DUALITY FOR GORENSTEIN MULTIPLE STRUCTURES ON SMOOTH ALGEBRAIC VARIETIES

NICOLAE MANOLACHE

Communicated by Cezar Joița

One gives a characterization of the Gorenstein nilpotent scheme structures on a smooth algebraic variety as support, in terms of a duality property of the graded objects associated to two canonical filtrations.

AMS 2020 Subject Classification: Primary 14M05; Secondary 13H10.

Key words: Cohen-Macaulay scheme, Gorenstein scheme, dualizing sheaf, multiple structure.

1. PRELIMINARIES

Let X be a smooth connected algebraic variety over an algebraically closed field k. A Cohen-Macaulay scheme Y is called a *multiple structure on* X if the subjacent reduced scheme Y_{red} is X. In this case, all the local rings of Y have the same multiplicity (cf. [6], [7]), which is called *the multiplicity of* Y. To a given multiple structure Y on X one associates canonically three filtrations. To set the frame of the following considerations, let I be the (sheaf) ideal of X in Y and let m be the positive integer such that $I^m \neq 0$, $I^{m+1} = 0$. The three filtrations are:

1. Let $I^{(\ell)}$ be the ideal obtained throwing away the embedded components of I^{ℓ} and let Z_{ℓ} be the corresponding scheme. This gives the *Bănică-Forster filtration* (cf. [2]):

$$\mathcal{O}_Y = I^{(0)} \supset I = I^{(1)} \supset I^{(2)} \supset \dots \supset I^{(m)} \supset I^{(m+1)} = 0$$
$$X = Z_1 \subset Z_2 \subset \dots \subset Z_m \subset Z_{m+1} = Y$$

 Z_{ℓ} are not, in general, Cohen-Macaulay. But this is true if dim(X) = 1. The graded associated object $\mathcal{B}(Y) = \bigoplus_{\ell=0}^{m} I^{(\ell)}/I^{(\ell+1)}$ is naturally a graded \mathcal{O}_X -algebra. If the schemes Z_{ℓ} are Cohen-Macaulay, the graded components of $\mathcal{B}(Y)$ are locally free sheaves on X.

2. Let X_{ℓ} be defined by $I_{\ell} = 0$: $I^{m+1-\ell}$. Again, if dim(X) = 1, X_{ℓ} are Cohen-Macaulay. This is also true if Y is locally complete intersection of REV. ROUMAINE MATH. PURES APPL. **68** (2023), *1-2*, 141–148 doi: 10.59277/RRMPA.2023.141.148

multiplicity at most 6 (cf. [7]). In general, this is not always the case. When X_{ℓ} are Cohen-Macaulay, the quotients $I_{\ell}/I_{\ell+1}$ are locally free sheaves on X. This filtration was considered in [6].

3. Let Y_{ℓ} be the scheme given by $J_{\ell} = 0 : I_{m+1-\ell} = 0 : (0 : I^{\ell})$. When X_{ℓ} is Cohen-Macaulay, Y_{ℓ} has the same property if Y is Gorenstein. The graded object $\mathcal{A}(Y) = \bigoplus_{\ell=0}^{m} J_{\ell}/J_{\ell+1}$ is a graded \mathcal{O}_X -algebra and $\mathcal{M}(Y) = \bigoplus_{\ell=0}^{m} I_{\ell}/I_{\ell+1}$ is a graded $\mathcal{A}(Y)$ -module. This filtration was considered in [7]. Observe that $\mathcal{M}_m(Y) = \mathcal{A}_m(Y) = I_m = J_m$.

The system of the graded components $(\mathcal{A}_0(Y), \ldots, \mathcal{A}_m(Y); \mathcal{M}_0(Y), \ldots, \mathcal{M}_m(Y))$ is called *the type of* Y. Y is called *of free type* when all the graded pieces are locally free. As already remarked, in dimension 1, or if Y is lci of multiplicity up to 6, this is the case.

Recall some properties:

1) In general, the above filtrations are different. Take for instance

$$X = Spec(k), \ Y = Spec(k[x, y]/(x^3, xy, y^4)).$$

2) $Z_{\ell} \subset Y_{\ell} \subset X_{\ell}$.

2') there are canonical morphisms: $\mathcal{B}(Y) \to \mathcal{A}(Y) \to \mathcal{M}(Y)$.

3) The multiplications

$$egin{array}{rcl} \mathcal{A}_{\ell_1}\otimes\mathcal{A}_{\ell_2}& o&\mathcal{A}_{\ell_1+\ell_2}\ \mathcal{A}_{\ell_1}\otimes\mathcal{M}_{\ell_0}& o&\mathcal{M}_{\ell_1+\ell_0} \end{array}$$

are never the zero maps for $\ell_1, \ell_1 \ge 0, \ell_1 + \ell_2 \le m$ (cf. [7]).

4) One has the exact sequences:

$$0 \to \mathcal{M}_{\ell}(Y) \to \mathcal{O}_{X_{\ell+1}} \to \mathcal{O}_{X_{\ell}} \to 0$$
$$0 \to \mathcal{A}_{\ell}(Y) \to \mathcal{O}_{Y_{\ell+1}} \to \mathcal{O}_{Y_{\ell}} \to 0.$$

5) If Y is Gorenstein of free type, then X_{ℓ} and $Y_{m+1-\ell}$ are locally algebraically linked (cf. [6]). In particular, one has the exact sequences:

$$0 \to \omega_{X_{m+1-\ell}} \otimes \omega_Y^{-1} \to \mathcal{O}_Y \to \mathcal{O}_{Y_\ell} \to 0$$
$$0 \to \omega_{Y_{m+1-\ell}} \otimes \omega_Y^{-1} \to \mathcal{O}_Y \to \mathcal{O}_{X_\ell} \to 0.$$

6) If Y is Gorenstein of free type, then (cf. [7]):

(a) rank
$$\mathcal{A}_{\ell}(Y) = \text{rank } \mathcal{M}_{m-\ell}(Y)$$

(b) $\mathcal{A}_{\ell}(Y) = \mathcal{M}_{\ell}(Y)$ iff rank $\mathcal{A}_{\ell}(Y) = \text{rank } \mathcal{A}_{m-\ell}(Y).$

2. MAIN THEOREM

The aim of this theorem is to "explain" the equality 6)(a) from above. In fact, one gives a characterization of the Gorenstein multiple structures of free type on a smooth support which generalizes the result from [3].

THEOREM. Let Y be a free type Cohen-Macaulay multiple structure on a smooth support X. Then Y is Gorenstein if and only if the following conditions are fulfilled:

(a) $\mathcal{A}_m = \mathcal{M}_m$ are line bundles.

(b) The canonical maps:

$$\mathcal{A}_{\ell} \to \mathcal{H}om_{\mathcal{O}_X}(\mathcal{M}_{m-\ell}, \mathcal{M}_m) \cong \mathcal{M}_{m-\ell}^{\vee} \otimes \mathcal{M}_{\ell}$$

are isomorphisms.

Proof. Suppose Y is Gorenstein. Applying $\mathcal{H}om(?, \omega_Y)$) to the exact sequences:

$$0 \to \mathcal{A}_m(Y) \to \mathcal{O}_Y \to \mathcal{O}_{Y_m} \to 0$$

$$0 \to \mathcal{M}_m(Y) \to \mathcal{O}_Y \to \mathcal{O}_{X_m} \to 0$$

and taking the restrictions to X one gets:

$$\omega_Y|_X \cong \mathcal{A}_m(Y)^{\vee} \otimes \omega_X \cong \mathcal{M}_m(Y)^{\vee} \otimes \omega_X$$

and so (a) is fulfilled. Applying $\mathcal{H}om(?, \omega_Y)$ to the exact sequence:

$$0 \to \mathcal{M}_{m-\ell}(Y) \to \mathcal{O}_{X_{m-\ell+1}} \to \mathcal{O}_{X_{m-\ell}} \to 0$$

one gets the exact sequence:

$$0 \to \mathcal{H}om_{\mathcal{O}_Y}(\mathcal{O}_{X_{m-\ell}}, \omega_Y) \to \mathcal{H}om_{\mathcal{O}_Y}(\mathcal{O}_{X_{m-\ell+1}}, \omega_Y) \to \mathcal{H}om_{\mathcal{O}_Y}(\mathcal{M}_{m-\ell}(Y), \omega_Y) \to 0$$

 $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{M}_{m-\ell}(Y),\omega_X)$

which tensored with ω_Y^{-1} gives the exact sequence:

and so (b) is fulfilled.

Assume now that (a) and (b) are fulfilled. Let $x \in X$ be a fixed point and put $A := \mathcal{O}_{X,x}$, $B := \mathcal{O}_{Y,x}$. Let us denote (abusively) the sheaf stalks I_x , $(I_\ell)_x$ and $(J_\ell)_x$ by I, I_ℓ and J_ℓ , respectively. In particular, A = B/I. To any finitely generated *B*-module *N* one associates the *B*-modules $N^{\vee} := \operatorname{Hom}_B(N, B)$ and $N' := \operatorname{Hom}_B(N, \omega_B)$. If *J* is an ideal of *B* then $(B/J)^{\vee}$ (resp., (B/J)') can be identified to the set of elements of *B* (resp., ω_B) annihilated by *J*. In particular, $(B/I_{m+1-\ell})^{\vee}$ can be identified to J_{ℓ} . If B/J is Cohen-Macaulay of dimension dim *B* then $(B/J)' \simeq \omega_{B/J}$.

By hypothesis (a), $(B/I)^{\vee} = J_m \simeq A$. Since A = B/I is Gorenstein (even regular) one has $(B/I)' \simeq \omega_A \simeq A$. Fix an isomorphism $(B/I)^{\vee} \xrightarrow{\sim} (B/I)'$. Since the map $\operatorname{Hom}_B(B,\omega_B) \to \operatorname{Hom}_B(J_m,\omega_B)$ is surjective $(B/J_m$ is Cohen-Macaulay of dimension dim B, hence $\operatorname{Ext}^i_B(B/J_m,\omega_B) = 0$ for i > 0) the above isomorphism can be extended to a morphism of B-modules $u: B \to \omega_B$. u induces, for any B-module N, a morphism $N^{\vee} \to N'$, namely $\operatorname{Hom}_B(\operatorname{id}_N, u)$. If N is annihilated by I, the image of any morphism of B-modules $N \to B$ (resp., $N \to \omega_B$) is contained in $(B/I)^{\vee}$ (resp., (B/I)'), hence $N^{\vee} \simeq$ $\operatorname{Hom}_A(N, (B/I)^{\vee})$ (resp., $N' \simeq \operatorname{Hom}_A(N, (B/I)')$). Since u maps $(B/I)^{\vee}$ isomorphically onto (B/I)' one deduces that, when N is annihilated by I, the morphism $N^{\vee} \to N'$ is an isomorphism.

Consider now, for $0 \le \ell \le m$, the commutative diagram:

whose vertical maps are induced by u.

The upper row is exact to the right by hypothesis (b) $((B/I_{m+1-\ell})^{\vee} = J_{\ell})$ and $(I_{m-\ell}/I_{m+1-\ell})^{\vee} \simeq \operatorname{Hom}_A(I_{m-\ell}/I_{m+1-\ell}, I_m))$, while the lower row is exact to the right because $B/I_{m-\ell}$ is Cohen-Macaulay of dimension dim B, hence $\operatorname{Ext}_B^i(B/I_{m-\ell}, \omega_B) = 0$, for i > 0. The right vertical map is an isomorphism because $I_{m-\ell}/I_{m+1-\ell}$ is annihilated by I. One deduces, by descending induction on $m \ge \ell \ge 0$, that $(B/I_{m+1-\ell})^{\vee} \to (B/I_{m+1-\ell})'$ is an isomorphism. In particular, for $\ell = 0$, one gets that $u: B \to \omega_B$ is an isomorphism hence B is Gorenstein. \Box

Remark 1. The case of embedded multiple structures, (as in [2], [6], [7]) *i.e.*, $X \subset Y \subset P$, with X, P smooth connected algebraic varieties and Y a multiple structure on X, leads to similar filtrations. Denote now by I the ideal of X in P, by J the ideal of Y in P and suppose $I^{m+1} \subset J, I^m \not\subset J$. Then the filtrations are (we consider now only the ideals):

1. Let $I^{(k)}$ be the ideal obtained throwing away the embedded components of $I^{(k)} + J$.

- 2. Let $I_{\ell} = J : I^{m+1-\ell}$.
- 3. Let $J_{\ell} = J : (J : I^{\ell}).$

All the above considerations apply also in this case.

Remark 2. In the case of quasiprimitive structures, *i.e.*, when rank $\mathcal{A}_{\ell} = \operatorname{rank} \mathcal{M}_{\ell} = 1$ for all ℓ , all the above filtrations are equal, whence $\mathcal{B} = \mathcal{A} = \mathcal{M}$, so one can express the conditions in the theorem only in terms of Bănică-Forster filtration. This was done in [3] for the case of quasiprimitive multiple structures on smooth curves in a threefold.

Remark 3. The above duality gives a direct explanation of the identities in the Chern classes of the bundles which appear in various constructions in [7] (e.g., 4.14, 4.16. loc.cit.).

3. EXAMPLES

A class of nilpotent structures Y on a smooth connected algebraic variety X which are of free type is of those which are locally monomial, *i.e.*, the local completed rings of Y are of the shape $B = k[[\mathbf{x}, \mathbf{u}]]/J$, where $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{u} = (u_1, \ldots, u_m)$ are indeterminants and J is an ideal generated by monomials in x_1, \ldots, x_n such that $B_{\text{red}} = A = k[[u_1, \ldots, u_m]]$.

We exemplify the use of the above duality for the case when the local structure is given by ideals of the shape $J = (x_1^3, x_2^3, \mathbf{x}, u_1, \dots, u_m)$, where \mathbf{x} is a finite set of variables, namely we consider X a closed connected smooth algebraic variety in a projective space \mathbb{P} and consider a locally Cohen-Macaulay "nilpotent" (*i.e.*, not reduced) algebraic scheme Y in \mathbb{P} with $Y_{\text{red}} = X$. If \mathcal{I} , \mathcal{J} are the ideals of X, respectively of Y, in \mathbb{P} , suppose that they are defined locally by ideals of the shape $I = (x, y, \mathbf{z}), J = (x^3, y^3, \mathbf{z})$ in $k[[[x, y, \mathbf{z}, \mathbf{u}]]]$, where \mathbf{z} and \mathbf{u} are finite sets of variables. A direct computation shows that the three filtrations of this nilpotent structure coincide and, locally, they are defined by

$$J_5 = (x^3, y^3, \mathbf{z}) \subset J_4 = (x^3, x^2y^2, y^3, \mathbf{z}) \subset J_3 = (x^3, x^2y, xy^2, y^3, \mathbf{z})$$
$$\subset J_2 = (x^2, xy, y^2, \mathbf{z}) \subset J_1 = I = (x, y, \mathbf{z}).$$

Then the three graded objects associated to Y coincide and they have the shape:

 $\mathcal{B}(Y) = \mathcal{A}(Y) = \mathcal{M}(Y) = \mathcal{O}_X \oplus E \oplus F \oplus G \oplus L$

where E, F, G, L are vector bundles of rank, respectively, 2, 3, 2, 1. The local description implies that F is the second symmetric power of E, and the above duality Theorem gives:

$$G \cong E^{\vee} \otimes L$$
, $S^2(E) \cong (S^2(E))^{\vee} \otimes L$.

From here it follows the equality of Chern classes $3c_1(L) = 6c_1(E)$.

Let X be a line in $\mathbb{P}^n, n \geq 3$. Take $(x : y : \mathbf{z} : u : v)$ homogeneous coordinates in \mathbb{P}^n , such that (x, y, \mathbf{z}) defines the line X and (u, v) are homogeneous coordinates on X.

Example 1. When n = 3 the ideal \mathcal{I} of X is of the shape (x, y) and we show that \mathcal{J} is globally complete intersection of the form (x^3, y^3) . Indeed,

- 1. $E \cong \mathcal{I}/\mathcal{I}^2 \cong 2\mathcal{O}_X(-1)$ is the conormal bundle of X in \mathbb{P}^3 .
- 2. It follows $L \cong \mathcal{O}_X(-4)$, $F \cong 3\mathcal{O}_X(-2)$, $G \cong 2\mathcal{O}_X(-3)$.

3. We have globally $\mathcal{J}_2 = \mathcal{I}^2$, $\mathcal{J}_3 = \mathcal{I}^3$, so in the canonical filtration $Y_2 =$ first infinitesimal neighbourhood and $Y_3 =$ the second infinitesimal neighbourhood of X. Then Y_4 is given by an exact sequence:

$$0 \to \mathcal{J}_4/\mathcal{I}\mathcal{J}_3 \to \mathcal{J}_3/\mathcal{I}\mathcal{J}_3 \cong \mathcal{I}^3/\mathcal{I}^4 \cong 4\mathcal{O}_X(-3)) \xrightarrow{p} G(\cong 2\mathcal{O}_X(-3)) \to 0$$

Observe that p is not an arbitrary surjection; its kernel should contain, locally in each point, two perfect cubes in $S^3(\mathcal{I}/\mathcal{I}^2)$. After a change of coordinates in \mathbb{P}^3 , if necessary, \mathcal{J}_4 is defined by the ideal (x^3, x^2y^2, y^3) .

4. Finally, Y_5 is given by the exact sequence:

$$0 \to \mathcal{J}_5/\mathcal{I}\mathcal{J}_4 \to \mathcal{J}_4/\mathcal{I}\mathcal{J}_4 \cong \mathcal{O}_X(-4) \oplus 2\mathcal{O}_X(-3)) \xrightarrow{q} L \cong \mathcal{O}_X(-4)) \to 0.$$

where q is the canonical projection.

This proves the assertion.

Example 2. We take a line X in \mathbb{P}^4 ; the ideal of X in \mathbb{P}^4 is (x, y, z) and the homogeneous coordinates on X are u, v. For simplicity, we take $E \cong \mathcal{O}_X(-1) \oplus \mathcal{O}_X$. Then $F \cong \mathcal{O}_X(-2) \oplus \mathcal{O}_X(-1) \oplus \mathcal{O}_X$, $L \cong \mathcal{O}_X(-2)$, $G \cong \mathcal{O}_X(-2) \oplus \mathcal{O}_X(-1)$.

1. \mathcal{J}_2 should be given by an exact sequence

$$0 \to \mathcal{J}_2/\mathcal{I}^2 \to \mathcal{I}/\mathcal{I}^2 (\cong 3\mathcal{O}_X(-1)) \xrightarrow{p_1} E (\cong \mathcal{O}_X(-1) \oplus \mathcal{O}_X) \to 0.$$

We take $p_1 = \begin{pmatrix} 0 & 0 & 1 \\ -v & u & 0 \end{pmatrix}$ and then \mathcal{J}_2 = ideal defined by $(ux+vy)+(x,y,z)^2$ and one gets $\mathcal{J}_2/\mathcal{I}^2 \cong \mathcal{O}_X(-2)$ and $\mathcal{I}^2/\mathcal{I}\mathcal{I}_2 \cong \mathcal{O}_X(-2) \oplus \mathcal{O}_X(-1) \oplus \mathcal{O}_X$. From the exact sequence:

$$0 \to \mathcal{I}^2/\mathcal{I}\mathcal{J}_2 \to \mathcal{J}_2/\mathcal{I}\mathcal{J}_2 \to \mathcal{J}_2/\mathcal{I}^2 \to 0$$

one gets $\mathcal{J}_2/\mathcal{I}\mathcal{J}_2 \cong 2\mathcal{O}_X(-2) \oplus \mathcal{O}_X(-1) \oplus \mathcal{O}_X.$

2. \mathcal{J}_3 should be given by an exact sequence

$$0 \to \mathcal{J}_3/\mathcal{I}\mathcal{J}_2 \to \mathcal{J}_2/\mathcal{I}\mathcal{J}_2 \xrightarrow{p_2} F (\cong \mathcal{O}_X(-2) \oplus \mathcal{O}_X(-1) \oplus \mathcal{O}_X) \to 0$$

Taking p_2 to be the projection on a "well chosen" direct summand of $\mathcal{J}/\mathcal{II}_2$, one gets \mathcal{J}_3 = the ideal $(ux + vy) + \mathcal{I}^3$. One gets $\mathcal{J}_3/\mathcal{IJ}_2 \cong \mathcal{O}_X(-2)$. Direct computation shows that $\mathcal{IJ}_2/\mathcal{IJ}_3 \cong \mathcal{O}_X(-3) \oplus \mathcal{O}_X(-2) \oplus \mathcal{O}_X(-1) \oplus \mathcal{O}_X$ and from the exact sequence

$$0 \to \mathcal{I}\mathcal{J}_2/\mathcal{I}\mathcal{J}_3 \to \mathcal{J}_3/\mathcal{I}\mathcal{J}_3 \to \mathcal{J}_3/\mathcal{I}\mathcal{J}_2) \to 0$$

one gets $\mathcal{J}_3/\mathcal{I}\mathcal{J}_3 \cong \mathcal{O}_X(-3) \oplus 2\mathcal{O}_X(-2) \oplus \mathcal{O}_X(-1) \oplus \mathcal{O}_X.$

3. \mathcal{J}_4 should be given by an exact sequence

$$0 \to \mathcal{J}_4/\mathcal{I}\mathcal{J}_3 \to \mathcal{J}_3/\mathcal{I}\mathcal{J}_3 \xrightarrow{p_3} G(\cong \mathcal{O}_X(-2) \oplus \mathcal{O}_X(-1)) \to 0.$$

As above, one can choose p_3 to be a projection on a direct summand and one gets \mathcal{J}_4 = the ideal $(ux + vy, x^3, x^2y, xy^2, y^3, z^3, x^2z^2, xyz^2, y^2z^2)$. Then one computes $\mathcal{J}_4/\mathcal{I}\mathcal{J}_3 \cong \mathcal{O}_X(-3) \oplus \mathcal{O}_X(-2) \oplus \mathcal{O}_X$. Direct computation shows $\mathcal{I}\mathcal{J}_3/\mathcal{I}\mathcal{J}_4 \cong \mathcal{O}_X(-2)$ and so $\mathcal{J}_4/\mathcal{I}\mathcal{J}_4 \cong \mathcal{O}_X(-3) \oplus 2\mathcal{O}_X(-2) \oplus \mathcal{O}_X$.

4. $\mathcal{J}_5 = \mathcal{J}$ is obtained from an exact sequence

$$0 \to \mathcal{J}_5/\mathcal{I}\mathcal{J}_4 \to \mathcal{J}_4/\mathcal{I}\mathcal{J}_4 \xrightarrow{p_4} L(\cong \mathcal{O}_X(-2)) \to 0$$

Again, p_4 is chosen to be a suitable projection and one gets \mathcal{J} = the ideal $(ux + vy, x^3, x^2y, xy^2, y^3, z^3)$.

Remark 4. The above example can be constructed directly from a triple structure X' in the hyperplane $\mathbb{P}^3 \subset \mathbb{P}^4$ given by z = 0, namely take a triple line of ideal $(ux + vy, x^3, x^2y, xy^2, y^3)$ in \mathbb{P}^3 . Its ideal in \mathbb{P}^4 is $(ux + vy, x^3, x^2y, xy^2, y^3, z)$ and our multiplicity 9 structure is evidently a simple tripling of Y'.

Remark 5. An easy generalization of the above example is given by $\mathcal{J} =$ the ideal $(ax + by, x^3, x^2y, xy^2, y^3, z^3)$, where a, b are form in u, v of the same degree, say $d+1 \geq 1$, without common zeros on X. This example corresponds to $E \cong \mathcal{O}_X(-1) \oplus \mathcal{O}_X(d)$; one has $F \cong \mathcal{O}_X(-2) \oplus \mathcal{O}_X(d-1) \oplus \mathcal{O}_X(2d)$, $L \cong \mathcal{O}_X(2d-2), G \cong \mathcal{O}_X(d-2) \oplus \mathcal{O}_X(2d-1)$. When a, b have degree 2, Yis in the Hilbert scheme of a disjoint union of 9 lines and the curves in the canonical stratification of Y are in the Hilbert scheme of 3, 6, respectively 8 disjoint lines.

Acknowledgments. The author expresses his thanks to Iustin Coandă for discussions which lead to a improved form of this note. Thanks are also due to the referee, mainly for suggesting a more direct proof of the main implication in the **Theorem**, without using [9].

REFERENCES

- [1] C. Bănică and O. Forster, Sur les structures multiples. Manuscript, 1981.
- [2] C. Bănică and O. Forster, Multiplicity structures on space curves. Contemp. Math. 58 (1986), 47–64.

- M. Boratynsky, Locally complete intersection multiple structures on smooth algebraic curves. Proc. Amer. Math. Soc. 115 (1992), 877–879.
- [4] D. Ferrand, Courbes gauches et fibrés de rang 2. C. R. Math. Acad. Sci. Paris 281 (1975), 345–347.
- [5] R. Fossum, Commutative extensions by canonical modules are Gorenstein rings. Proc. Amer. Math. Soc. 40 (1973), 395–400.
- [6] N. Manolache, Cohen-Macaulay nilpotent structures. Rev. Roumaine Math. Pures Appl. 31 (1986), 563–575.
- [7] N. Manolache, Multiple structures on smooth support. Math. Nachr. 167 (1994), 157–202.
- [8] N. Manolache, Gorenstein multiple structures on smooth algebraic varieties. Preprint, arXiv:00706.2204v1 (math.AG).
- [9] N. Manolache, *Linkage extensions*. Rev. Roumaine Math. Pures Appl. 52 (2007), 397–403.
- [10] C. Peskine and L. Szpiro, Liaison des variétes algébriques. Invent. Math. 26 (1977), 271–302.

Simion Stoilow Institute of Mathematics of the Romanian Academy P.O.Box 1-764 Bucharest, RO-014700 nicolae.manolache@imar.ro