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This paper provides existence and non-existence results on a positive solution for
the problem ∆ru+µ∆r′u = |u|r−2u+µ|u|r

′−2u, with a nonlinear boundary con-

dition given by ⟨|∇u|r−2∇u+ |∇u|r
′−2∇u, ν⟩ = λmr(x)|u|r−2u on the boundary

of the domain, with µ > 0 and 1 < r ̸= r′ < ∞, where Ω is a bounded domain
in RN , ν is the outward unit normal vector on ∂Ω, ⟨., .⟩ is the scalar product of
RN and mr is a weight function admitting sign-change. We show that existence
and non-existence of a positive solution depend only on the relation between λ
and the first eigenvalue of r-Laplacian with weight function mr, whence it is
independent of the operator ∆r′ and the parameter µ > 0.
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1. INTRODUCTION

In this paper, we are interested in the existence and non existence results
for the following quasilinear elliptic equation:

P(r,r′,λ,µ)

{
div[A

(µ)
r,r′(∇u)] = A

(µ)
r,r′(u)u in Ω,

⟨A(µ)
r,r′(∇u), ν⟩ = λmr(x)|u|r−2u on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω, ν
is the outward unit normal vector on ∂Ω, ⟨., .⟩ is the scalar product of RN ,
λ ∈ R, µ ≥ 0 and 1 < r ̸= r′ < ∞. Let N−1

r−1 < sr < ∞ if r < N and sr ≥ 1 if

r ≥ N . A
(µ)
r,r′(s) = |s|r−2s+µ|s|r′−2s and the function weight mr ∈ Mr may be

unbounded and change sign, where Mr := {mr ∈ Lsr(∂Ω);m+
r ̸≡ 0}.

We treat our equation P(r,r′,λ,µ) for r = p and r′ = q, and for r = q and
r′ = p.

Although our problem P(p,q,λ,µ) coincides with the second problem P(q,p,λ,µ)

by formally replacing p with q, we treat them separately in some cases (e.g. the
proof of Theorem 4.1). One of the reasons for different treatment is that both
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of our problems should be solved in the space W 1,p(Ω) since the r-Laplacian
naturally acts in W 1,r(Ω) for 1 < r <∞ and we are assuming p > q, hence we
cannot transfer from one problem to another by merely replacing p with q.

Thus, throughout this paper, we setW 1,p(Ω) as the space to find a solution
of our problems P(p,q,λ,µ) and P(q,p,λ,µ). However, it is proved that any solutions

of our problems are of class C1,α(Ω) for some α ∈ (0, 1) (see Remark 4.2).
Throughout the paper we set p = max{r; r′} and q = min{r; r′}.

In this paper, we say that u ∈ W 1,p(Ω) is a solution of P(r,r′,λ,µ) if the
following holds∫

Ω

(
|∇u|r−2∇u∇φ+ |u|r−2uφ

)
dx+ µ

∫
Ω

(
|∇u|r′−2∇u∇φ+ |u|r′−2uφ

)
dx

= λ

∫
∂Ω
mr|u|r−2uφdσ

for all φ ∈W 1,p(Ω), where dσ is the N − 1 dimensional Hausdorff measure.
Letting µ → +0 our problem P(r,r′,λ,µ) turns into the following weighted

eigenvalue problem for the r-Laplacian:

P(r,λ)

{
∆ru = |u|r−2u in Ω,

|∇u|r−2 ∂u
∂ν = λmr(x)|u|r−2u on ∂Ω.

It is said that λ is an eigenvalue of −∆r with weight function mr if
Problem P(r,λ) has a non-trivial solution which is called an eigenfunction cor-
responding to λ. We denote the set of all eigenvalues of −∆r with weight func-
tion mr by σ(−∆r,mr). In particular, in the case of mr ≡ 1, we write σ(−∆r)
instead of σ(−∆r, 1). Similarly, in the non-homogeneous case, we say that λ is
a generalized eigenvalue of ∆r + µ∆r′ with weight function mr if P(r,r′,λ,µ) has
a non-trivial solution. Denote the set of those λ’s by σG(∆r + µ∆r′ ,mr). The
main purpose of this paper is to study the generalized eigenvalues of ∆r+µ∆r′ .

Recently, many authors have studied (p, q)-Laplace equations (cf. [13],
[18], [23], [27], [28], [29]). However, there are few results on generalized eigen-
value problems of the (p, q)-Laplacian. In [7] and [8], Benouhiba and Belyacine
considered the equation

−∆pu−∆qu = λg(x)|u|p−2u in RN

under several assumptions on g ≥ 0. They showed the existence of princi-
pal eigenvalue and a continuous family of generalized eigenvalues λ. In [12,
Theorem 4.2], Cingolani and Degiovanni proved the existence of a non-trivial
solution for

−∆pu− µ∆u = λ|u|p−2u+ g(u) in Ω, u = 0 on ∂Ω

in the case of r = p > 2(= r′), g ∈ C1 and λ /∈ σ(−∆p). However, their result
does not cover the resonant case λ ∈ σ(−∆p).
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Under the Neumann boundary condition, Milhăilescu [20] gave a set of all
generalized eigenvalues λ for −∆pu −∆u = λu in Ω, where r′ = p > 2(= r)
and the case r′ = p < 2(= r) was studied by M. Fărcăşeanu et al. in [15].
Also, this results were generalized by M. Mihăilescu and G. Moroşanu in [21]
to the case when the Laplacian is replaced by a general q-Laplace operator
(i.e. r′ = p ̸= r = q). In [24] the author has completely described generalized
eigenvalue λ for which the following problem{

−∆ru− µ∆r′u = λmr(x)|u|r−2u in Ω,
u = 0 on ∂Ω,

has a positive solution, where µ > 0 and 1 < r ̸= r′ <∞. In [9] was completed
by investigating the asymptotic case when min{r, r′} → ∞.

Under Steklov boundary condition, we have studied in [10] the problem
P(r,r′,λ,µ) in the case where r′ = 2, r > 2. In [1] J. Abreu and G. F. Madeira
studied the following (p,2)-Laplacian Steklov problem{

−∆pu−∆u = λa(x)u in Ω,
⟨|∇u|p−2∇u+∇u, ν⟩ = λb(x)u on ∂Ω.

for positive weight functions a and b satisfying appropriate integrability and
boundedness assumptions. This result was generalised by L. Barbu and G.
Moroşanu in [6] to the case where p, q ∈ (1,∞). For other results we cite
[11, 14, 30].

Our purpose in this article is to extend these results obtained under
Dirichlet boundary condition in [24] to nonlinear boundary condition, follow-
ing the same approach, where Rayleigh quotient plays an important role (see
Remark 2.2 for details).

The rest of this paper is organized as follows. In section 2, we give some
preliminary results and lemmas which are needed in the proof of the main
results. In section 3, we present and prove the non existence results. In section
4, we state and prove our existence result.

2. PRELIMINARY RESULTS

In this section we give some preliminary results needed for the proof of
the main theorems. Throughout this paper, ∥u∥1,r := ∥u∥W 1,r(Ω) denotes the
norm of Sobolev space W 1,r(Ω).

First, let us recall the first eigenvalue λ1(r,mr) and the second eigenvalue
λ2(r,mr) of −∆r with weight function mr.

It is well know that the first (smallest) positive eigenvalue λ1(r,mr) is
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obtained by the following Rayleigh quotient
(2.1)

λ1(r,mr) := inf

{∫
Ω |∇u|rdx+

∫
Ω |u|rdx∫

∂Ωmr|u|rdσ
;u ∈W 1,r(Ω),

∫
∂Ω
mr|u|rdσ > 0

}
.

Since there exist no non-negative eigenvalues provided mr ≤ 0, we set

(2.2) λ1(r,−mr) = +∞ if mr ≥ 0.

The principal eigenvalue problem λ1(r,mr) play an important roles for
existence and non-existence of a positive solution for our non-homogeneous
problem (Pr,r′,λ,µ). The second (positive) eigenvalue λ2(r,mr) of −∆r with
weight function mr it is defined by

λ2(r,mr) = min{λ > λ1(r,mr);λ ∈ σ(−∆r,mr)}.

(Note that λ1(r,mr) is isolated and σ(−∆r,mr) is closed. It is also worth
mentioning that λ1(r,mr) has positive eigenfunctions φ1(r,mr) ∈ C1,αr(Ω)
with some αr ∈ (0, 1) (see [2]).

Next, we study Rayleigh quotient for our problems. For r = p or q, we
define the functional Φ(r,r′,µ)(u) on W

1,p(Ω) as follows:

(2.3) Φ(r,r′,µ)(u) := ∥u∥r1,r +
rµ

r′
∥u∥r′1,r′

for u ∈W 1,p(Ω), where r′ = q if r = p and r′ = p if r = q.

The following proposition is the result on Rayleigh quotient that is crucial
to solve our problems.

Proposition 2.1. For µ > 0 and r = p or q we set

(2.4) λ(r, r′, µ,mr) := inf

{
Φ(r,r′,µ)(u)

Ψr(u)
;u ∈W 1,p(Ω),Ψr(u) > 0

}
,

where Ψr(u) :=
∫
∂Ωmr|u|rdσ and Φ(r,r′,µ)(u) is the functional defined in (2.3)

Then,

λ(r, r′, µ,mr) = λ1(r,mr)

holds for every µ > 0. In addition, for every µ > 0, the infimum in (2.4) is

not attained.

Proof. Fix any µ > 0. First, we treat the case of r = p > q = r′. From
the definitions of λ1(p,mp) and λ(p, q, µ,mp), it is obvious that λ(p, q, µ,mp) ≥
λ1(p,mp). Let φ1 be the positive eigenfunction corresponding to λ1(p,mp) such
that

∫
∂Ωmpφ

p
1dσ = 1 (we may replace φ1, if necessary, by φ1/(

∫
∂Ωmpφ

p
1dσ)

1/p

since P(r,λ) is a homogeneous problem). Thus, φ1 satisfies ∥φ1∥p1,p = λ1(p,mp).
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Letting t→ ∞ in the following inequality:

λ(p, q, µ,mp) ≤
Φ(p,q,µ)(tφ1)

tp
= λ1(p,mp) +

pµ∥φ1∥q1,q
qtp−q

(note that
∫
∂Ωmpφ

p
1dσ = 1), we obtain λ(p, q, µ,mp) ≤ λ1(p,mp) because of

p > q. Thus, in the case of r = p > r′ = q, the first assertion is shown.
Next, we shall give the proof in the case of r = q < r′ = p. It is easy to see

that λ(p, q, µ,mp) ≥ λ1(p,mp) (note that W 1,p(Ω) ⊂ W 1,q(Ω)). Let ψ1 be the
positive eigenfunction corresponding to λ1(q,mq) such that

∫
∂Ωmqψ

q
1dσ = 1,

so ψ1 satisfies ∥ψ1∥q1,q = λ1(q,mq). Recall that ψ1 belongs to C1,α(Ω) for some

α ∈ (0, 1). Thus, we obtain λ(q, p, µ,mq) ≤ λ1(q,mq) by letting t → +0 (note
that p− q > 0) in the equality

λ(q, p, µ,mq) ≤
Φ(q,p,µ)(tφ1)

tq
= λ1(q,mq) +

qtp−qµ∥ψ1∥p1,p
p

.

Finally, we shall prove that λ(r, r′, µ,mr) is not attained for any µ > 0.
To do so, by way of contradiction, we assume that there exist µ > 0 and
a function u ∈ W 1,p(Ω) such that

∫
∂Ωmr|u|rdσ > 0 and λ(r, r′, µ,mr) =

Φ(r,r′,µ)(u)/Ψr(u). Then, it follows from u ̸= 0, the definition of λ1(r,mr) (note
that W 1,p(Ω) ⊂ W 1,q(Ω) if r = q) and the first assertion of the proposition
that

λ(r, r′, µ,mr) =
Φ(r,r′,µ)(u)

Ψr(u)
≥ λ1(r,mr) +

rµ∥u∥r′1,r′
r′Ψr(u)

> λ1(r,mr) = λ(r, r′, µ,mr).

This is a contradiction.

Remark 2.2. If λ(r, r′, µ,mr) was attained, we see that P(r,r′,λ,µ) had a
positive solution with λ = λ(r, r′, µ,mr). However, according to Proposition
2.1, we see that there does not exist the first (positive) generalized eigenvalue
of ∆r + µ∆r′ for any µ > 0 (refer also to Remark 3.3).

Under Neumann boundary condition, Mihăilescu has shown that

λ1(p) := inf

{
∥∇u∥pp/p+ ∥∇u∥22/2

∥u∥22/2
;u ∈W 1,p\{0},

∫
Ω
udx = 0

}
> 0

and lims→p−0 λ1(s) ≤ λ1(p) ≤ lims→p+0 λ1(s), where p > 2. This case corre-
sponds to one of r′ = p > 2 = r,mr ≡ 1 and µ = 1 in our problems. Concerning
our Steklov problem, it is easy to see that Rayleigh quotient λ(r, r′, µ,mr) is
continuous with respect to r′, µ and mr because λ(r, r′, µ,mr) is independent
of r′ and µ, and by the continuity of λ1(r,mr) with respect to mr ∈ Lsr(∂Ω)
(cf.[5]).
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In what follows we state and prove the lemmas that we need to prove the
existence result.
For r = p and r′ = q we define the functional I(p,q,λ,µ) on W

1,p(Ω) by

(2.5) I(p,q,λ,µ)(u) :=
1

p
∥u∥p1,p +

µ

q
∥u∥q1,q −

λ

p

∫
∂Ω
mpu

p
+dσ,

for u ∈W 1,p(Ω) and µ > 0.

Lemma 2.3. Let µ > 0. Assume 0 ≤ λ ̸= λ1(p,mp). Then I(p,q,λ,µ)
satisfies the Palais-Smale condition.

Proof. Fix any µ > 0. Let {un} be a Palais-Smale sequence of I(p,q,λ,µ),
that is,

I(p,q,λ,µ)(un) → c and I ′(p,q,λ,µ)(un) → 0 in W 1,p(Ω)∗

as n→ ∞ for some c ∈ R. Let us first show that the sequence {un} is bounded
in W 1,p(Ω). It is sufficient only to prove the boundedness of ∥un∥Lps′p (∂Ω)

because

(2.6) ∥un∥p1,p ≤ pc+ λ∥mp∥Lsp (∂Ω)∥un∥
p

Lps′p (∂Ω)
,

where s′p = sp/sp − 1.
Suppose by contradiction that ∥un∥Lps′p (∂Ω)

→ +∞ and let vn := un
∥un∥

L
ps′p (∂Ω)

.

The sequence vn bounded in W 1,p(Ω). Indeed, dividing (2.6) by ∥un∥p
Lps′p (∂Ω)

we have

(2.7) ∥vn∥p1,p ≤
pc

∥un∥Lps′p (∂Ω)

+ λ∥mp∥Lsp (∂Ω).

The inequality (2.7) implies the boundedness of {vn} in W 1,p(Ω). There-
fore, we may suppose, up to a subsequence, that vn ⇀ v (weakly) in W 1,p(Ω).
By the compact embedding W 1,r(Ω) ⊂ Lrs′r(∂Ω), (r = p, q) we have vn → v
strongly in Lrs′r(∂Ω) (r = p, q). First we observe that v− ≡ 0 in Ω. In fact,
acting with −u−n as test function, we have

o(1)∥u−n ∥Lps′p (∂Ω)
= ⟨I ′(λ,mp,mq)

(un),−u−n ⟩

= ∥u−n ∥1,p + µ∥u−n ∥1,p
≥ ∥u−n ∥1,q

(2.8)

the inequality (2.8) guarantees the boundedness of ∥v−n ∥1,p and so ∥v−n ∥1,p =
∥u−

n ∥1,p
∥u−

n ∥
L
ps′p (∂Ω)

→ 0, thus v− ≡ 0, holds, hence v ≥ 0 in Ω.
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Now, by taking (vn − v)/∥u−n ∥
p−1

Lps′p (∂Ω)
as test function, we have

o(1) =
〈
I ′(λ,mp,mq)

(un),
(vn − v)

∥u−n ∥p−1

Lps′p (∂Ω)

〉
=

∫
Ω
|∇vn|p−2∇vn∇(vn − v)dx

+
µ

∥un∥p−q

Lps′p (∂Ω)

∫
Ω
|∇vn|q−2∇vn∇(vn − v)dx

+

∫
Ω
|vn|p−2vn(vn − v)dx

+
µ

∥un∥p−q

Lps′p (∂Ω)

∫
Ω
|vn|q−2vn(vn − v)dx

− λ

∫
∂Ω
mp(v

+
n )

p−2v+n (vn − v)dσ

=

∫
Ω
|∇vn|p−2∇vn∇(vn − v)dx+

∫
Ω
|vn|p−2vn(vn − v)dx

− λ

∫
∂Ω
mp(v

+
n )

p−2v+n (vn − v)dσ + o(1)

(2.9)

because q < p, ∥u−n ∥Lps′p (∂Ω)
→ +∞, vn is bounded in W 1,p(Ω) and converge

to v strongly in Lps′p(∂Ω). Thus by (2.9) and (S+) property of ∆pu+up−2u in
W 1,p(Ω), we deduce that vn → v strongly in W 1,p(Ω). For any φ ∈ W 1,p(Ω),
by taking φ

∥u−
n ∥p−1

L
ps′p (∂Ω)

as test function, we obtain

o(1) =
〈
I ′(λ,mp,mq)

(un),
φ

∥un∥p−1

Lps′p (∂Ω)

〉
=

∫
Ω
|∇vn|p−2∇vn∇φdx+

µ

∥un∥p−q

Lps′p (∂Ω)

∫
Ω
|∇vn|q−2∇vn∇φdx

+

∫
Ω
|vn|p−2vnφdx+

µ

∥un∥p−q

Lps′p (∂Ω)

∫
Ω
|vn|q−2vnφdx

− λ

∫
∂Ω
mp(v

+
n )

p−2v+n (vn − v)dσ.

(2.10)

Passing to the limit in (2.10), we see that v is a non-negative and non-trivial
solution of problem P(p,λ) (note v ≥ 0 and ∥v∥1,p = 1 and the associated

eigenfunction v is ∈ C1,α(Ω) for some α ∈ (0, 1), see [2]). According to maxi-
mum principle of Vasquez, we have v > 0 in Ω. This implies that λ = λ1(p,mp)
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because any positive eigenvalue other than λ1(p,mp) has no positive eigenfunc-
tion. Therefore, we obtain a contradiction since we assumed λ ̸= λ1(p,mp).
Hence un is bounded in W 1,p(Ω). For a subsequence, un ⇀ u (weakly) in
W 1,p(Ω) and un → u (strongly) in Lps′p(∂Ω). We claim now that un → u
in W 1,p(Ω). It suffices to prove that ∥un∥1,p → ∥u∥1,p. Because W 1,p(Ω) is
reflexive and uniformly convex. It is clear that

o(1) =
〈
I ′(λ,mp,mq)

(un), un − u
〉

=

∫
Ω
|∇un|p−2∇un∇(un − u)dx

+

∫
Ω
|un|p−2un(un − u)dx

+ µ

∫
Ω
|∇un|q−2∇un∇(un − u)dx

+ µ

∫
Ω
|un|q−2un(un − u)dx+ o(1).

(2.11)

Using Hölder inequality and for (r = p, q), we have∫
Ω
|∇un|r−2∇un∇(un − u)dx+

∫
Ω
|un|r−2un(un − u)dx

=

∫
Ω
|∇un|rdx+

∫
Ω
|∇u|rdx

−
∫
Ω
|∇un|r−2∇unudx−

∫
Ω
|∇u|r−2∇u∇undx

=

∫
Ω
|un|rdx+

∫
Ω
|u|rdx

−
∫
Ω
|un|r−2unudx−

∫
Ω
|u|r−2uundx

≥
∫
Ω
|∇un|rdx+

∫
Ω
|∇u|rdx

−
(∫

Ω
|∇un|rdx

)(r−1)/r(∫
Ω
|∇u|rdx

)1/r

+

∫
Ω
|un|rdx

+

∫
Ω
|u|rdx−

(∫
Ω
|un|rdx

)(r−1)/r(∫
Ω
|u|rdx

)1/r

=

(
∥un∥r−1

1,r − ∥u∥r−1
1,r

)(
∥un∥1,r − ∥u∥1,r

)
≥ 0.

(2.12)

Moreover, (2.11) and (2.12) imply that ∥un∥1,p → ∥u∥1,p. Thus un → u
strongly in W 1,p(Ω).
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Lemma 2.4. Set

(2.13) X(d) :=

{
u ∈W 1,p(Ω); ∥u∥p1,p ≤ d∥u∥p

Lps′p (∂Ω)

}
for d > 0. Then there exists C = C(d) > 0 such that

∥u∥1,p ≤ C∥u∥
Lqs′q (∂Ω) for all u ∈ X(d).

Proof. By way contradiction, we assume that ∀n ∈ N, ∃un ∈ X(d)

1

n
∥un∥1,p > ∥un∥Lqs′q (∂Ω)

.

Set vn = un
∥un∥1,p , hence {vn} is bounded in W 1,p(Ω), then there exists v ∈

W 1,p(Ω) and a subsequence vn, such that vn ⇀ v (weakly) in W 1,p(Ω). By
the compact embedding W 1,r(Ω) ⊂ Lrs′r(r = p, q) we have vn → v (strongly)
in Lrs′r(∂Ω)(r = p, q). However, ∥vn∥Lqs′q (∂Ω)

< 1
n , vn → 0 in Lqs′q(∂Ω) by

uniqueness of the limit we have v = 0, hence vn → 0 in Lps′p(∂Ω), as un ∈ X(d)
we have

∥un∥p1,p ≤ d∥un∥p
Lps′p (∂Ω)

1

d
≤

∥un∥p
Lps′p (∂Ω)

∥un∥p1,p
= ∥vn∥p

Lps′p (∂Ω)

implies that 1
d ≤ 0 ⇒ d < 0. This contradicts d > 0.

3. NON EXISTENCE RESULTS

In this section we prove the following non-existence results.

Theorem 3.1. Let r = p or q. If −λ1(r,−mr) ≤ λ ≤ λ1(r,mr) holds,
then for any µ > 0, P(r,r′,λ,µ) has no non-trivial solutions.

Theorem 3.2. Let r = p or q. If λ1(r,mr) < λ ≤ λ2(r,mr) holds, then
for any µ > 0, P(r,r′,λ,µ) has no sign-changing solutions.

Proof of Theorem 3.1. Fix any µ > 0. Let u be a non-trivial solution of
P(r,r′,λ,µ). By taking u as test function in P(r,r′,λ,µ), we have

(3.1) 0 < ∥u∥r1,r < ∥u∥r1,r + µ∥u∥r′1,r′ = λ

∫
∂Ω
mr|u|rdσ

due to µ > 0 and ∥u∥1,r′ > 0. This yields that the following (a) or (b) occurs:
(a) λ < 0 and

∫
∂Ωmr|u|rdσ < 0;

(b) λ > 0 and
∫
∂Ωmr|u|rdσ > 0.
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It is sufficient to consider only the case (b) because we may consider the
pair of −λ and −mr instead of λ and mr provided mr changes the sign. Thus,
we may assume that

∫
∂Ωmr|u|rdσ > 0 and λ > 0, whence we have

λ1(r,mr) ≤
∥u∥r1,r∫

∂Ωmr|u|rdσ
<

∥u∥r1,r + µ∥u∥r′1,r′∫
∂Ωmr|u|rdσ

= λ

by the definition of λ1(r,mr). Our conclusion follows.

Remark 3.3. Here, we point out the relation between Proposition 2.1
and Theorem 3.1. Let u be a non-trivial solution of P(r,r′,λ,µ). Then, for each
s > 0, multiplying problem P(r,r′,λ,µ) by s

r−1, we see that v = su is a non-trivial
solution of{

∆rv + µsr−r′∆r′v = |v|r−2v + µsr−r′ |v|r′−2v in Ω,

|∇v|r−2 ∂v
∂ν + µsr−r′ |∇v|r′−2 ∂v

∂ν = λmr(x)|v|r−2v on ∂Ω.

Choosing sr−r′ = r/r′ and taking v = su as test function, we have

0 < Φ(r,r′,µ)(su) = λ

∫
∂Ω
mr|su|rdσ,

where Φ(r,r′,µ) is the functional defined by (2.3). Hence, if
∫
∂Ωmr|su|rdσ > 0

holds, then we obtain

λ1(r,mr) = λ(r, r′, µ,mr) <
Φ(r,r′,µ)(su)∫
∂Ωmr|su|rdσ

= λ

because λ(r, r′, µ,mr) is not attained (see Proposition 2.1). This leads to the
statement of Theorem 3.1.

Proof of Theorem 3.2. For the proof of Theorem 3.2, we recall a basic
fact regarding the second (positive) eigenvalue λ2(r,mr) of −∆r(1 < r < ∞)
with weight function mr (refer to [3], [4, Corollary 3.9]) Define

(3.2) Jr(v) := ∥v∥r1,r and Ψr(v) :=

∫
∂Ω
mr|v|rdσ

for u ∈W 1,r(Ω). Then, it is known that λ2(r,mr) is obtained by

(3.3) λ2(r,mr) = inf
γ∈Γ(mr)

max
t∈[0,1]

J̃r(γ(t)) with J̃r := Jr |S(mr),

(3.4) S(mr) :=
{
v ∈W 1,r(Ω);Ψr(v) = 1

}
,

(3.5) Γ(mr) :=
{
γ ∈ C([0, 1], S(mr)); γ(0) = φ1, γ(1) = −φ1

}
,

where φ1 = φ1(r,mr) is the positive eigenfunction corresponding to λ1(r,mr)
such that φ1 ∈ S(mr).
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Let r = p or r = q. We recall that r′ = q if r = p and r′ = p if r = q.
By way of contradiction, we assume that P(r,λ,µ) has a sign-changing solution
u ∈W 1,p(Ω) for some µ > 0 and λ satisfying λ1(r,mr) < λ ≤ λ2(r,mr). Then,
taking ±u± as test function, we obtain

(3.6) 0 < ∥u+∥r1,r < ∥u+∥r1,r + µ∥u+∥r
′

1,r′ = λ

∫
∂Ω
mru

r
+dσ and

(3.7) 0 < ∥u−∥r1,r < ∥u−∥r1,r + µ∥u−∥r
′

1,r′ = λ

∫
∂Ω
mru

r
−dσ

where u± := max{u±, 0}. Note that u± ∈ W 1,p(Ω) ⊂ W 1,q(Ω) and Ψr(u±) =∫
∂Ωmru

r
±dσ > 0 because λ > 0. Combining these equalities and the argument

in [22, Proposition 11], we can construct a continuous γ0 ∈ Γ(mr) (see (3.5))
such that

max
t∈[0,1]

J̃r(γ0(t)) < λ,

where J̃r as in (3.3). This leads to λ2(r,mr) < λ (see (3.3) for the characteristic
of λ2(r,mr), and hence it contradicts to λ ≤ λ2(r,mr).

For readers’ convenience, we sketch the existence of the path γ0. Recalling
that Ψr(u±) =

∫
∂Ωmru

r
±dσ > 0, we define paths as follows:

γ1(t) :=
tu+ (1− t)u+

Ψr(tu+ (1− t)u+)1/r
=

u+ − tu−

Ψr(u+ − tu−)1/r

γ2(t) :=
tu+ + (1− t)u−

Ψr(tu+ + (1− t)u−)1/r
,

γ3(t) :=
(1− t)u− tu−

Ψr((1− t)u− tu−)1/r
=

(1− t)u+ − u−

Ψr((1− t)u+ − u−)1/r

for t ∈ [0, 1] (see (3.2) for the definition of Ψr. Then, by easy estimates, we
have γj(t) ∈ S(mr) for t ∈ [0, 1] (see (3.4) for the definition of S(mr) ) and

(3.8) max
t∈[0,1]

Jr(γj(t)) < λ,

for j = 1, 2, 3 by (3.6) and (3.7).
Now, we set O(c) := {v ∈ S(mr); Jr(v) < c} for c > 0. Then, by

the same argument as in [25, Lemma 31], we can show that any nonempty
maximal open connected subset of O(c) contains at least one critical point
of J̃r with Jr(w) = β corresponds to a non-trivial solution of P(r,β) (accord-

ing to Lagrange multiplier rule) and belongs to S(mr) ∩ C1,α(Ω) for some
α ∈ (0, 1). Thus an open interval (λ1(r,mr), λ) contains no critical values
of J̃r (note 0 < λ1(r,mr) < λ ≤ λ2(r,mr)). Hence, O(λ) contains ex-
actly two critical points φ1 := φ1(mr) and −φ1 because λ1(r,mr) is simple.
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Since any component of O(λ) is path-connected (cf. [4, Lemma 3.5]) and
γ2(0) = −γ3(1) = u−/Ψr(u−) ∈ O(λ) (see (3.8)), there exists a continuous
path γ4 joining u−/Ψr(u−) and φ1 or −φ1 in O(λ). Since Jr and Ψr are
even, −γi(t) ∈ S(mr) and Jr(γi(t)) = Jr(−γi(t)) holds for every t ∈ [0, 1] and
1 ≤ i ≤ 4.

Therefore, we can construct a path γ0 such that maxt Jr(γ0(t)) < λ by
considering γ−1

4 ·γ4 ·γ2 ·γ1 ·γ3 ·(−γ4) or the inverse of it, where γ−1
j (t) := γj(1−t)

and γk · γj denotes the path defined by γk(2t) if 0 ≤ t ≤ 1/2 and γj(2t− 1) if
1/2 < t ≤ 1.

4. EXISTENCE RESULT

In this section we prove the following existence result by dividing into
cases r = p > q = r′ and r = q < p = r′.

Theorem 4.1. Let r = p or q. If λ > λ1(r,mr) or λ < −λ1(r,−mr)
holds, then for any µ > 0, P(r,r′,λ,µ) has at least one positive solution.

Due to Theorem 3.1, Theorem 4.1 and (2.2), we can completely describe
the set of generalized eigenvalue as follows:

σG(∆r + µ∆r′ ,mr) =

{
(λ1(r,mr),∞) if mr ≥ 0,
(−∞,−λ1(r,−mr)) ∪ (λ1(r,mr),∞) otherwise.

Hence, σG(∆r + µ∆r′ ,mr) is an open unbounded set independent of the op-
erator ∆r′ and the parameter µ > 0. This is in contrast with the known fact
that σ(−∆r,mr) is closed. For r = p or q, we define the functional I(r,r′,λ,µ) on
W 1,p(Ω) as in (2.5), with r = p and r′ = q.

Remark 4.2. If u ∈W 1,p(Ω) is a non-trivial critical point of I(r,r′,λ,µ) with
µ > 0, then u is a positive solution of P(r,r′,λ,µ). Indeed, by taking −u− as test
function, we have

0 = ⟨I ′(r,r′,λ,µ)(u),−u−⟩ = ∥u−∥r1,r + µ∥u−∥r
′

1,r′ ,

whence u− ≡ 0. Thus, u satisfies∫
Ω

(
|∇u|r−2∇u∇v + |u|r−2uv

)
dx+ µ

∫
Ω

(
|∇u|r′−2∇u∇v + |u|r′−2uv

)
dx

= λ

∫
∂Ω
mru

r−1vdσ

for any v ∈W 1,p(Ω). This means that u is a non-negative solution of P(r,r′,λ,µ).

The regularity result up to the boundary in [16] and [17] u ∈ C1,β(Ω) for some
β ∈ (0, 1). Moreover, then the maximum principle of Vasquez [26] can be
applied to ensure positiveness of u.
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Proof of the case r = p > q = r′ in Theorem 4.1. Fix any µ > 0. We
prove the existence of a non-trivial critical point of I(p,q,λ,µ) only in the case
of λ > λ1(p,mp) because the other case can be treated by replacing λ and
λ1(p,mp) with −λ and λ1(p,−mp) (note λmp = (−λ(−mp)).

First, we claim that there exist δ > 0 and ρ > 0 such that

(4.1) I(p,q,λ,µ)(u) ≥ δ whenever ∥u∥
Lqs′q (∂Ω)

= ρ.

Indeed, for u ∈W 1,p(Ω) such that
∫
∂Ωmp(u+)

pdσ ≤ 0, we have

(4.2) I(p,q,λ,µ)(u) ≥
1

p
∥u∥p1,p +

µ

q
∥u∥q1,q ≥

µλ1(q, 1)

q
∥u∥q

Lqs′q (∂Ω)

(note that µ, λ > 0), where λ1(q, 1) is the first eigenvalue of ∆q with weight
function mq ≡ 1. For d = λ∥mp∥Lps′p (∂Ω)

, we consider X(d) by (2.13).

For any u ̸∈ X(d) (that is, ∥u∥p1,p > d∥u∥p
Lps′p (∂Ω)

), we have

I(p,q,λ,µ)(u) ≥
1

p
∥u∥p1,p +

µ

q
∥u∥q1,q −

λ∥mp∥Lps′p (∂Ω)

p
∥u∥p

Lps′p (∂Ω)

≥ µλ1(q, 1)

q
∥u∥q

Lqs′q (∂Ω)
.

(4.3)

Concerning the last case, that is, u ∈ X(d) and
∫
∂Ωmpu

p
+dσ > 0, it

follows from the definition of λ1(p,mp) that such u satisfies

∥u∥p1,p ≥ ∥u+∥p1,p ≥ λ1(p,mp)

∫
∂Ω
mpu

p
+dσ.

Hence, for such u, we obtain

I(p,q,λ,µ)(u) ≥
1

p

(
1− λ

λ1(p,mp)

)
∥u∥p1,p +

µ

q
∥u∥q1,q

≥
(
1− λ

λ1(p,mp)

)
Cp∥u∥p

Lqs′q (∂Ω)
+
µλ1(q, 1)

q
∥u∥q

Lqs′q (∂Ω)

(4.4)

due to Lemma 2.4 and the definition of λ1(p,mp) (not λ/λ1(p,mp) > 1), where
C = C(d) is the constant in Lemma 2.4.

Thus, noting that p > q, our claim (4.1) is shown by taking a sufficiently
small ∥u∥

Lqs′q (∂Ω)
in (4.4) and by (4.2) and (4.3).

Now, we can choose a sufficiently large R > 0 such that

(4.5) ∥Rφ1∥Lqs′q (∂Ω)
> ρ and I(p,q,λ,µ)(Rφ1) < 0,

where ρ > 0 is the constant in (4.1) and φ1 is the positive eigenfunction
corresponding to λ1(p,mp) satisfying

∫
∂Ωmpφ

p
1dσ = 1. In fact, for a sufficiently
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large R > 0 we have

I(p,q,λ,µ)(Rφ1)

Rp
=
λ1(p,mp)− λ

p
+
µ∥φ1∥q1,q
qRp−q

< 0

because of λ > λ1(p,mp) and p > q. Recalling that I(p,qλ,µ) satisfies the Palais-
Smale condition by of Lemma 2.3, the properties pointed out in (4.1) and (4.5)
allow us to apply the mountain pass theorem, which guarantees the existence
of a positive critical value c ≥ δ of I(p,q,λ,µ), with δ > 0 in (4.1), namely

c := inf
γ∈Σ

max
t∈[0,1]

I(p,q,λ,µ)(γ(t)),

Σ :=
{
γ ∈ C([0, 1]),W 1,p(Ω)); γ(0) = 0, γ(1) = Rφ1

}
.

Proof of the case r = q < p = r′ in Theorem 4.1. In this case, our func-
tional in (2.5) is written as follows:

I(q,p,λ,µ)(u) =
µ

p
∥u∥p1,p +

1

q
∥u∥q1,q −

λ

q

∫
∂Ω
mqu

q
+dσ.

Fix any µ > 0. By Remark 4.2, it is sufficient to show the existence of
a non-trivial critical point of I(q,p,λ,µ) only in the case λ > λ1(q,mq) because
when λ < 0 we can argue with −λ and −mq.

First, we note that I(q,p,λ,µ) is weakly lower semi-continuous on W 1,p(Ω)

since mq ∈ Ls(∂Ω) and the embedding of W 1,p(Ω) into Lqs′(∂Ω) is compact.
For every u ∈W 1,p(Ω) using Hölder inequality, we obtain

I(q,p,λ,µ)(u) ≥
µ

p
∥u∥p1,p +

1

q
∥u∥q1,q −

λ

q
∥mq∥Lsq (∂Ω)∥u∥

q

Lqs′q (∂Ω)

≥ µ

p
∥u∥p1,p +

1

q
∥u∥q1,q −

Cλ

q
∥mq∥Lsq (∂Ω)∥u∥

q
1,q

≥ µ

p
∥u∥p1,p −

Cλ

λ1(p, 1)q/p
∥mq∥Lsq (∂Ω)∥u∥

q
1,p.

This implies that I(q,p,λ,µ) is coercive and bounded from below on W 1,p(Ω)
because µ > 0 and p > q. Consequently, by the standard argument [19,
Theorem 1.1], we can obtain a global minimizer u0 of I(q,p,λ,µ).

Finally, to see that u0 ̸= 0, we shall show that minW 1,p(Ω) I(q,p,λ,µ) < 0.
Recall that the eigenfunction ψ1 corresponding to λ1(q,mq) is positive and
belongs to C1,α(Ω) for some α ∈ (0, 1).

Because we are considering the case λ > λ1(q,mq), our claim is proved
by the following inequality

I(q,p,λ,µ)(tψ1) = tq
(
tp−qµ

p
∥ψ1∥p1,p +

λ1(q,mq)− λ

q

)
< 0
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for sufficiently small t > 0, where we take ψ1 such that
∫
∂Ωmqψ

q
1dσ = 1.

Hence, the proof is complete.
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