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We consider the classic formula obtained by Merton for the value of a contingent
claim that expires at a fixed time T . In our case, the final time is random and
depends on both the time t and the value of the stock at t. The partial integro-
differential equation (PIDE), subject to the appropriate boundary conditions, is
solved explicitly for a certain jump size distribution. The PIDE is first trans-
formed into an integro-differential equation, and this equation is then reduced
to an ordinary differential equation.
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1. INTRODUCTION

Let S(t) denote the value of a stock at time t. We assume that S(t)
satisfies the stochastic differential equation

(1) dS(t) = rS(t)dt+ σS(t)dW (t),

where r is the instantaneous expected return on the stock, σ2 is the instanta-
neous variance of the return and {W (t), t ≥ 0} is a standard Brownian motion.
That is, {S(t), t ≥ 0} is a geometric Brownian motion.

Next, suppose that in addition to the normal variations of the stock price,
there are also jumps due to exceptional events. Then {S(t), t ≥ 0} becomes a
jump-diffusion process defined by

(2)
dS(t)

S(t)
= (r − λκ)dt+ σdW (t) + (Y − 1)dN(t),

in which {N(t), t ≥ 0} is a Poisson process with rate λ, Y is the random jump
size and κ := E[Y −1] is the expected relative jump of S(t) if the Poisson event
occurs. We assume that {W (t), t ≥ 0}, Y and {N(t), t ≥ 0} are independent.

In the above model, Y − 1 is an impulse function that produces a finite
jump from s to sY . The jump magnitudes are independent and identically
distributed (i.i.d.) random variables.
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Let V (s, t) be the value of a contingent claim that depends on the stock
price s and time t. Merton [13] has shown that V (s, t) satisfies the partial
integro-differential equation (PIDE)

(3) Vt +
σ2s2

2
Vss + (r − λκ)sVs − (r + λ)V + λ

∫ ∞

0
V (sy, t)fY (y)dy = 0,

where fY (y) is the probability density function of Y . This equation has been
studied, among others, by Andersen and Andreasen [4], Carr and Mayo [5]
and Mayo [12]. In general, the authors proposed numerical methods to solve
Eq. (3), subject to the appropriate boundary conditions.

In the case of a European option with expiration time T and strike price
K, Eq. (3) is subject to the boundary conditions

(4) V (0, t) = 0 and V (s, T ) = max{0, s−K}.
We could also try to solve the PIDE for a barrier option.

Let

(5) X(t) := ln[S(t)] and V ∗(x, t) := V (ex, t) .

In this paper, instead of an option, we consider the value of a portfolio made
up of only one stock. We assume that the value of the portfolio satisfies Eq. (3)
and that the investor has decided to sell the stock the first time when either

(6) X(t)− ct ≤ k1 or X(t)− ct ≥ k2,

where c is a constant and k1 < X(0) < k2. Moreover, we choose

(7) ki = γi + x0 for i = 1, 2,

where x0 := X(0), 0 < ln(γ1) < 1 and ln(γ2) > 1. We also assume that we can
write that

(8) V ∗(x, t) = x− ct if x− ct /∈ (k1, k2).

We will try to solve the PIDE satisfied by V ∗ under the above condition for
particular probability density functions fY .

Remark 1. In terms of the stock price, the investor sells when

(9) S(t) ≤ eγ1+ctS(0) or S(t) ≥ eγ2+ctS(0).

If c = 0, then the investment strategy is to sell if the stock price drops (respec-
tively rises) to at least eγ1% (resp. eγ2%) of its initial value.

If c > 0, we could say that the investor takes the inflation rate into
account, whereas the case when c < 0 implies that the investor does not want
to keep the stock indefinitely and is willing to sell at a lesser profit (or larger
loss) than hoped for. When c is positive, it could also be the fixed dividend
yield on the stock.
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Remark 2. The random variable τ(x0) defined by

(10) τ(x0) = inf{t > 0 : X(t)− ct /∈ (k1, k2) | X(0) = x0}
is known as a first-passage time in probability. Recently, the author published
a number of papers on first-passage problems for jump-diffusion processes; see
Lefebvre [9], [10] and [11].

The problem considered in this paper is a first-passage problem for a
function of a jump-diffusion process. More precisely, it is a first-passage-place
problem. There is a relatively large number of papers on first-passage-time
problems for jump-diffusion processes; see, for instance, Abundo [1] and [2]
and the references therein. In Peng and Liu [14], the authors calculated the
moments of first-passage times for jump-diffusion processes with Markovian
switching.

There are however few papers on first-passage-place problems. Kou and
Wang [7] computed the joint moment-generating function of a first-passage
time and place when the continuous part of the jump-diffusion process is a
Wiener process (or Brownian motion) and the discrete part is a compound
Poisson process.

In Abundo [1], the (positive and/or negative) jumps were assumed to
be of constant size. In Kou and Wang [7], the jump size is an asymmetric
double exponential distribution, whereas it is a hyper-Erlang distribution in
Dong and Han [6]. Other possibilities include the log-normal (Merton [13])
and log-uniform (Ahlip and Prodan [3]) distributions.

In the next section, we will show, in a particular case, how to trans-
form the PIDE satisfied by the function V ∗(x, t) into an ordinary differential
equation (ODE). Then, we will consider various cases for the jumps.

2. TRANSFORMING THE PIDE INTO AN ODE

It is easy to show that the function V ∗(x, t) = V (ex, t) satisfies the PIDE

0 = V ∗
t +

σ2

2
V ∗
xx +

(
−σ2

2
+ r − λκ

)
V ∗
x − (r + λ)V ∗(11)

+λ

∫ ∞

0
V ∗(x+ ln y, t)fY (y)dy.

Thus, with y∗ := ln y, we obtain

0 = V ∗
t +

σ2

2
V ∗
xx +

(
−σ2

2
+ r − λκ

)
V ∗
x − (r + λ)V ∗(12)

+λ

∫ ∞

−∞
V ∗(x+ y∗, t)fY

(
ey

∗
)
ey

∗
dy∗.
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Now, based on the condition (8), we assume that the function V ∗(x, t)
can be expressed as follows:

(13) V ∗(x, t) = U(u), where u := x− ct.

Remark 3. The technique used is a particular case of the method of sim-
ilarity solutions and u is called the similarity variable.

Equation (12) becomes the integro-differential equation

0 = −cU ′ +
σ2

2
U ′′ +

(
−σ2

2
+ r − λκ

)
U ′ − (r + λ)U(14)

+λ

∫ ∞

−∞
U(u+ y∗)fY

(
ey

∗
)
ey

∗
dy∗

and the boundary condition is

(15) U(u) = u if u /∈ (k1, k2).

Next, setting w := u+ y∗ in the integral, we find that

0 =
σ2

2
U ′′ +

(
−c− σ2

2
+ r − λκ

)
U ′ − (r + λ)U(16)

+λ

∫ ∞

−∞
U(w)fY

(
ew−u

)
ew−udw.

We will consider the case when Y ∼ U(0, β). That is, Y is uniformly distributed
on the interval (0, β). It follows that

(17) κ := E[Y − 1] =
β

2
− 1

and

(18)

∫ ∞

−∞
U(w)fY

(
ew−u

)
ew−udw =

1

β

∫ u+lnβ

−∞
U(w)ew−udw,

so that

0 =
σ2

2
U ′′ +

(
−c− σ2

2
+ r − λκ

)
U ′ − (r + λ)U(19)

+
λ

β

∫ u+lnβ

−∞
U(w)ew−udw.

Hence, differentiating the above equation with respect to u, we obtain the
following proposition.
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Proposition 2.1. When the random variable Y is uniformly distributed
over the interval (0, 1), the function U satisfies the ordinary differential equa-
tion

(20)
σ2

2
U ′′′ + (−c+ r − λκ) U ′′ −

(
c+

σ2

2
+ λ(κ+ 1)

)
U ′ − rU = 0

for k1 < u < k2, where κ = −1/2.

In the case when β is such that k1 + lnβ ≥ k2, we can write that

(21) U(u+ lnβ) = u+ lnβ for k1 ≤ u ≤ k2,

and we can state the following proposition.

Proposition 2.2. When Y ∼ U(0, β) and k1 + lnβ ≥ k2, we can write
that

0 =
σ2

2
U ′′′ + (−c+ r − λκ) U ′′ −

(
c+

σ2

2
+ λ(κ+ 1)

)
U ′(22)

− (r + λ)U + λ(u+ lnβ) = 0

for k1 < u < k2, in which κ = β
2 − 1.

In this paper, we assume that c = 0 and that x0 = 0. Moreover, we
choose the constants

(23) r = 0.05, σ = 0.25, k1 = ln(0.9) and k2 = ln(1.1).

Hence, the investor sells the stock when its price drops or increases at least
10% compared to its initial value.

3. THE CASE WHEN THERE ARE NO JUMPS

Let us first consider the case when λ = 0, so that there are no jumps.
Then, we must solve (see Eq. (16))

(24) 0.03125U ′′ + 0.01875U ′ − 0.05U = 0,

subject to

(25) U [ln(0.9)] = ln(0.9) and U [ln(1.1)] = ln(1.1).

We find that

(26) U(u) ≃ −0.3810e−1.6u + 0.3841eu.

Remark 4. When there are no jumps, we can solve the first-passage-place
problem for the stock price by computing first the probability p0(u) that the
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process, starting from u ∈ (k1, k2), will hit k1 before k2. This function satisfies
the second-order ODE (see Lefebvre [8], for instance)

(27) 0.03125p′′0 + 0.01875p′0 = 0,

subject to

(28) p0(k1) = 1 and p0(k2) = 0.

We find that

(29) p0(u) ≃ −7.8155 + 8.2755e−0.6u.

Then, we can write that the solution U∗(u) to the first-passage problem
is

U∗(u) = ln(0.9)p0(u) + ln(1.1)[1− p0(u)](30)

≃ 1.6637− 1.6606e−0.6u.

We can see in Figure 1 that the functions U(u) and U∗(u) almost coincide in
the interval [ln(0.9), ln(1.1)].

Figure 1 – Functions U(u) and U∗(u) when there are no jumps.

4. THE CASE WHEN Y IS UNIFORM OVER (0, 1)

Let us now assume that λ > 0 and that Y ∼ U(0, 1). Hence, all the
relative jumps are negative and κ = −1/2.

First, we take λ = 0.05. Then, from Eq. (20), we must solve

(31) 0.03125U ′′′(u) + 0.075U ′′(u)− 0.05625U ′(u)− 0.05U(u) = 0.
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The general solution of this third-order linear and homogeneous ODE with
constant coefficients is

(32) U(u) = c1e
u + c2 exp

{
(−17 +

√
129)

10
u

}
+ c3 exp

{
(−17−

√
129)

10
u

}
,

where c1, c2 and c3 are arbitrary constants.
Making use of the boundary conditions (25), we obtain

U(u) ≃ c1e
u + (−1.7023c1 + 0.4467)e−0.5642u(33)

+ (0.6724c1 − 0.4297)e−2.8358u.

To determine the value of the constant c1, we can substitute the above expres-
sion into the integro-differential equation (19) satisfied by the function U (with
β = 1). We find that

(34) c1 ≃ 0.5988.

Hence, we have

(35) U(u;λ = 0.05) ≃ 0.5988eu − 0.5727e−0.5642u − 0.02708e−2.8358u

for u ∈ [ln(0.9), ln(1.1)].
Proceeding as above with λ = 1, we obtain

(36) U(u;λ = 1) ≃ 1.5477eu − 1.6239e−0.8642u + 0.1997e−18.51u.

As can been seen in Figure 2, this function is sometimes smaller than ln(0.9)
because of the jumps.

Figure 2 – Functions U(u;λ = 0) (dotted line), U(u;λ = 0.05) (solid line) and
U(u;λ = 1) (dashed line).
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5. THE CASE WHEN Y IS UNIFORM OVER (0, β)

Finally, we assume that Y ∼ U(0, β), with β > 1. Hence, the relative
jumps can be positive or negative.

We take β = 1.9. It follows that κ = (β/2)− 1 = −0.05. With λ = 5, we
find that

(37) U(u) ≃ −0.3008+0.9901u−0.01004e−u+0.05301e16.94u+0.1106e−9.540u

for u ∈ [ln(0.9), ln(1.1)]. This function is shown in Figure 3.

Figure 3 – Function U(u) when β = 1.9 and λ = 5.

6. CONCLUDING REMARKS

In this paper, we found explicit and exact solutions to a classic partial
integro-differential equation in financial mathematics under the assumption
that the investor sells a stock when the stock price increases or decreases at
least a certain percentage of its initial value.

The solutions were obtained in the case when the random jump size is
uniformly distributed over the interval (0, β). The parameter β was first chosen
equal to 1, so that all the relative jumps are negative. Then, we chose β = 1.9,
which implies that there can be both positive and negative relative jumps.
Notice however that the expected value of the relative jumps is negative, which
is realistic.
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Next, we could try to solve our problem in the case when c ̸= 0. Finally,
we could consider optimal control problems for the model presented in this
paper.
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