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We prove an index formula for the Fredholm index of a fully elliptic geomet-
ric Dirac operator subject to second order local (e.g. Dirichlet and Neumann)
boundary conditions on a manifold with corners. To calculate the index, we
introduce a glueing construction and a corresponding Lie groupoid. We describe
the Dirac operator subject to the boundary conditions via an equivariant family
of Dirac operators on the fibers of the Lie groupoid. We show that the index
splits into homotopy invariant contributions of the strata.
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1. INTRODUCTION

We study the index for boundary value problems on so-called Lie man-
ifolds with boundary. We refer to [26] for an excellent survey by V. Nistor
about the current state of research concerning index problems on Lie man-
ifolds. On manifolds with boundary the Atiyah-Patodi-Singer (APS) index
theorem is an index formula for Fredholm operators that consists of a local
contribution, depending on the Riemannian metric and a non-local contribu-
tion, the η-invariant. The boundary conditions considered in the APS-theory
are global projection conditions. In the present work, our goal is to describe a
generalization of the APS-theory which involves general and mixed boundary
conditions. Historically, boundary value problems were studied on manifolds
with boundary, where the boundary may consist of disjoint components, on
which different types of boundary conditions could be imposed. In the classical
setup the problems under consideration involve questions of well-posedness for
solutions, Fredholm conditions for the operators involved, as well as the index
theory of partial differential equations subject to mixed boundary conditions.
A mixed boundary value problem by definition is a partial differential equation
subject to different boundary conditions on the different pieces of the boundary.
In this note our main focus lies on the index theory for mixed boundary value
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problems and for convenience we will restrict attention to Dirac type opera-
tors. The classical Dirichlet problem and Neumann problem in such a mixed
setup was investigated by S. Zaremba in 1910, [35]. Index formulae have been
obtained by M. Gromov and H. B. Lawson [15] (relative index theorem) and
Freed [14] for Dirac type operators on manifolds of odd dimension, see also
[5]. In these works, the boundary is assumed to be compact and to possibly
consist of disjoint pieces. We think it is an interesting question to study more
general domains, that may consist of piecewise smooth boundaries. Examples
considered in the literature are Lipschitz domains [16, 23, 24] and the complex
analytic analogues of pseudoconvex domains [13]. A convenient framework for
the consideration of such singular domains consists of certain manifolds with
corners and singular structures defined on manifolds with corners, cf. [2, 22].
In our setup we study compact manifolds consisting of a boundary stratified
by immersed submanifolds. Therefore, in contrast to previous results, we in
particular allow intersecting boundary components and examine Dirac type op-
erators subject to mixed boundary conditions on boundary components. The
main focus of this work, however, will be the index theory of such boundary
value problems. We obtain index formulae in the spirit of the index theorem of
Atiyah-Patodi-Singer. In the special case with no mixed boundary conditions,
posed on so-called regular strata, our results recover the known Atiyah-Patodi
Singer index formula on a manifold with boundary [22] and more generally on
manifolds with corners [8, 9, 10].

1.1. Overview

Dirac operators

A Lie manifold is a triple (M,A,V), where M is a compact manifold
with corners and V ⊂ Γ(TM) is a Lie algebra of smooth vector fields, cf. [2].
For instance, V is assumed to be a subalgebra of the Lie algebra Vb of all
vector fields tangent to the boundary strata and a finitely generated projective
C∞(M)-module. The compact manifold with corners M is thought of as a
compactification of a non-compact manifold with a degenerate, singular metric.
We denote by ∂M the (stratified) boundary of M and by M0 = M \ ∂M the
interior. By the Serre-Swan theorem there exists a vector bundle A → M
such that Γ(A) ∼= V. We make the standing assumption that AM0

∼= TM0,
the tangent bundle on the interior. The bundle A has the structure of a Lie
algebroid and we fix throughout ϱ : A → TM to denote the anchor of the Lie
algebroid, see e.g. [20]. Moreover, we need a Lie groupoid G ⇒ M . It is
known that for any Lie structure with our assumption there is an s-connected
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Lie groupoid G such that A(G) ∼= A, cf. [12]. Since we rely on the heat kernel
of an arbitrary integrating Lie groupoid, we make the standing assumption
that all Lie manifolds considered in this work, have heat kernels which are
(transversally) smooth. It is conjectured, but yet not resolved in full generality,
whether every Lie manifold has an integrating Lie groupoid with a smooth heat
kernel, cf. [10, 33]. An A-metric is a Riemannian metric g = gA on the interior
M0 which extends to a positive definite symmetric bilinear form on A, i.e. a
Euclidian structure on A. We call ∇ an A-connection if ∇ is the Levi Civita
connection on the interior M0 which extends to a connection defined on A as
described in [3]. Likewise if W is a Cl(A)-module we call ∇W an admissible
A-connection if

∇W
X (c(Y )φ) = c(∇XY )φ+ c(Y )(∇W

X φ), X, Y ∈ Γ(A), φ ∈ Γ(W ).

Where Clifford multiplication is given by c : Cl(A) → End(W ) and ∇ is the
Levi-Civita A-connection with respect to a given A-metric g, see also [3, 19].
With an admissible A-connection we can define a general Atiyah-Singer type
geometric Dirac operatorD = DW , cf. [19]. The vector representation furnishes
a corresponding G-invariant geometric Dirac operator /D such that ϱ( /D) =
D, cf. [19]. Here the vector representation is characterized by the equality:
(ϱ(P )f) ◦ r = P (f ◦ r), where r is the range map of the groupoid (a surjective
submersion), P ∈ End(C∞(G)) and f ∈ C∞(M), see also [2, 28]. Intuitively,
we can think of the boundary strata of M as being pushed to infinity. This is
the correct setup for APS-index theory as considered in [22] for the special case
of the maximal Lie structure V = Vb and a manifold with boundary.

Local boundary conditions

On the other hand, we would like to take into account also local boundary
conditions, e.g. Dirichlet and Neumann condition in the setting of Lie mani-
folds. To this end, we need to modify slightly the definition of a Lie manifold
and consider so-called Lie manifolds with boundary as introduced in [1]. As
before, a Lie manifold with boundary consists of a manifold M with corners,
whose boundary hyperfaces are F1, . . . , Fk, i.e.M =M0∪F1∪· · ·∪Fk. However,
one boundary hyperface, called the regular boundary, say Y := F1, has a special
role, similar to a boundary component of a Riemannian manifold with bound-
ary. If we glue two copies of M along Y , then we obtain the double M ∪Y M .
We do this doubling such that the boundary of the double at the interior of
Y ∩Fi, i > 1 has no corner. To keep the distinction in mind we use throughout
the notation F1(M) for the singular boundary hyperfaces of M , as opposed
to the regular boundary stratum Y . Roughly speaking, a Lie structure with
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boundary on M is defined as the restriction of a Lie structure on M ∪Y M to
one of the copies of M , see [1] for details. If Y0 is the interior of Y , then the map
ϱ defines a bundle isomorphism from A|Y0 to TM |Y0 , and Y carries an induced
Lie structure, denoted by B. In the following W := Γ(B) ⊂ Γ(TY ). We want to
consider geometric admissible Dirac operators with boundary conditions posed
with regard to the hypersurface Y . Here we also need to modify the definition
of admissible Dirac operators for local boundary conditions of second order, i.e.
boundary conditions posed for the associated Laplacian. We do so in the main
body of the paper. In order to study general and mixed boundary conditions
we modify also the definition of the Lie manifold with boundary further. We
introduce the concept of a decomposed Lie manifold which consists of two parts
M =M1 ∪Y M2, glued at the regular hypersurface Y .

1.2. Organization of the paper

In the second section we recall the definition of a Lie manifold with bound-
ary and study the properties of first order differential operators on Lie manifolds
with boundary. The third section is concerned with decomposed Lie manifolds.
We show that to any decomposed Lie manifold there is a Lie groupoid integrat-
ing the Lie structure. In the fourth section we define a Lie semi-groupoid and
a convolution C∗-algebra for boundary value problems. The main result is the
continuity of the field of C∗-algebras associated to the adiabatic semi-groupoid.
We show that there is a functional calculus that can be suitably defined over
the integrating groupoid of a decomposed Lie manifold. In the fifth section we
define the renormalized trace on Lie manifolds with boundary. We prove the
index theorem on decomposed Lie manifolds with mixed boundary conditions.
The argument relies on a rescaling technique and the previously introduced
functional calculus restricted to the adiabatic semi-groupoid. We finish by re-
calling the Fredholm conditions for Dirac operators and criteria for the equality
of the renormalized index with the Fredholm index.

2. GEOMETRIC DIRAC OPERATORS

First order differential operators on a manifold with a Lie structure at
infinity (a Lie manifold) are operators which are contained in the enveloping
algebra generated by the Lie structure. For a Lie manifold with boundary, we
discuss differential operators of first order which are symmetric to the bound-
ary, a notion we introduce in this section. These operators are studied in the
setting of measured Lie manifolds, a slightly more general context than ori-
ented Lie manifolds. An essential feature of Lie manifolds with boundary is the
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existence of a tubular neighborhood. Since the interior of any Lie manifold is
in particular a manifold with bounded geometry by [3], we can contrast this to
the case of a manifold with bounded geometry and boundary. In the latter case
the existence of a tubular neighborhood is part of the definition of a manifold
with bounded geometry and boundary. For the (slightly) more restrictive class
of Lie manifolds with boundary the existence of a tubular neighborhood can be
derived as a theorem, i.e. as a consequence of the definition. This is an advan-
tage of the category of Lie manifolds over other, slightly more general categories
of non-compact manifolds. Later in this section we introduce geometric Dirac
operators on spin Lie manifolds.

Lie manifold with boundary

We recall the definition of a Lie manifold with boundary from [1].

Definition 2.1. A Lie manifold with boundary is a Lie manifold (M,A,V)
together with a submanifold (Y,B,W) such that the following conditions hold:

1) (Y,B,W) ↪→ (M,A,V) is a Lie submanifold, i.e. Y ⊂ M is a subman-
ifold with corners where B → Y is a C∞-vector bundle such that Γ(B) ∼= W
and B ↪→ A|Y is a Lie subalgebroid.

2) The submanifold Y is transverse in M , i.e. TpM = span{ϱ(Ap), TpY }
for each p ∈ ∂Y = Y ∩ ∂M .

Remark 2.2. i) Condition 2) is equivalent to TxM = TxY + TxF for each
x ∈ F ∩ Y and each closed codimension one face F ∈ F1(M). Notice that
the Lie structure of vector fields W is - by definition of a Lie submanifold - a
subalgebra of V|Y , precisely W = {V|Y : V ∈ V, V|Y tangent to Y }.

ii) Given a Lie manifold with boundary as above. Fix an A-metric g and
consider the exponential map exp: A →M which is the natural extension from
the interior exp: TM0 → M0 [3], [1, Section 1.2]. Setting N :=

A|Y
B the A-

normal bundle, where Γ(B) ∼= W and B ↪→ A|Y is in particular a sub vector
bundle. We obtain the exact sequence of vector bundles

B // // A|Y
q
// // N .

This sequence splits and denote by η : N → A|Y the splitting. We can
choose η as an isomorphism η : N ∼−→ B⊥, q ◦ η = idN [1, p.13]. This furnishes
the decomposition A|Y ∼= B ⊕N .

iii) An application of the anchor ϱ of the Lie algebroid A yields an iso-
morphism

Ap

Bp
= Np

∼−→ TpM

TpY
∼= NpY, p ∈ Y.
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Hence, in particular, N|Y0
∼= NY0 is an isomorphism over Y0.

We consider the induced exponential map, by observing that ϱB⊥ is injec-
tive onto its image, i.e. we have

ϱ|B⊥ : B⊥
��

����

// // ϱ(B⊥) ⊂ TM

��

N // NY.

For each p ∈ F , for a hyperface F in M , we have ϱ(Ap) ⊂ TpF . We
set expν := exp|B⊥ : B⊥ → M , for the normal exponential map, which is a
well-defined local diffeomorphism by the previous discussion.

Measured manifolds

For a given A-metric g on a Lie manifold (M,A,V) we can associate a
volume form which we denote throughout by µg.

Definition 2.3. A Lie manifold (M,A,V) is called measured if there is a
nowhere-vanishing smooth one-density µ on M such that there is an A-metric
g on M with µ = µg.

Proposition 2.4. Let (M,A,V) be a Lie manifold with boundary
(Y,B,W) such that (M,µ) is measured. Then there is an induced one-density
ν on Y obtained from an induced B-metric g∂ on Y which turns (Y, ν) into a
measured Lie manifold.

Proof. Let g be an A-metric on M such that µ = µg. Denote by B⊥

the complement of B defined with the metric g. If g∂ is a metric obtained by
restriction to Y , then g∂ is a B-metric on Y and µg∂ = ν yields a one-density
such that ν = µ|Y .

Remark 2.5. If (M,A,V) is orientable, then we can trivialize the top
degree part of Λ•A∗ in order to obtain a global density µ = µg. Then µ yields
a measured manifold (M,µ). In particular any spin Lie manifold is orientable,
therefore, measured.

Global tubular neighborhood

We introduce the notation YI := I × Y for an interval I ⊂ R. Also
write Y(ϵ) := (−ϵ, ϵ)×Y . By a tubular neighborhood of Y in M we mean a local
diffeomorphism Ψ: M →M with an open neighborhood Y ⊂ U ⊂M such that
for a suitable ϵ > 0 the restriction of Ψ yields a diffeomorphism Ψ: U ∼−→ Y(ϵ).
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Definition 2.6. Given a Lie manifold (M,A,V) with boundary (Y,B,W),
a boundary defining function ρY adapted to a tubular neighborhood Ψ: U ∼−→
Y(ϵ) is an element of C∞(M,R) with {ρY = 0} = Y and non-vanishing dρY at
Y such that

(ρY ◦ Φ−1)(x′, xn) = xn, x
′ ∈ Y, xn ∈ (−ϵ, ϵ).

Theorem 2.7. Let (M,A,V) be a measured Lie manifold with boundary
(Y,B,W). There is an open neighborhood Y ↪→ U ↪→ M and a local diffeo-
morphism Φ: M → M such that Φ: (u, ψ) ∈ U ∼−→ Y[0,r) for some r > 0.
Additionally, Φ has the following properties: Denote by n a fixed normal vector
field n ∈ Γ(A|Y ) and by τ the accompanying 1-form such that τ(n) = 1 and
τ|Y = 0.

i) We have Y = u−1(0), where u ≡ ρY denotes the boundary defining func-
tion
of Y .

ii) Φ|Y = idY and the following diagram commutes

U

��

// Φ // // Y[0,r)

pr1
��

Y //
id=Φ|Y

// // Y.

iii) dΦ(n) = ∂u along Y .
iv) τ(n) = du along Y .
v) Φ∗(µ) = |du| ⊗ ν on Y[0,r) where µ is the measure of M and ν the

induced measure on Y .

Proof. Combine Proposition 2.4 with the tubular neighborhood theorem
for Lie manifolds with boundary in [1, Theorem 2.7].

Model operators

We consider first order differential operators on a Lie manifold with bound-
ary which are symmetric to the boundary. In the following we fix a Lie manifold
(M,A,V) with boundary (Y,B,W) which is measured and we fix the volume
element µ. We also fix Hermitian smooth vector bundles E,F → M and
the normal vector field n with 1-form τ as well as a tubular neighborhood
Φ: U → Y[0,r) for some r > 0 from Theorem 2.7.

Definition 2.8. Let D ∈ Diff1
V(M,E,F ), then D is called boundary sym-

metric (with regard to n) if D is elliptic and setting σ0 := σD(τ) we have that
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σ0(x)
−1 ◦ σD(ξ) : Ex → Ex, σD(ξ) ◦ σ0(x)−1 : Fx → Fx are skew Hermitian for

each x ∈ Y, ξ ∈ B∗
x.

Proposition 2.9. i) The operator D is boundary symmetric if and only
if the formal adjoint D∗ is boundary symmetric.

ii) Boundary symmetry is independent of the choice of volume form µ.

As a preparation for the analysis of the index problem for Dirac operators
we extend next a result of [5] to the context of Lie manifolds with boundary.

Lemma 2.10. Let D ∈ Diff1
V(M ;E,F ) be elliptic and boundary symmet-

ric. Fix the notation σ(u,x) : Ex → Fx, (u, x) ∈ Y[0,r), σ := σD(du), σ(0,x) =
σD(τ(x)), x ∈ Y . Then there are elliptic W-differential operators

A : C∞
c (Y0, E|Y ) → C∞

c (Y0, E|Y ), Ã : C∞
c (Y0, F|Y ) → C∞

c (Y0, F|Y )

such that

D = σt(∂t +A+Rt),(1)

D∗ = −σ∗t (∂t + Ãt + R̃t),(2)

where

Rt : C
∞
c (Y0, E|Y ) → C∞

c (Y0, E|Y ), R̃t : C
∞
c (Y0, F|Y ) → C∞

c (Y0, F|Y )

are operators contained in Diff l
W(Y ;E) and Diff l

W(Y ;F ) respectively, where
l ≤ 1, t ∈ [0, r). Additionally, Rt, R̃t fufill the following estimates for f ∈
C∞
c (Y0, E|Y ), g ∈ C∞

c (Y0, F|Y )

∥Rtf∥L2
W (Y ) ≤ C(t∥Af∥L2

W (Y ) + ∥f∥L2
W (Y )),(3)

∥R̃tg∥L2
W (Y ) ≤ C(t∥Ãg∥L2

W (Y ) + ∥g∥L2
W (Y )).(4)

Proof. With x ∈ Y we can write B∗
x = {ξ ∈ A∗

x : ξ(n) = 0}. If there
is an A such that (1), (2) hold then observe that σA(ξ) = σ0(x)

−1 ◦ σD(ξ)
using that σ0(x)−1 ◦ σD(ξ) is skew Hermitian for x ∈ Y, ξ ∈ B∗

x. The task is
to find A formally selfadjoint with principal symbol σA. By definition, σA is
composed of invertible symbols, hence such an A is elliptic over Y[0,r). We set
D = σt(∂t + Dt), where Dt ∈ Diff1

W(Y ;E,E) is a family of elliptic operators
with smooth coefficients, t ∈ [0, r). Set Rt := Dt −A, note that σ(D0) = σ(A)
and R0 is a zero order operator. Therefore, by a Taylor expansion, we have the
estimate

∥Rtf∥L2
W (Y ) ≤ C ′(t∥f∥H1

W (Y ) + ∥f∥L2
W (Y )).

Since Rt : H1
W(Y ) → H0

W(Y ) = L2
W(Y ) is bounded and A is elliptic of

first order we obtain by [1]

∥f∥1 ≤ C(∥f∥0 + ∥Af∥0)
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which gives (3). Via σD∗(ξ) = −σD(ξ)∗ we obtain
σÃ(ξ) = σD∗(τ(x))−1σD∗(ξ) = (σD(τ(x))

∗)−1 ◦ σD(ξ)∗

= (σD(x)
∗)−1 ◦ σD(ξ) = (σD(ξ) ◦ σ0(x)−1)∗.

Twisted Dirac operators

Fix a spin Lie manifold (M,A,V), an A-metric g and an A-connection
∇W . We recall the definition of the geometric twisted Dirac operators on Lie
manifolds, cf. [3].

Fix a Clifford module W ∈ Cl(A) such that W =W+⊕W− is Z2-graded
compatible with the Clifford action: c(Cl(A)+)W± ⊂ W±, c(Cl(A)−)W± ⊆
W∓.

Definition 2.11. The geometric Dirac operator D = DW on the Lie man-
ifold is defined as D = c ◦ (id ⊗ ♯) ◦ ∇W , where ♯ is the isomorphism A ∼= A∗

induced by the fixed compatible metric g, ∇W denotes the A-connection and c
the Clifford multiplication:

Γ(W )
∇W
// Γ(W ⊗A∗)

id⊗♯
// Γ(W ⊗A)

c // Γ(W ).

Since c is a V-operator of order 0 and ∇W is a V-operator of order 1 we
see that D is in Diff1

V(M ;W ). Additionally, σ1(D)ξ = ic(ξ) ∈ End(W ), hence
invertible for ξ ̸= 0, and D is elliptic.

We check that a geometric Dirac operator on a Lie manifold with boundary
is boundary symmetric.

Proposition 2.12. Let (M,A,V) be a spin Lie manifold with boundary
(Y,B,W). Then (M,A,V) is measured. A geometric Dirac operator D = DW

acting on the C∞ vector bundles E,F → M for a given Clifford module W is
boundary symmetric with regard to Y for a fixed choice of normal vector field
n ∈ Γ(A|Y ).

Proof. Let g = gA be an A-metric. The Clifford relations are
2gA(ξ, η)idEx = σD(ξ)

∗σD(η) + σD(η)
∗σD(ξ), ξ, η ∈ A∗

x,

2gA(ξ, η)idFx = σD(ξ)σD(η)
∗ + σD(ξ)

∗σD(η), ξ, η ∈ A∗
x.

Set σ0(x) = σD(τ(x)) where τ denotes the 1-form associated to the normal
vector n, i.e. gA(τ(x), ξ) = 0. Extend ξ to Ax by setting ξ(n) = 0. Then the
Clifford relations yield σ0(x)

−1 ◦ σD(ξ) : Ex → Ex, σD(ξ) ◦ σ0(x)−1 : Fx → Fx

are skew-Hermitian for each x ∈ Y, ξ ∈ B∗
x.
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3. A GLUEING CONSTRUCTION

We introduce so-called decomposed Lie manifolds. These Lie manifolds
consist of two parts, one part is a so-called Lie manifold of cylinder type and the
complementary part is a standard Lie manifold in its own right. Furthermore,
we show that for the corresponding Lie algebroid on a decomposed Lie manifold,
we can obtain an integrating groupoid via a glueing of two groupoids, one on
the cylinder part of the manifold and the other on the complement. We show
that the resulting glued groupoid can be endowed with a smooth structure in
a natural way.

Definition 3.1. A decomposed Lie manifold (M,A,V) with hypersurface
(Y,B,W) is a Lie manifold such that M = M1 ∪M2 where M1 ∩M2 = Y .
Additionally, M2 is a Lie manifold of cylinder type, i.e. M2 is diffeomorphic to
a global tubular neighborhood of Y in M .

Any Lie manifold with boundary can be glued to a decomposed Lie man-
ifold, up to a choice of tubular neighborhood, which follows by Theorem 2.7
and the following discussion. Let (M,A,V) be a decomposed Lie manifold
such that M1 ∪M2 = M, M1 ∩M2 = Y . In the following we consider two
groupoids: G1 ⇒ M̊1 where M̊1 := M1 \ Y as well as G2 ⇒ Y × [−1, 0]. Here
M2

∼= Y × [−1, 0] is the cylinder-type part of M . Let U be a global tubular
neighborhood of Y in M such that U = U+ ∪Y U− is decomposed in the follow-
ing sense. Fix a boundary defining function, i.e. smooth function ρ : M → R
such that Y = {ρ = 0} and dρ is non-vanishing on Y . We also consider the
strata Y+ := {ρ = 1} and Y− := {ρ = −1}. Let U be decomposed into the
collars U+

∼= (0, 1]u × Y+ and U− ∼= [−1, 0)u × Y−. The groupoids G1, G2

are adapted to (M,A,V) and (Y,B,W). Let VM̊1
be the Lie structure of M̊1.

Denote by G1 = G(M̊1) ⇒ M̊1 the Lie groupoid integrating the Lie structure
VM̊1

. Let H ⇒ Y be the Lie groupoid integrating the Lie structure W. Define
G2 := H × ([−1, 0)2 ∪ {0} × R+) ⇒ Y × [−1, 0]. The groupoid structure of
G2 is given by the pair groupoid structure on [−1, 0)2 and (R+, ·) viewed as a
multiplicative group.

We are now in a position to state the following result.

Theorem 3.2. The groupoid G := G1 ∪ G2 ⇒M has the C∞-structure of
a Lie groupoid such that A(G) ∼= A, i.e. G integrates the Lie structure of the
decomposed Lie manifold (M,A,V).

Proof. Define the auxiliary groupoid H̃ := H× R ⋊ R+ ⇒ Y × R, where
R ⋊ R+ ⇒ R is the semi-direct product groupoid given by the multiplicative
action of (R+, ·) on (R, ·). It is immediate that H̃ is a Lie groupoid. Set



11 A splitting index theorem 105

G = G1∪G2 ⇒M , then we exhibit a Lie groupoid structure on G with the help of
H̃, using a transport of structure argument. The definition of G, together with
the tubular neighborhood theorem for Lie manifolds then implies that A(G) ∼=
A. We fix the collar neighborhoods as previously defined. We have G2 =

H̃Y×[−1,0]
Y×[−1,0]. By transversality of Y in M we have a canonical diffeomorphism

(G1)
U
U

∼= H × (0, 1)2. Denote this diffeomorphism by ψ. We construct the
diffeomorphism

φ : H̃Y×(−1,1)
Y×(−1,1)

∼−→ G.
Here we restrict G without loss of generality to U and denote the restriction

by the same letter. This will give the C∞-structure at 0. Note that

H̃Y×(−1,1)
Y×(−1,1) = H× [(−1, 0)2 ∪ {0} × R+ ∪ (0, 1)2].

Hence φ is given by gluing the identity and the diffeomorphism ψ. A
similar type of argument shows that the structural maps of G are C∞ maps.
Therefore, G is a Lie groupoid.

4. CONTINUOUS FIELD OF C∗-ALGEBRAS

In this section we answer the question of how to associate a C∗-algebra to
a semi-groupoid in a functorial way. To begin with we introduce suitable cate-
gories of fields of smooth groupoids and semi-groupoids as well as the category
of fields of C∗-algebras. Then we describe a contravariant functor from the
category of fields of smooth groupoids to the category of fields of C∗-algebras,
or more generally, C0(T )-algebras, where T is a compact Hausdorff space. We
contrast this functoriality with the case of the smaller Lie category of smooth
semi-groupoids. The next question is under what conditions a given field of
semi-groupoids furnishes a continuous field of C∗-algebras. Here we are inter-
ested in a particular type of deformation semi-groupoid over the cylinder part
of a given decomposed Lie manifold. We show that this semi-groupoid fulfills
the necessary condition for functoriality with regard to a natural class of rep-
resentations on Hilbert space. Then, as a preparation for our study of the heat
kernel in the final section, we introduce a functional calculus on the convolution
C∗-algebra of the deformation semi-groupoid on a decomposed Lie manifold.

Functoriality

We recall the definition of C0(T )-C∗-algebras where T is a Hausdorff topo-
logical space. Then we establish what criteria are needed for the continuity of
fields of C∗-algebras as defined via Lie groupoids or Lie semi-groupoids.
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Recall that for a C∗-algebra M(A) denotes the maximal unital C∗-algebra
which contains A as an essential ideal. Denote by Z(B) the center of a given
C∗-algebra B.

Definition 4.1. A C0(T )-algebra is a tuple (A, θ) where

θ : C0(T ) −→ ZM(A)

is a ∗-homomorphism such that θ(C0(T ))A = A.

Note that a ∈ A can be identified with a family a = (ax)x∈T . Here
ax ∈ Ax := A/CxA, Cx := {f ∈ C0(T ) : f(x) = 0}. The action of functions on
T is implemented by θ and we often abuse notation by writing f · a instead of
θ(f) · a. We also write AT := θ(C0(T ))A and call A non-degenerate if A = AT .

Example 4.2. ConsiderA=C0(T ) withM(C0(T ))=Cb(T ), ZM(C0(T )) =
Cb(T ). We will provide further examples induced by the vast plethora of C∗-
algebras associated to Lie groupoids.

Given two C0(T )-algebras A,B an arrow is given by a ∗-homomorphism
ψ : A→ B which is C0(T )-linear, i.e. ψ(f ·a) = f ·ψ(a) for each f ∈ C0(T ), a ∈
A. Denote by C∗(T ) the category with objects the C0(T )-algebras and C0(T )-
linear ∗-homomorphisms as arrows between objects.

A particular case of C0(T )-algebra is that given by a field of groupoids.

Definition 4.3. A field of Lie groupoids is a triple (G, T, p) where G is a
Lie groupoid, T is a C∞-manifold and p : G → T is a submersion. We denote
by p0 the restriction of p to G(0).

The category of T -Lie groupoids LG(T ) consists of objects the fields of Lie
groupoids. Let (G, T, p), (H, T, p̃) be T -Lie groupoids. Recall that a strict Lie
groupoid morphism is a tuple (f, f (0)) : G(T ) → H(T ) such that the diagram

G H

G(0) H(0).

f

f (0)

commutes. An arrow in the category LG(T ) is a tuple (f, f (0)) with f and f (0)
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two C∞-maps such that the following diagram commutes

T

G H

G(0) H(0)

T

p

f

p̃

p0
f (0)

p̃0

The category C∗(T ) has many useful stability properties, e.g. it is closed
with regard to the formation of ideals, quotients, direct sums, suspensions and it
is C0(T )-stable. The correct tensor product inside the category is the completed
maximal tensor product. Note that ψ(A) ⊂ BT for ψ a possibly degenerate
arrow and MorC0(T )(A,B) = MorC0(T )(A,B

T ). We want to study semi Lie
groupoids, i.e. Lie groupoids where inverses do not always exist. This can
be viewed as merely the category of C∞-manifolds with additional data and
structural maps as given in a Lie groupoid. We are mainly interested in the
question of how to assign a C0(T )-algebra to a given Lie groupoid or semi Lie
groupoid. To clarify these issues, we will first prove a functoriality result for
the association

C∗ : LG(T ) → C∗(T ).

In the functor C∗ = C∗
T we routinely suppress the dependency on T . For

the following discussion, we also refer to [18, Section 5].
The map on objects. Let (G, T, p) be a T -Lie groupoid. We describe

a left C0(T )-module structure on C∞
c (G). Define (fa)(γ) = f(p(γ))a(γ), f ∈

C0(T ), a ∈ C∞
c (G). As a consequence f(a ∗ b) = (fa) ∗ b = a ∗ (fb) for each

f ∈ C0(T ), a, b ∈ C∞
c (G). Also C0(T )C

∞
c (G) = C∞

c (G) since if f ∈ Cc(T ) is
chosen such that f ≡ 1 on p(suppa), then a = fa ∈ C0(T )C

∞
c (G).

Completion. Endow C∞
c (G) with the inductive limit topology τ→. We

have the following condition

∀ π : C∞
c (G) → L(H) continuous representation

∃ φ : C0(T ) → L(H) unique representation s.t.
π(fa) = φ(f)π(a).(L)

As shown in Lemma 1.13. of [29] this condition holds for Lie groupoids.
By an application of (L) for given f ∈ C0(T ), a ∈ C∞

c (G)

∥π(fa)∥ ≤ ∥φ(f)∥∥π(a)∥ ≤ ∥f∥∥a∥
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⇒ ∥fa∥ ≤ ∥f∥∥a∥.

Therefore, for each f ∈ C0(T ), the mapping C∞
c (G) ∋ a 7→ fa ∈ C∞

c (G)
extends continuously to C∗(G). Hence C∗(G) has a canonical C0(T )-Banach
module structure. It needs to be checked that C0(T )C

∗(G) is closed in C∗(G) by
a separate argument, cf. [18]. Then non-degeneracy is clear by C0(T )C

∗(G) ⊃
C0(T )C

∞
c (G) = C∞

c (G). We have f(a ∗ b) = (fa) ∗ b and (fa)∗ = f∗a∗ for
a, b ∈ C∗(G), f ∈ C0(T ), hence C∗(G) is a C0(T )-algebra.

The map on arrows. Let (f, f (0)) : G(T ) → H(T ) be a strict morphism
of T -Lie groupoids. Define C∗(f, f (0)), in short C∗(f) : C∗(H) → C∗(G) via
the assignment

C∗(f)(a) = a ◦ f, a ∈ C∗(H).

Proposition 4.4. We obtain a contravariant functor

C∗:LG(T )→ C∗(T ).

Proof. Let g ∈ C0(T ), then C∗(g·a) = (g·a)◦f where g acts via multipliers
on C∗(H). Denote by (C∗(G), θ) and (C∗(H), θ̃) the corresponding actions. By
definition C∗(f)(g ·a) = C∗(f)(θ̃(g) ·a). It is then routine to verify that C∗(f)
is C0(T )-linear: Take g ∈ C0(T ) fixed

C∗(f)(g · a) = C∗(f)(θ̃(g) · a)(γ)
= C∗(f)((g ◦ p̃)a)(γ) = ((g ◦ p̃) · a)f(γ)
= (g ◦ p̃)(f(γ)) · a(f(γ)) = g(p̃(f(γ))) · a(f(γ))
= g(p(γ))a(f(γ)) = θ(g) ·C∗(f)(a)(γ) = g ·C∗(f)(a).

In the final line we used the commutativity

G

p
��

f
// H
p̃
��

T

What remains to be studied is the continuity of the resulting field of C∗-
algebras.

Definition 4.5. A C0(T )-algebra A is continuous if x 7→ ∥ax∥ ∈ [0,∞) is
continuous for each x ∈ T .

Up until now the functoriality makes sense for C∗ as well as C∗
r . The

second part, namely C∗ mapping to continuous C0(T )-algebras, requires that
we restrict to amenable Lie groupoids. The reason is found in [18, Theorem
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5.5] where upper semi-continuity of the field relies on the full C∗-algebra of the
groupoid. We study next the general functoriality and continuity for Lie semi
groupoids. There are two things to notice at the outset: i) For general functo-
riality of T semi-groupoids the condition (L) is no longer true in general, but
becomes an axiom. ii) The proof of continuity of the field of C∗-algebras associ-
ated to a Lie groupoid crucially requires amenability. This is not really available
anymore on Lie semi-groupoids. Let us address both of these problems in what
follows. Denote by LC the Lie category, consisting of Lie semi-groupoids as
objects and smooth functors as arrows between objects. In the same vein we
also introduce the category of T Lie semi-groupoids LC(T ). Denote by L̃C(T )
the subcategory of LC(T ) consisting of objects the Lie semi-groupoids which
fulfill condition (L). We have a functorial diagram

LG(T )

ι
��

C∗
// C∗(T )

L̃C(T )

C̃∗
::

where ι denotes the inclusion functor and C̃∗ is the functor constructed
via representations given by (L).

Continuity for semi-groupoids

In the remainder of this work, we will be interested in a deformation semi-
groupoid suitable for boundary value problems on Lie manifolds with boundary.
We will define the reduced C∗-algebra associated to this semi-groupoid and
show that this yields a continuous field of C∗-algebras. In order to give the
reader a better appreciation of some of the difficulties involved in the study
of the continuity of fields of C∗-algebras associated to semi-groupoids we have
discussed above the case of Lie groupoids. We are given the following data:
A Lie manifold (M,A,V) with boundary (Y,B,W). Let G ⇒ M denote an
integrating s-connected Lie groupoid, i.e. A(G) ∼= A. Fix the generalized
exponential map (see also [10, 18]) Exp: A(G) → G as well as the exponential
map exp: A(G) → M induced by an invariant connection on A. Consider the
half space Ã ⊂ A which is defined as follows:

Ã := {v ∈ A : exp(−tv) ∈M, t > 0 small}.

This is the natural generalization of the half-space introduced in [4] for the case
of a compact manifold with boundary and trivial Lie structures. We restrict
the invariant connection ∇ of A to Ã and also obtain the restriction of the
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generalized exponential which we denote by the same symbol Exp: Ã → G.
Then we define the deformation semi-groupoid G̃ad ⇒ M × I where I = R or
I = [0, 1] and I∗ := I \ {0} as follows

G̃ad := G × (0, 1] ∪ Ã × {0}.
Note that a priori G̃ad has a natural semi-groupoid structure: the groupoid
structure of G, of (0, 1] viewed simply as a set as well as the semi-groupoid
structure of Ã, viewed as a bundle of half-spaces. Note that G̃ad ⊂ Gad where
Gad is the adiabatic groupoid G × (0, 1]∪A×{0}. By the local diffeomorphism
property of Exp we can describe a smooth structure on Gad. It is defined by
glueing a neighborhood O of A× {0} to G × I∗ via

O ∋ (v, t) 7→

{
v, t = 0

(Exp(−tv), t), t > 0.

Then the smooth structure of G̃ad ⊂ Gad is the one induced by Gad with
regard to the locally compact subspace topology, i.e. C∞

c (G̃ad) := C∞
c (Gad)|G̃ad .

The next goal is to define a continuous field of C∗-algebras over the Lie semi-
groupoid G̃ad.

Definition 4.6. The C∗-algebra associated to G̃ad is defined as the com-

pletion C∗
r (G̃ad) := C∞

c (G̃ad)
∥·∥

. We define the norm ∥ · ∥ as the reduced
norm with regard to the representation π̃ := (π, π∂) on the Hilbert space
H := L2(G)⊕ L2(Ã|Y ). Here π = (πt)0<t≤1 where for 0 < t ≤ 1

πt(f)ξ(γ) =
1

tn

∫
Gs(γ)

f(η, t)ξ(η) dµs(γ)(η).

Define the representation π∂0 on the Hilbert space L2(Ã|Y ) by

π∂0 (f)ξ(v) =

∫
Ãπ̃(v)

f(v − w)ξ(w) dw.

We also introduce a C∗-algebra associated to the half-space Ã.

Definition 4.7. Define the reduced C∗-algebra of Ã in terms of the com-

pletion C∗
r (Ã) := C∞

c (Ã)
∥·∥π̃0 , where π̃0 = (π0, π

∂
0 ) is the representation of

C∞
c (Ã) on the Hilbert space H := L2(A)⊕ L2(Ã|Y ). We define

π0(f)ξ(v) =

∫
Aπ(v)

f(v − w)ξ(w) dw

and
π∂0 (f)ξ(v) =

∫
Ãπ̃(v)

f(v − w)ξ(w) dw.
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Note that the above definition furnishes a field of C∗-algebras with
φt : C

∞
r (G̃ad) → C∗

r (G̃ad)(t) where C∗
r (G̃ad

t ) = C∗
r (G), t ̸= 0 and C∗

r (G̃ad
0 ) =

C∗
r (Ã). This leads us to the following result.

Theorem 4.8. Let (M,A,V) be a decomposed Lie manifold with hyper-
surface (Y,B,W) and integrating Lie groupoid G ⇒M . The field(

C∗
r (G̃ad), {C∗

r (G̃ad
t ), φt}t∈[0,1]

)
is a continuous field of C∗-algebras.

The continuity for the semi-groupoid G̃ad is a generalization of the result
proven in [4], where the case of a compact manifold with boundary (and the
trivial Lie structure of all vector fields) is studied. Since our case is vastly
more general, we give more details below. We will describe the strategy of the
argument, highlighting the main differences to the argument in loc. cit. for our
case of general decomposed Lie manifolds with boundary.

Proof. Note that the condition in the definition of the semi-algebroid Ã
only takes effect at the regular boundary stratum Y . The difficulty in the proof
of continuity of the field is the upper and lower semi-continuity of the field at t =
0. If we restrict the groupoid outside any tubular neighborhood of Y in M then
Ã is identical to A. For this restricted groupoid the argument for continuity
of the field goes along the same lines as the proof given in [4]. Therefore, we
can without loss of generality focus on the case where M is of cylinder type.
Since M is assumed to be of cylinder type we identify M ∼= Y × R+. Let
H ⇒ Y be a Lie groupoid such that A(H) ∼= B. The groupoid G takes the form
G = H×(R2

+∪{0}×R+) ⇒ Y ×R+ with smooth structure as defined in Section
3. We first define the auxiliary algebra C∞

tc (Ã) := C∞
c (A) ⊕ C∞

c (B × R2
+),

which is a dense ∗-subalgebra of C∗
r (Ã). Choose a cutoff ψ ∈ C∞

c (G) such that
0 ≤ ψ ≤ 1 and ψ|U ≡ 1 for a neighborhood M ⊂ U ⊂ G for which there is
a corresponding neighborhood of the zero section, M ⊂ O ⊂ A(G) for which
Exp: O ∼−→ suppψ ⊂ G is a diffeomorphism. Throughout, we will make use of
the lifting of an element f ∈ C∞

c (A), or f ∈ C∞
c (Ã) to an element of C∞

c (G̃ad),
defined by

f̃(γ, t) := ψ(γ)f

(
−Exp−1(γ)

t

)
.(l)

We first show the lower semi-continuity of the field, i.e.

lim inf
t→0

∥φt(a)∥ ≥ max{∥π0(a)∥, ∥π∂0 (a)∥}.(lsc)

The proof of lower semi-continuity is facilitated by a reduction of the proof
of lower semi-continuity of representations of C∞

c (G̃ad) and C∞
c (Had × R+).
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Making use of the generalized exponential Exp∂ : B → H, we can introduce a
lifting (l) also for elements f ∈ C∞

c (B × R+) to C∞
c (Had × R+) and, abusing

notation, we also denote by f̃ . Fixing a Haar system (µx,t)(x,t)∈M×I , introduce
the norms ∥ · ∥∞,t on G̃ad by

∥g∥2∞,t := sup
x∈G(0)

∥g∥
L2(G̃ad

x,t,µx,t)
.

Abusing notation again, we use the same symbols ∥ · ∥∞,t for the cor-
responding norms on C∞

c (Had × R+), where we fix a Haar system µ∂x,t on
Had and the standard Lebesgue measure on R+. Define the representation
ρt : C

∞
c (Ã) → L(L2(G)) by

(ρtf)ξ(γ) =

∫
Gs(γ)

f̃(γη−1, t)ξ(η) dµs(γ)(η).

A straightforward generalization of [4, Proposition 2.22], yields the density
of C∞

c (Ã) in C∞
c (G̃ad), which implies that it is sufficient to show the estimates

lim inf
t→0

∥ρt(f̃ + K̃∥ ≥ ∥π0(f)∥, f ⊕K ∈ C∞
tc (Ã),(5)

lim inf
t→0

∥ρt(f̃ + K̃∥ ≥ ∥π∂0 (f ⊕K)∥, f ∈ C∞
c (A), K ∈ C∞

c (B × R2
+).(6)

In order to show (5) we check that

∥πt(f̃ + K̃)∥

= sup

{∥∥∥∥ 1

tn

∫
G•

(f̃(• · η−1, t)+K̃(• · η−1, t)g(• · η−1, t) dµ•(η)

∥∥∥∥
∞,t

: ∥g∥∞ ≤ 1

}
,

∥π0(f)∥ = sup

{∥∥∥∥∫ f(v, 0)g(• − v, 0) dv

∥∥∥∥ : ∥g∥∞ ≤ 1

}
.

At this point we recall the structure of the groupoid G̃ad as H × (R2
+ ∪

{0}×R+) and note that the set of g for which g(γ, t) = 0 with s(γ) = (x′, 0) ∈
Y ×R+

∼=M is dense in {g ∈ C∞
c (G̃ad) : ∥g∥∞ ≤ 1}. The weak convergence of

K̃ to zero yields for g ∈ C∞
c (G̃ad)

lim
t→0

∥∥∥∥ 1

tn

∫
(f̃(• · η−1, t) + K̃(• · η−1, t))g(• · η−1, t) dµ•(η)

∥∥∥∥
∞,t

=

∥∥∥∥∫ f(v, 0)g(• − v) dv

∥∥∥∥
∞,0

.

The equality (5) follows. We prove (6) by fixing (at)t∈I such that at → 0
for t→ 0 and at

t → ∞ for t→ 0. Define representations of f ∈ C∞
c (G̃ad), K ∈

C∞
c (B × R2

+) on C∞
c (Had × R2

+) via

ηt(f)g(γ, t, b) = tn+1

∫
[0,

at
t
]

∫
Gs(γ)

f(γη−1, tb, ta, t)g(η, t, a) dµs(γ)(η) da
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for t ̸= 0 and b ∈
[
0, att

]
. As well as

η0(f)g(v, 0, b) =

∫
Bx×R+

f(v − w, b− a)g(w, 0, a) dw da,

ηt(K)g(γ, t, b)

= t−n+1

∫
[0,

at
t
]

∫
Gs(γ)

K(Exp−1
∂ (γη−1t−1, b, a)g(γη−1, t, a) dµs(γ)(η) da.

η0(K)g(v, 0, b) =

∫
Bx×R+

K(v − w, b, a)g(w, 0, a) dw da.

Denote by Pt the operator given by multiplication with the characteristic
function H × [0, at]

2, where [0, at]
2 is the pair groupoid. Also denote by Dt

the dilation by t operator. Then we have ∥Ptπt(f)Pt∥ = ∥DtPtπt(f)PtDt−1∥ =
sup{∥ηt(f)g∥∞,t : ∥g∥∞ ≤ 1}. Hence ∥π∂0 (f ⊕ K)∥ = sup{∥η0(f ⊕ K)g∥∞,0 :

∥g∥∞ ≤ 1}. Let g ∈ C∞
c (G̃ad) and note that for t small we can without loss

of generality assume that g takes the form g0

(
−Exp∂(γη

−1)
t , t, a

)
with g0 ∈

C∞
c (B × [0, 1]× R+). Thence

lim
t→0

∥(ηt(f̃ + K̃)g∥∞,t = ∥(η0(f ⊕K)g∥∞,0

which implies (6). From (5) an (6) we obtain the lower semi-continuity (l). The
upper semi-continuity is the inequality

lim sup
t→0

∥φt(a)∥ ≤ max{∥π0(a)∥, ∥π∂0 (a)∥}.(usc)

This follows by the density result of [4, Proposition 2.22]. The remainder
of the argument is analogous to loc. cit. and we omit the details. The estimates
(lsc) and (usc) together imply the continuity of the field of C∗-algebras.

Functional calculus

On a given decomposed Lie manifold we define a functional calculus taking
values in the reduced C∗-algebra of the deformation semi-groupoid considered
in the previous section. Denote by P the set of functions in the Schwartz class
S(R) which have compactly supported Fourier transform.

Theorem 4.9. Let (M,A,V) be a decomposed Lie manifold with hyper-
surface (Y,B,W) with corresponding integrating groupoid G ⇒ M . Denote by
D := ( /Dx,t)(x,t)∈M×I an equivariant family of geometric Dirac operators asso-
ciated to ∇/ W on Gad. Then there exists a ring homomorphism

ΨD : C0(R) → C∗
r (Gad)
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which is compatible with the representations (π, π∂), i.e. given π = (πt)t∈I and
π∂ we have

πx,t(ΨD(f)) = f( /Dx,t), f ∈ P,(7)

as well as for π∂0 : C
∞
c (Ã) → L(L2(G|Y ))

π∂0 (f)ξ(γ) =

∫
Ãr(γ)

f(w)ψ(w)ξ(Exp−1(γ)− w) dw(8)

with
π∂0 (ΨD(f)) = f( /D0), f ∈ P.

Proof. Denote by eiτ /Dx,t the solution operator to the wave equation for
/Dx,t. For f ∈ P define via the functional calculus (cf. [11, Section 3.C])

f( /Dx,t) =
1

2π

∫
f̂(τ)eiτ /Dx,t dτ.

By the estimates in the proof of Proposition 7.20 in [31], we obtain that
f( /Dx,t) is a smoothing operator of finite propagation speed. The family f( /Dx,t)
is Gad-equivariant. Take the reduced kernel kf over Gad. By finite propaga-
tion speed and the equivariance it follows that kf is compactly supported, see
also [30]. Define ΨD(f) via the assignment γ 7→ kfs(γ). The latter assignment
furnishes a ring homomorphism, cf. the proof of [31, Prop. 9.20]. The compat-
ibility (7) follows since kf is a reduced convolution kernel and (8) follows by
the definition of /D0 on Ã. We obtain the L2-action of ΨD:

f( /Dx,t)g(γ) = πx,t(ΨD(f))g(γ)

= (ΨD(f) ∗ g)(γ), t > 0

as well as

f( /D0)g(v) = π∂0 (ΨD(f))g(v)

= (ΨD(f) ∗ g)(v), t = 0.

Altogether we have shown that ΨD : P → C∞
c (Gad) is a ring homomor-

phism that is compatible with (π, π∂0 ). Since P is dense in C0(R) and C∗
r (G̃ad) is

defined as the completion with regard to the representations (π, π∂0 ), we obtain
by the L2-spectral theorem that the map P → C∞

c (Gad) is continuous with
regard to the C0(R)-norm. Hence ΨD extends continuously to a ring homomor-
phism C0(R) → C∗

r (Gad).
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5. INDEX FORMULA

We give the proof of a generalized APS-type index formula on a decom-
posed spin Lie manifold for a geometric Dirac operator subject to local and
non-local boundary conditions. The local boundary conditions are posed on a
stratum of the cylinder part of the decomposed Lie manifold. On the other
hand, we have non-local APS boundary conditions which are implicit on the
complementary part of the manifold, where the boundary is pushed to infinity.
The technique we employ to prove the index formula makes use of the theory
outlined in the previous sections: The functional calculus from section 4 is used,
combined with the rescaling bundle technique from [10], in order to derive an
index formula on standard spin Lie manifolds.

Consider a decomposed Lie manifold (M,A,V) with hypersurface
(Y,B,W), i.e. M = M1 ∪ M2 where M2 is of cylinder type. We study a
geometric admissible Dirac operator defined on M . The operator D is as-
sumed to be decomposed into two geometric admissible Dirac operators, i.e.
D|M1

= D1, D|M2
= D2. The operator D2 is of model type and admits second

order local boundary conditions, while D1 is a graded geometric admissible
Dirac operator on the complement M1. Fix the notation Ã → M for the
semi-Lie algebroid as introduced in the previous section. With the help of the
functional calculus introduced in the previous section and the rescaling argu-
ment from [10], we can separate the index calculation for the two cases of D1

and D2.

Renormalizable Lie manifolds

Similarly, as in [10] we define a renormalized trace for renormalizable Lie
manifolds. Denote by Ω1(A) the 1-forms on A and by Ċ∞(M,Ω1(A)) the
smooth sections vanishing to all orders at the boundary strata of M .

Definition 5.1. A Lie manifold (M,V,A) is called renormalizable if there
is a functional VTr: C∞(M,Ω1(A)) → C, f 7→ V∫−f with the following proper-
ties:

1) The integral
∫
M f exists for f ∈ Ċ∞(M,Ω1(A)), and the functional

VTr is a linear extension.
2) There is a minimal k ∈ R such thatG(f)(z) =

∫
M ρzf defines a function

G(f) holomorphic on ℜ(z) > k − 1, which extends meromorphically to C.
Then we can define

V∫
M

− f : regularized value (zero order Taylor coefficient) at z = 0 of G(f).
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Lemma 5.2. Let (M,A,V) be a renormalizable Lie manifold with bound-
ary (Y,B,W). Then (Y,B,W) is renormalizable as well.

Proof. We construct the functional H : C∞(Y,Ω1(B)) → C, f 7→ W∫
Y− f

as a linear extension. Let ρY denote the boundary defining function of Y , i.e.

ρY :=
∏

F∈F1(Y )

ρF .

By Theorem 2.7 there is a global tubular neighborhood Y ↪→ U ↪→ M such
that the boundary defining function ρY of Y is expressed in the coordinates of
U , i.e.

(ρY ◦ ν)(x1, x′) = x1, (x1, x
′) ∈ Y(ϵ)

where ν : Y(ϵ) = Y × (−ϵ, ϵ) ∼−→ U . Fix the local coordinates over U by
x′ = (x2, · · · , xn−1), then ρ = x2x3 · · ·xn−1. Since the degeneracy index k
of M is finite, there is l ≥ k such that

H(f)(z) =

∫
Y
ρzf

is holomorphic in {ℜ(z) ≥ l − 1} and extends meromorphically to C. Then
W∫

Y− f = Regz=0H(f)(z) is defined and finite. Hence (Y,B,W) is renormaliz-
able.

Example 5.3. We refer to [10, Section 5] for a large class of examples of
renormalizable Lie manifolds where it is shown that so-called exact Lie man-
ifolds are renormalizable. Here a Lie structure V of a Lie manifold (M,V,A)
is called exact if, near each face with boundary defining function x1, the Lie
structure is generated by vector fields of the form

{
xk11 ∂x1 , . . . , x

kn
1 ∂xn

}
for

arbitrary {kl : 1 ≤ l ≤ n}.

Cylinder type index formula

Fix the geometric admissible Dirac operatorD on a Lie manifold (M,A,V)
of cylinder type with boundary (Y,B,W). The Dirac operator D = DW is
defined via a Clifford module W ∈ Cl(Ã) − mod. After an application of
Lemma 2.10 without loss of generality D is assumed to be of model type, i.e.

D =

(
i∂u iD−

∂

−iD+
∂ −i∂u

)
(9)

where D∂ is an admissible geometric Dirac operator on (Y,B,W), i.e.

D∂ =

(
0 iD−

∂

−iD+
∂ 0

)
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for a fixed admissible connection ∇W∂ and W∂ ∈ Cl(B) − mod. Note that
D∗D = −∂2u + D2

∂ . Let φ ∈ Γ(W ) be a smooth section such that φ = φ+ ⊕
φ− corresponding to the grading W = W+ ⊕W−. Denote by B± the local
boundary condition (φ|Y )

± = 0. Note that (D,B+)∗ = (D,B−). We study
the induced boundary conditions for (a) the case D∗D, where φ+(0, y) = 0
and (∂uφ

− +D+
∂ φ

+)u=0 = 0. Since D+
∂ is a tangential operator it follows that

D+
∂ φ

+ = 0. Therefore, in case (a) the local boundary conditions are subdivided
into Dirichlet and Neumann condition

φ+(0, y) = 0,(Da)
∂uφ

−(0, y) = 0.(Na)

The induced boundary conditions in the case (b) of DD∗ are for ψ ∈
Γ∞(W ) given by

∂uψ
+(0, y) = 0,(Nb)

ψ−(0, y) = 0.(Db)

Definition 5.4. A model type Dirac operator is an operator of the form
(9) with second order boundary conditions B± as specified above, such that
the generalized ellipticity (Fredholm) conditions for boundary value problems
on Lie manifolds with boundary, as stated in [7, Def. 9.4], are fulfilled.

Define the renormalized index as defined via the renormalized super trace
Vind(D) = lim

t→∞
VTrs(e

−tD∗D)− VTrs(e
−tDD∗

).

We have the following result concerning the renormalized index of a model
form Dirac operator.

Theorem 5.5. Let (M,A,V) be a renormalizable, spin Lie manifold of
cylinder type with boundary (Y,B,W) and let D be an admissible graded Dirac
operator of model type (9). Then the renormalized index of D, subject to bound-
ary condition B±, is

Vind(D) = lim
t→∞

VTrs(e
−tD2

) = ∓1

2
Wind(D∂).

Proof. By full ellipticity, i.e. Theorem 5.8, the renormalized indices agree
with the Fredholm index. Set K±(t, u) := VTrs(e

−tD∗D − e−tDD∗
) for the

density with regard to the boundary condition B±. Fix the volume forms
µ on M and the induced volume form µ∂ on Y , by Proposition 2.4. Write
K+(t, u) = K1(t, u)−K2(t, u), then we have

K±(t, u) :=
VTr(e−tD∗D − e−tDD∗

) = K±
1 (t, u)−K±

2 (t, u)
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=
W∫

Y
−

∫
R+

tr K̃1(t, v, v, y, y) dv dµ∂(y)−
W∫

Y
−

∫
R+

tr K̃2(t, v, v, y, y) dv dµ∂(y).

We next calculate the kernels with regard to (Da), (Na) separately. We
make use of the calculations in [21], see also [34] to obtain the following formu-
lae. Case (Da) and (Db):

K̃1(t, v, w, y, z) =
1√
4πt

{
exp

(
(v − w)2

4t
− exp

(
−(v + w)2

4t

))}
× e−tD+

∂ D−
∂ (t, y, z).

K̃2(t, v, w, y, z) =
1√
4πt

{
exp

(
−(v − w)2

4t

)
− exp

(
−(v + w)2

4t

)}
× e−tD−

∂ D+
∂ (t, y, z).

Case (Na) and (Nb):

K̃1(t, v, w, y, z) =
1√
4πt

{
exp

(
−(v − w)2

4t

)
+ exp

(
−(v + w)2

4t

)}
× e−tD+

∂ D−
∂ (t, y, z),

K̃2(t, v, w, y, z) =
1√
4πt

{
exp

(
−(v − w)2

4t

)
+ exp

(
−(v + w)2

4t

)}
× e−tD−

∂ D+
∂ (t, y, z).

With the help of these explicit formulae we obtain the trace density
K1(t, u) of e−tD∗D subject to B+ equals
W∫

Y
−

∫
R+

tr K1(t, v, w, y, y) dv dµ∂(y) =
1√
4πt

WTr(e−tD−
∂ D+

∂ )

{
1− exp

(
−u

2

t

)}
+

1√
4πt

WTr(e−tD+
∂ D−

∂ )

{
1 + exp

(
−u

2

t

)}
.

Similarly, for K2(t, u), the density of e−tDD∗ . Altogether we obtain

K+(t, u) =
e−

u2

t

√
πt

(WTr(e−tD+
∂ D−

∂ )− WTr(e−tD−
∂ D+

∂ )).

By an application of the McKean-Singer formula (see also [21]) we have∫ ∞

0
K+(t, u) du = −1

2
Wind(D∂).

For the case B− we obtained∫ ∞

0
K−(t, u) du =

1

2
Wind(D∂)

by an analogous calculation.
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Rescaling for semi-groupoids

For any decomposed Lie manifold our aim is to find a topological inter-
pretation of the renormalized index. We prove a generalized APS-type index
formula. The formula for the class of non-compact manifolds involves a local
contribution, depending on the metric and a non-local contribution which also
depends on restrictions of the Dirac operator to the boundary (the so-called
indicial symbol). The formula without the generalized boundary conditions
holds a priori for any Dirac operator which is not required to be Fredholm and
the renormalized index may take non-integer values. In the case with boundary
conditions, as specified above, we make use of the assumption that the bound-
ary value problem is generalized elliptic, i.e. Atiyah-Bott-Shapiro-Lopatanskii
elliptic in the sense of [7]. We also state criteria for the equality of the Fred-
holm index with the renormalized index as well as the conditions for the Dirac
operator to be Fredholm. The main new feature of our formula over the special
case investigated already in [10] is that it extends to the case of local bound-
ary conditions in a singular setting. For a given renormalizable Lie manifold
(M,A,V) and graded Dirac operator D we fix the definition of the renormalized
η-invariant Vη(D) := 1

2

∫∞
0

VTrs([D,De
−tD2

]) dt.
The index of a geometric Dirac operator on a decomposed Lie manifold is

determined by two principal symbols and the corresponding boundary restric-
tions of the singular strata.

Lemma 5.6. Given a boundary value problem D of the type B± with con-
ditions as stated in the next Theorem. Then the Fredholm index splits:

ind(D) = f(D1) + g(D∂),(10)

where f and g are homotopy invariant functionals of the full symbol of D1 and
D∂ respectively.

Proof. The first part is the boundary symbol of the model operator. The
latter operator by assumption fulfills a generalized Shapiro-Lopatinskii-Atiyah-
Bott condition. Secondly, the operator on the cylinder part of the decomposed
Lie manifold has a boundary symmetry property. The proof goes along the
same lines as the proof of [25, Theorem 2.3], except that we make use of the
deformation groupoid G as constructed in section 3. Set G1 = G(M̊1) and
G2 = H× (]−1, 0)2∪{0}×R+). Denote by e0 : C∗(G) → C∗(H×R+), induced
by restriction of G to the saturated subgroupoid H×R+. Note that the kernel of
e0 is contractible and thereby trivial in K-theory. Denote by e1 the restriction
homomorphism C∗(G) → C∗(G1). We obtain the pushforward:

π! := (e1)∗ ◦ (e0)−1
∗ : K0(C

∗(H× R+)) → K0(C
∗(G1)).
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Consider two boundary value problems (D,B±), (D̃, B̃±) of the type un-
der consideration such that the principal symbols are homotopic and the bound-
ary symbols are equal. Setting

ind(A) = ind(D̃)− ind(D)

where (A,C±) is a boundary value problem contained in the Boutet de Monvel
calculus of [7]. Denote by σ the principal symbol and by σ∂ the boundary
symbol as specified in [7]. In particular, the principal symbol fulfills σ(A) =
σ̃ · σ−1 and the boundary symbol is unitary. Using surgery, similar to the
constructions in Section 3, we obtain that ind(A) is equal to the index of a
fully elliptic pseudodifferential operator with principal symbol σ∂t · σ−1

∂0 = σ
on Y × S1. By [9, Theorem 5.1], the latter equals π![σ∂(A)]. This term is the
Atiyah-Patodi-Shapiro-Lopatinskii obstruction. Since the generalized ellipticity
condition holds by assumption, the obstruction vanishes. This concludes the
proof.

Theorem 5.7. Let (M,A,V) be a decomposed renormalizable spin Lie
manifold with hypersurface (Y,B,W) such that M = M1 ∪Y M2. Denote by
D = DW a geometric Dirac operator for an admissible Ã-connection ∇̃W with
D|M1

= D1, D|M2
= D2, where D2 is of model type on the cylinder M2 and D1

is a geometric Dirac operator over M1. Then subject to the boundary condition
B± fulfilling the generalized Shapiro-Lopatinskii-Atiyah-Bott condition we have

Vind(D) =
V1
∫
M1

− Â(∇1) ∧ expFW2/S dµ+ V1η(D1)

∓ 1

2

W∫
Y

− Â(∇∂) ∧ expFW∂/S dν∂ + Wη(D∂).(11)

Proof. According to Lemma 5.6 we can calculate the indices of D1 and
D∂ separately. Let W → M be the Cl(Ã) module compatible with the Clif-
ford action. Denote by hom(W ) → M the bundle with fibers hom(W )x ∼=
hom(Wx,Wx) ∼= Cl(Ãx ⊗ C) ⊗ EndCl(Wx) and by Hom(W ) → M the homo-
morphism bundle. We have Hom(W )|Ã

∼= Cl(Ã ⊗ C) ⊗ EndCl(W ). Fix the
Lie groupoid G ⇒ M with A(G) ∼= A as given in Theorem 3.2. We can lift
Hom(W ) to a bundle over G̃ad using the range and source map, i.e. by forming
the pullback bundle r∗(Hom(W ))⊗s∗(Hom(W )∗). Since no confusion will arise
we denote this lifted bundle by the same symbol Hom(W ) → G̃ad. Consider
the geometric Dirac operator /D on G such that ϱ( /D) = D (cf. [19]). Then
the reduced heat kernel kt on G̃ad is well-defined and we have the asymptotic
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expansion of the pointwise trace of kt at x ∈M (cf. [33]):

trxe
−t /D

2

∼ (4π)−
n
2

∞∑
i=0

ai(x)t
n
2
−i, t→ 0+, x ∈M ⊂ G

for ai ∈ Γ∞(Cl(Ã∗)⊗End
Cl(Ã∗)(W )). We have the filtration by Clifford degree

Cl0 ⊆ Cl1 ⊆ · · · ⊆ Cln(Ã ⊗ C). Topologically G̃ad is a manifold with corners
in its own right and we can view Ã as a particular boundary stratum. By
restricting the generalized exponential mapping Exp: A → G to the half space
Ã we obtain a tubular neighborhood and a normal direction (cf. [18]). Denote
by N = ∂t the corresponding normal vector field in G̃ad. Define

VD := {u ∈ C∞
c (G̃ad,Hom(W )) :

∇p
Nu|Ã ∈ C∞(Ã,Cln−p ⊗ EndCl(W )), 0 ≤ p ≤ n}.

By a proof analogous to [10, Proposition 6.4], we obtain that the filtration
{Clj} can be extended by parallel transport along ∇N to a neighborhood of
Ã inside G̃ad. Denote by {C̃lj} the extended filtration. Then we have the
alternative description

VD = {u ∈ C∞
c (G̃ad,Hom(W )) : u =

n∑
j=0

tn−juj + tn+1u′, near Ã}

where uj ∈ C∞
c (G̃ad, C̃ln−j ⊗ EndCl(W )) and u′ ∈ C∞

c (G̃ad,Hom(W )). By the
Serre-Swan theorem there is a rescaling bundle E → G̃ad such that C∞

c (G̃ad,E) =
i∗ClD. Here iCl : E → Hom(W ) is a bundle map which is an isomorphism over
the interior G̃ad

(0,1]. It is not hard to check that we obtain a canonical isomor-

phism of Clifford algebras EÃ
∼= ΛÃ∗ ⊗ EndCl(W ). The structure of E will

make sure that we extract the correct coefficient in the formal heat kernel ex-
pansion. Set D := (t /Dx)(x,t)∈M×I for the family of Dirac operators over G̃ad.
Consider f(x) = e−x2 and assume for technical reasons that f is convolved with
a function λ which has Fourier transform with large compact support. Denote
this convolution by f̃ := f ∗ λ. By the definition of the functional calculus in
Theorem 4.9 we obtain that ΨD(f̃) = tnkt2 as an element of C∗

r (G̃ad). This fol-
lows from the action of the functional calculus f( /Dx,t)g(γ) = πx,t(ΨD(f)∗g)(γ)
for t > 0 which yields

f(t /D)g(γ) =

∫
Gs(γ)

ΨD(f)(γη
−1)g(η)t−n dµs(γ)(η).

The scaling factor t−n enters by a choice of Haar system as in [18, (6.8)].
Set lt := ΨD(f)|G∆

, then lt(γ) = tnkt2(γ) for t ̸= 0. Define the diagonal
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G∆ := {γ ∈ G̃ad : s(γ) = r(γ)} ⊂ G̃ad. For t ̸= 0 the supertrace functional
maps trs : C

∞
c (G∆,E∆) → tnC∞

c (G), cf. [31, Proposition 11.4]. Therefore,
t−ntrs(lt) extends smoothly to t = 0 and hence t−ntrs(lt) = trs(l0) + o(t). We
are therefore, reduced to calculate trs(l0). Note that since l0 lives on the semi-
algebroid Ã we have to be careful to incorporate the boundary conditions posed
on Y . First note that Ã(G)|M2

∼= Ã(G2) is the semi-algebroid corresponding
to the cylinder type manifold M2. On the other hand, Ã(G)|M1

∼= A(G1) is
the Lie algebroid corresponding to the Lie manifold (without boundary) M1.
In the second case the calculation goes analogous to the proof given in [10].
We repeat the key steps of the argument for completeness before dealing with
the first case. Denote by Φ: Uad × V

∼−→ Rn × Rm × R a diffeomorphism
where we write Uad = U × R. The coordinates induced by Φ should form
a parametrization of the adiabatic groupoid of G1, cf. [18] and [28, p.145].
Let αx = αAx(G2)∩V denote the restriction of the generalized exponential map
Expx on the fiber Gx. If V is chosen sufficiently small we can fix a local geodesic
coordinate system αx(γ) = (a1, · · · , am) =: a. Let Φx,t be the restriction of
Φ to V × {x} × {t}. An elementary calculation yields Φx,t(η) = 1

t (αx(η) −
a). Applying the Lichnerowicz formula on the complete Riemannian manifold
(Gx, gx) and taking the limit as t→ 0 we obtain (cf. [10])

/D
2
x,0 = −

∑
i

∂xi +
1

4

∑
j

Rx
ijaj

2

+
∑
i<j

FWx/S(ei, ej)(aj)(aj).

The differential equation of the heat kernel of /D2
x,0 is a harmonic oscillator.

Applying [6] we have the solution in terms of a formal power series in the
scalar curvature Rx

ij and the exponential of the twisting bundle expFWx/S .
By the G-invariance of the curvature tensor as well as the twisting curvature
and the Lichnerowicz theorem for Lie manifolds given in [10, Theorem 2.4],
it follows from [6, p. 164] and [31, Proposition 12.25, 12.26] the integrand
Â(∇) ∧ expFS/W in the trace formula. Thus, we have shown that

lim
t→0+

VTrs(e
−tD2

1) =
V1
∫
M1

− Â(∇1) ∧ expFW/S dµ.

To obtain the limit t→ ∞ we notice that

lim
t→∞

VTrs(e
−tD2

1)− lim
t→0+

VTrs(e
−tD2

1) =

∫ ∞

0
∂t

VTrs(e
−tD2

1) dt.

Observe that ∂tVTrs(e−tD2
1) = VTrs(∂te

−tD2
1). Setting

V1η(D1) :=
1

2

∫ ∞

0

VTrs(D
2
1e

−tD2
1) dt
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this completes the proof of the first part of the index formula. Now consider
the problem on the cylinder type Lie manifold (M2,A2,V2). Here we apply the
reduction given in Theorem 5.5. This effectively reduces the problem to the
calculation of Wind(D∂). The operator D∂ can be viewed as an odd graded
geometric Dirac operator on the Lie manifold (Y,B,W). Hence we can use the
above rescaling approach for the integrating groupoid H ⇒ Y . With the same
analysis as above, applied to the groupoid H, we obtain the index formula also
on the cylinder part of the decomposed Lie manifold.

If we impose additional conditions on the integrating groupoid, we can
show that the renormalized index of Fredholm operators equals the Fredholm
index. In such a case the previous index theorem yields an actual generalization
of Atiyah-Singer index theory. For a given geometric admissible Dirac operator
D = DW on a Lie manifold (M,A,V) we denote by R(D) := ⊕FRF (D)
where the direct sum ranges over all codimension one singular hyperfaces of
M and RF (D) denotes the restriction of D to the stratum F . The indicial
symbol is more easily understood in the context of groupoids. If /D is the
corresponding Dirac operator on an integrating Lie groupoid G ⇒ M , then
RF ( /D) := ( /Dx)x∈F . The groupoid G ⇒ M is called strongly amenable if the
natural action C∗

r (G) ↪→ L(H) on the Hilbert space H := L2(M0) is injective.

Theorem 5.8. Let (M,A,V) be a renormalizable Lie manifold for which
there is an integrating Lie groupoid G ⇒ M such that G is of polynomial
growth, Hausdorff and strongly amenable. Then for any geometric admissi-
ble Dirac operator D = DW with pointwise invertible indicial symbol R(D) we
have Vind(D) = ind(D).

Proof. From [27] we have that D is Fredholm if and only if R(D) is
pointwise invertible by the conditions imposed on the groupoid G. Assume
that D is Fredholm. Then Vind(D) = ind(D) follows by the argument in [17,
Section 2.2], see also [10, Theorem 1.2].

Example 5.9. The conditions on the Lie groupoid as stated in the Theorem
hold in numerous special cases of Lie manifolds. We refer to [27] for an overview.
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