A+ 1

A

)3

· (b− 1)((b− 1)(3 logbA+ 1) +A)

≥ (b− 1) ((b− 1)(3 logb(A+ 1) + 1) + (A+ 1)) .

The last inequality follows due to the following inequalities which are true for
A ≥ b2, b ≥ 3:(

A+ 1

A

)3

· (b− 1)((b− 1)(3 logbA+ 1) > (b− 1)2(3 logb(A+ 1) + 1),(
A+ 1

A

)3

·A > A+ 1.

We show the induction step in (24). It follows from the induction hy-
pothesis that

bk = b · bk−1 > b(b− 1) ((b− 1)k +A) .
One still needs to show

b(b− 1) ((b− 1)k +A) ≥ (b− 1) ((b− 1)(k + 1) +A) .

Last inequality follows from the following inequalities which are obvious
for b ≥ 2:

b(b− 1)k ≥ (b− 1)(k + 1, bA ≥ A.
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If b = 2 one shows by induction on k that:

(26) 2k−1 > 2(k +A), for k ≥ 3blog2Ac, A ≥ 4,

which is contradictory to (19) and ends the proof of the theorem.
In order to prove (26) for k = 3blog2Ac, it is enough to show by induction

on A that:

(27) 23 log2 A−1 ≥ 2 (3 log2A+ 4) , A ≥ 4.

If A = 4, (27) becomes 25 ≥ 12, which is true. We show the induction
step in (27). It follows from the induction hypothesis that:

23 log2(A+1)−1 =

(
A+ 1

A

)3

· 23 log2 A−1 ≥
(
A+ 1

A

)3

· 2 (3 log2A+ 4) .

One still needs to show that(
A+ 1

A

)3

· 2 (3 log2A+ 4) ≥ 2 (3 log2(A+ 1) + 4) .

The last inequality is true for A ≥ 4 due to AA ≥ A+ 1.

13. EXAMPLES OF wARH NUMBERS

We list in Table 1 small wARH numbers N and one of their extra terms A.
We did not find any number that is not an additive extra term. This suggests
that the answer to Question 32 is negative. We conjecture that all integers are
additive extra terms. We observe from Table 1 that certain extra terms, for
example 2, have associated several wARH numbers, respectively 210, 55. The
last observation motivates the following definition and questions.

Definition 41. If A is an additive extra term in a base b, let the multi-
plicity of A be the cardinality of the corresponding set of bw-ARH numbers.

Question 42. If we fix the multiplicity and the base, is the set of additive
extra terms infinite?

Question 43. If we fix the base, is the multiplicity of additive extra terms
bounded?

14. EXAMPLES OF wMRH NUMBERS

We list in Table 2 small wMRH numbers N and all their extra terms
A. Theorem 38 shows that a wMRH number with multiplier 2 has at most
7 digits. A computer search through all integers with at most 6 digits shows
that 2 is not a multiplicative extra term. This motivates Question 33.
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Table 1 – All 365 wARH numbers less than 10000 and one of their extra term

N A N A N A N A N A N A N A N A

0 0 362 170 827 149 1251 270 1656 711 2662 1045 5005 994 7546 1573
10 4 363 120 828 99 1252 319 1661 1046 2761 1774 5104 1183 7557 1032
11 8 382 178 847 157 1271 278 1675 670 2772 1053 5115 1002 7656 1671
12 3 383 128 848 107 1272 327 1676 719 2871 1872 5214 1281 7766 1769

14 2 403 145 867 165 1291 286 1695 678 2882 1061 5225 1010 7777 1048
16 1 404 95 868 115 1292 335 1696 727 2981 1970 5324 1379 7876 1867
18 0 423 153 887 173 1312 352 1716 744 2992 1069 5335 1018 7887 1056
22 7 424 103 888 123 1313 401 1717 793 3002 996 5434 1477 7986 1965

33 6 443 161 908 140 1331 1022 1736 752 3102 1185 5445 1026 7997 1064
44 5 444 111 909 90 1332 360 1737 801 3113 1004 5544 1575 8008 991
55 4 463 169 928 148 1333 409 1756 160 3212 1283 5555 1034 8107 1180
66 3 464 119 929 98 1352 368 1771 1054 3223 1012 5654 1673 8118 999

77 2 483 177 948 156 1353 417 1776 768 3322 1381 5665 1042 8217 1278
88 1 484 127 949 106 1372 376 1777 817 3333 1020 5764 1771 8228 1007
99 0 504 144 968 164 1373 1425 1796 776 3432 1479 5775 1050 8327 1376
101 98 505 94 969 114 1392 384 1797 825 3443 1028 5874 1869 8338 1015

110 17 524 152 988 172 1393 433 1877 842 3542 1577 5885 1058 8437 1474
121 25 525 102 989 122 1413 450 1818 891 3553 1036 5984 1967 8448 1023
132 33 544 160 1001 998 1414 499 1837 850 3652 1675 5995 1066 8547 1572
141 114 545 110 1009 148 1433 458 1838 899 1663 1044 6006 993 8558 1031

143 41 584 176 1010 107 1434 507 1854 907 3762 1773 6105 1182 8657 1670
154 49 585 126 1029 156 1441 1030 1858 907 1773 1052 6215 1280 8668 1039
161 22 605 143 1030 115 1453 466 1877 866 3872 1871 6226 1009 8767 1768
165 57 606 101 1049 164 1454 515 1878 915 3883 1060 6325 1378 8778 1047

176 65 625 151 1050 123 1473 474 1881 1062 3982 1969 6336 1017 8877 1866
181 130 626 101 1069 172 1474 523 1897 874 3993 1068 6435 1476 8888 1055
187 73 645 159 1070 131 1493 482 1898 923 4004 1184 6446 1025 8987 1964
198 81 646 109 1089 180 1494 531 1918 940 4103 1184 6545 1574 8988 1063

201 147 665 167 1090 139 1514 548 1938 948 4114 1003 6556 1033 9009 990
202 97 666 117 1110 156 1515 567 1958 956 4213 1282 6666 1041 9108 1179
221 155 685 175 1111 205 1534 556 1978 964 4224 1011 6765 1770 9119 998
222 105 686 125 1130 164 1535 605 1991 1070 4323 1380 6875 1868 9218 1277

241 163 706 142 1131 213 1551 1038 1998 972 4334 1478 6886 1057 9229 1006
242 113 707 92 1150 172 1554 564 2002 997 4444 1027 6985 1966 9328 1375
261 171 726 150 1151 221 1555 613 2101 1186 4543 1576 6996 1065 9339 1014
262 121 727 100 1170 180 1574 572 2112 1005 4554 1035 7007 92 9438 1473

281 179 746 158 1171 229 1575 621 2211 1284 4654 1674 7106 1181 9449 1022
282 129 747 108 1190 188 1594 580 2222 1013 4664 1043 7117 1000 9548 1571
302 146 766 166 1191 237 1595 629 2332 1021 4763 1772 7216 1279 9559 1030
303 96 767 116 1211 254 1615 646 2431 1480 4774 1051 7227 1008 9658 669

322 154 786 174 1212 303 1616 695 2442 1029 4873 1870 7326 1377 9669 1038
323 104 787 124 1221 1014 1635 654 2541 578 4884 1059 7337 1016 9768 1767
342 162 807 141 1231 262 1636 703 2552 1037 4983 1968 7436 1475 9779 1046
343 112 808 91 1232 311 1655 662 2651 1676 4994 1067 7447 1024 9878 1865

9889 1054 9988 1963 9999 1062
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Table 2 – All 77 wMRH numbers less than 10000 with all their multiplicative
extra terms

N A N A N A N A N A

0 0 574 25 1612 16, 52 3600 591 5929 52
1 0 640 70 1729 0, 63 3627 21, 75 6400 790
10 9 736 7, 16 1855 16, 34 3640 43, 52 6624 51, 78
40 16 765 33 1936 25 4000 1996 6786 51, 60

81 0 810 81 1944 9, 54 4030 123, 303 7360 214, 304
90 21 900 291 2268 18, 45 4032 39, 75 7650 132, 192
100 99 976 39 2296 9, 63 4275 39, 57 7663 57, 75
121 7 1000 999 2430 36, 45 4356 48 7744 66

160 33 1008 15, 33 2500 493 4606 23, 78 8100 891
250 43 1089 15 2520 11, 201 4840 204 8722 70, 79
252 3, 12 1207 7, 61 2668 7, 70 4900 687 9000 2991
360 51 1210 106 2701 27, 63 4930 42, 69 9760 138, 588

400 196 1300 21, 48 2944 27, 45 5092 51, 160 9801 81
403 6, 24 1458 0, 63 3025 45 5605 43, 79
484 6 1462 21, 30 3154 25, 70 5740 124, 94
490 57 1600 393 3478 25, 52 5848 43, 61

We observe from Table 2 that certain wMRH numbers, for example, 252,
403, and 736, have several extra terms (respectively {3, 12}, {6, 24}, {7, 16}).
This suggests a positive answer to Question 24. The table does not show any
example of wMRH number with 3 multiplicative extra term. The smallest
example we found is 63504 with extra terms 234, 423, 126.

We also observe from Table 1 that certain extra terms, for example 7,
have associated several wMRH numbers, respectively 121, 736, 1207, 2668. The
last observation motivates the following definition and questions.

Definition 44. If A is a multiplicative extra term in base b, let the mul-
tiplicity of A be the cardinality of the corresponding set of b-wMRH numbers.

Question 45. If we fix the multiplicity and the base, is the set of multi-
plicative extra terms infinite?

Question 46. If we fix the base, is the multiplicity of multiplicative extra
terms bounded?

15. CONCLUSION

In this paper we introduce two new classes of integers. The first class
consists of all numbers N for which there exists at least one integer A, such
that the sum of A and the sum of digits of N , added to the reversal of the
sum, gives N . The second class consists of all numbers N for which there
exists at least one integer A, such that the sum of A and the sum of the
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digits of N , multiplied by the reversal of the sum, gives N . All palindromes
that either have an even number of digits or an odd number of digits and the
middle digit even belong to the first class, and all squares of palindromes with
at least two digits belong to the second class. These classes contain and are
strictly larger than the classes of b-ARH numbers, respectively b-MRH numbers
introduced in Niţică [6]. We show many examples of such numbers and ask
several questions that may lead to future research. In particular, we try to
clarify the relationships between these classes of numbers and the well studied
class of b-Niven numbers. Most of our results are true in a general numeration
base.
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[7] V. Niţică, High degree b-Niven numbers. Integers 21 (2021), Paper No. A101.

[8] V. Niţică, Infinite sets of b-additive and b-multiplicative Ramanujan-Hardy numbers. J.
of Int. Seq. 22 (2019), 4, Article 19.4.3.

Received August 29, 2019 Viorel Niţică
West Chester University of Pennsylvania

Department of Mathematics
West Chester, PA 19383, USA

and
Institute of Mathematics of the Romanian Academy

P.O. Box 1–764, RO-70700 Bucharest, Romania

Andrei Török
University of Houston, Department of Mathematics

Houston, TX 77204, USA
and

Institute of Mathematics of the Romanian Academy
P.O. Box 1–764, RO-70700 Bucharest, Romania.

torok@math.uh.edu

http://oeis.org

	INTRODUCTION
	STATEMENTS OF THE MAIN RESULTS
	PROOF OF PROPOSITION 5
	PROOF OF PROPOSITION 7
	PROOF OF PROPOSITION 13
	PROOF OF PROPOSITION 16
	PROOF OF PROPOSITION 25
	PROOF OF THEOREM 34
	PROOF OF THEOREM 35
	PROOF OF THEOREM 37
	PROOF OF THEOREM 38
	PROOF OF THEOREM 40
	EXAMPLES OF wARH NUMBERS
	EXAMPLES OF wMRH NUMBERS
	CONCLUSION

