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In this survey, we present some methods in the dynamics and dimension the-
ory for invariant measures of hyperbolic endomorphisms (smooth non-invertible
maps), and for conformal iterated function systems with overlaps. For endomor-
phisms, we recall the notion of asymptotic degree of an equilibrium measure,
which is shown to be related to the folding entropy; this degree is then applied
to dimension estimates. For finite iterated function systems, we present the no-
tion of overlap number of a measure, which is related to the folding entropy of
a lift transformation, and also give some examples when it can be computed or
estimated. We apply overlap numbers to prove the exact dimensionality of in-
variant measures, and to obtain a geometric formula for their dimension. Then,
for countable conformal iterated function systems with overlaps, the projections
of ergodic measures are shown to be exact dimensional, and we give a dimension
formula. Relations with ergodic number theory, continued fractions, and random
dynamical systems are also presented.
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1. INTRODUCTION

In this survey, we present some relatively recent results in the dynam-
ics and dimension theory of invariant measures for hyperbolic endomorphisms
(smooth non-invertible maps), and also for conformal nonlinear iterated func-
tion systems (finite or countable), and iterated function systems with place-
dependent probabilities.

Dimension theory for invariant measures in dynamical systems and ther-
modynamic formalism have a rich history; some references are [2], [4], [5], [16],
[37], [39], [43]. Young proved in [45] that the Hausdorff dimension of a hyper-
bolic invariant measure µ for a surface diffeomorphism, is given by a formula
involving entropy and the Lyapunov exponents, namely

HD(µ) = h(µ)(
1

χu(µ)
− 1

χs(µ)
).
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In [23], Manning showed that for an Axiom A diffeomorphism of a surface
which preserves an ergodic measure µ, the entropy h(µ) is in fact equal to the
product of the positive Lyapunov exponent of µ and the dimension of the set
of µ-generic points from an unstable manifold. Then in [18], Ledrappier and
Young established a formula for the entropy of an invariant hyperbolic mea-
sure µ for a diffeomorphism of a compact Riemannian manifold, involving the
Lyapunov exponents of µ and the dimensions of µ in the stable and unstable
directions. In [22], Mañe proved the exact dimensionality for ergodic measures
which are invariant to rational maps. Later on, Barreira, Pesin and Schmeling
[3] showed that every hyperbolic measure µ invariant under a C1+ε diffeo-
morphism of a smooth Riemannian manifold has asymptotically almost local
product structure; this, in turn, was used to prove the famous Eckmann–Ruelle
Conjecture (see [7]), namely that µ is exact dimensional, and that the Haus-
dorff dimension of µ is equal to its pointwise dimension and equal to the sum
between the dimensions in the stable direction and in the unstable direction.
For hyperbolic endomorphisms, it was shown in [28] that conditional measures
on stable manifolds are exact dimensional.

In the case of finite conformal iterated function systems with overlaps,
Feng and Hu proved in [11] that the projection of any ergodic measure from
the shift space, is exact-dimensional on the fractal limit set; they also gave a
formula for the Hausdorff dimension of this projection measure, by using the
projection entropy and the Lyapunov exponent. Later, in [25] we gave another
proof of the exact dimensionality of self-conformal measures (in fact, the exact
dimensionality of a larger class of measures) by employing methods from the
dynamics of hyperbolic endomorphisms; in particular, a geometric formula for
the dimension of the measure was given by using overlap numbers. The case
of countable conformal iterated function systems with overlaps was solved by
Mihailescu and Urbański in [32], where the projection of any ergodic measure
from the shift space to the limit set was shown to be exact dimensional, and
a dimension formula was found. In fact, we proved a more general result for
random countable conformal iterated function systems with overlaps. In the
countable IFS case there are several important differences from the finite case,
and the methods are different. For example, the limit set of a countable IFS is
not necessarily compact; also the behaviour near the boundary of the countably
many system maps plays a significant role. Iterated functions systems are
important also for the study of examples from ergodic number theory (for e.g.
[13], [15], [21], [24], [31], [38]).

The structure of this survey is the following:
First, we recall the notion of folding entropy of an invariant measure

for an endomorphism, introduced by Ruelle [40]. Then, we recall the notion
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defined in [33] of the asymptotic degree for an arbitrary equilibrium measure
for a hyperbolic non-degenerate endomorphism; this is in fact an average rate
of growth of the number of generic n-preimages of points. It was shown to
be related also to the folding entropy. We employ this asymptotic degree for
dimension estimates.

Then, we present the case of finite conformal iterated function systems S
and the notion of overlap numbers for projection measures on the fractal limit
set. The overlap number is shown to be related to the folding entropy of a
lift measure for the lift endomorphism of S. We recall that overlap numbers
are used to prove the exact dimensionality for certain projection measures, in
particular for self-conformal measures; and to obtain a geometric formula for
their Hausdorff (and pointwise) dimension. In some cases, it is possible to
compute or estimate the overlap numbers.

Next, we study the significantly different case of countable conformal
iterated function systems with overlaps, and recall the results on exact di-
mensionality of projection measures, and the dimension formula obtained. An
application is to invariant measures for random continued fractions. Moreover,
we present an application to countable iterated function systems with over-
laps and place-dependent probabilities, a case related to random systems with
complete connections.

2. ASYMPTOTIC DEGREES OF MEASURES FOR
HYPERBOLIC ENDOMORPHISMS

Let us consider a smooth (C2) map f :M →M on a C2 manifold M , and
take a compact basic (locally maximal) set Λ (for the definition of basic set see
below, or [16]). We assume that f is non-invertible and hyperbolic on Λ, i.e
there exists a continuous splitting of the tangent bundle of M over the inverse
limit Λ̂ of Λ and f . The inverse limit of Λ with respect to f is defined by:

Λ̂ := {x̂ = (x, x−1, x−2, . . .), f(xj) = xj+1, xj ∈ Λ, j ≤ −1}.

If we want to emphasize the dependence of Λ̂ on f , we write Λ̂f . The notation

M̂ is similar.

The case of a hyperbolic non-invertible transformation is very different
from the expanding case and from the case of hyperbolic diffeomorphisms, for
e.g. [7], [39], [40], [6], [12], [20], [27], [28]. In the hyperbolic non-invertible case,
for every prehistory x̂ ∈ Λ̂ there exist a local stable manifoldW s

r (x) and a local
unstable manifold W u

r (x̂). Notice that the local stable manifold depends only
on the base point x, since it is defined as the set of points y ∈ M such that
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d(f j(y), f j(x)) < r, j ≥ 0; so it depends only on the forward trajectory of x.
By contrast, the local unstable manifold is

W u
r (x̂) := {y,∃ŷ ∈ M̂ with d(y−j , x−j) < r, j ≥ 0},

thus the local unstable manifold depends on the whole past trajectory, i.e. on
the prehistory x̂ ∈ Λ̂. There are examples where there exist uncountably many
local unstable manifolds going through a point x, and this happens actually
for most points x ∈ Λ (see [27]).

Moreover, another complication is that, in general, the map f is not
constant-to-1 on the fractal set Λ. Hence a good notion of “degree” of f |Λ with
respect to an invariant measure on Λ is necessary. The number of preimages
belonging to Λ is important in dimension estimates for the invariant set and
invariant measures (see for e.g. [29]). We defined in [33] a notion of asymptotic
degree with respect to an arbitrary equilibrium measure µϕ (where ϕ is a
Hölder continuous potential on Λ). In particular, for the measure of maximal
entropy µ0 on Λ, we obtain the average logarithmic growth of the number of
n-preimages that remain in Λ (when n→ ∞), which can be considered as the
“topological degree” of f on Λ. This asymptotic degree was then used in [33]
to obtain dimension estimates of stable sections through basic sets.

By basic set (or locally maximal set [16]), we understand a compact
f -invariant set Λ ⊂ M such that f is topologically transitive on Λ and there
exists a neighbourhood U of Λ such that,

Λ = ∩
n∈Z

fn(U).

The Jacobian of an f -invariant measure µ with respect to the endomor-
phism f (see Parry, [36]) is defined µ-a.e by

Jf (µ)(x) = lim
r→0

µ(f(B(x, r))

µ(B(x, r)
.

The limit above can be shown to exist locally as the Radon-Nikodym derivative
between two absolutely continuous measures.

If µ is an f -invariant probability measure on M , then Ruelle introduced
in [40] the folding entropy Ff (µ), as being the conditional entropy Hµ(ϵ|f−1ϵ),
where ϵ is the single point partition and f−1ϵ is the fiber partition associated
to f on M . It can be shown (see [20]) that,

(1) Ff (µ) := Hµ(ϵ|f−1ϵ) =

∫
Jf (µ)dµ.

The folding entropy Ff (µ) is bounded above by the metric entropy hf (µ),
and bounded below by hf (µ) plus the sum of negative Lyapunov exponents
of µ (see [19]). It was studied also in [33], [44]. A related notion is that of
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entropy production for an f -invariant measure µ, namely ef (µ) := Ff (µ) −∫
log |detDf(x)|dµ(x) (see [40], and the references in [34]).

Let now ϕ : Λ → R be a Hölder continuous potential on the compact basic
set Λ; so there exists a unique equilibrium (Gibbs) measure µϕ on Λ, which
is the only ergodic probability f -invariant measure for which the supremum is
attained in Variational Principle for pressure ([4], [43]). Hence

P (ϕ) = h(µϕ) +

∫
Λ
ϕ dµϕ.

Since the set Λ is not necessarily totally invariant, the measurable function

dn(x) := Card(f−n(fn(x)) ∩ Λ), x ∈ Λ,

may be non-constant on Λ (see the class of examples in [27]). Define now
the finite set of n-preimages of fn(x) which are τ -“generic” with respect to ϕ,
namely let

(2) Gn(x, µ, τ) := {y ∈ f−n(fnx) ∩ Λ, s.t |Snϕ(y)
n

−
∫
ϕ dµ| < τ},

Definition 1. Denote by dn(x, µ, τ) := Card Gn(x, µ, τ), x ∈ Λ, n > 0,
τ > 0. The function dn(·, µ, τ) is measurable, nonnegative and bounded on Λ
(if f is locally injective on Λ).

In the following Theorem 1 proved in [33], we gave the basis for the defi-
nition of a measure-theoretic asymptotic degree with respect to an equilibrium
measure µϕ as above. The measure-theoretic degree represents the asymptotic
rate of growth of the number of generic n-preimages from Λ, when n → ∞,
and we proved that it is connected to the folding entropy of µϕ.

Theorem 1 (Measure-theoretic asymptotic degree, [33]). Let f :M→M
be a C2 non-invertible map and let Λ be a basic set for f , such that f is
hyperbolic on Λ and it does not have critical points in Λ. Let also ϕ be a
Hölder continuous potential on Λ and µϕ be the equilibrium measure associated
to ϕ. Then we have the following formula:

lim
τ→0

lim
n→∞

1

n

∫
Λ
log dn(x, µϕ, τ) dµϕ(x) = Ff (µϕ).

An interesting particular case is when we consider the measure of maximal
entropy, which is in fact the equilibrium measure µ0 of ϕ ≡ 0 (or equivalently
to a constant potential). In this case, every n-preimage from Λ is generic with
respect to µ0. Thus we obtain a “topological degree” of the restriction f |Λ:

Corollary 1 (Topological degree, [33]). In the setting of Theorem 1,
denote by µ0 the unique measure of maximal entropy of f |Λ.
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If dn(x) := Card(f−n(fnx) ∩ Λ) for n ≥ 1, then we have:

lim
n→∞

1

n
log dn(x) = Ff (µ0), µ0 − a.e x ∈ Λ,

and

lim
n→∞

1

n

∫
Λ
log dn(x) dµ0(x) = Ff (µ0).

The above Theorem and discussion permit us to state now the following:

Definition 2. In the setting of Theorem 1, define the asymptotic loga-
rithmic degree of f |Λ (with respect to the measure of maximal entropy µ0)
by: al(f,Λ) := lim

n

1
n

∫
Λ log dn(x)dµ0(x). The asymptotic degree of f |Λ is

then defined as the number

d∞(f,Λ) := eal(f,Λ).

Similarly, we define the asymptotic degree with respect to the measure
µϕ on Λ, as

d∞(f, µϕ) := exp
(
lim
τ→0

lim
n→∞

1

n

∫
Λ
log dn(x, µϕ, τ) dµϕ(x)

)
.

In particular, if f |Λ is d-to-1, then d∞(f,Λ) = d, and Ff (µ0) = log d.

Moreover, the measure degree was used to obtain estimates for the Haus-
dorff dimension of slices through the set Λ, when f is hyperbolic on Λ. If we
consider the potential Φs(x) := log |Dfs(x)|, x ∈ Λ, then for any fixed number
γ ≤ htop(f |Λ), we have that the function

t 7→ P (tΦs − γ),

is strictly decreasing and convex, it is non-negative for t = 0, and converges to
−∞ if t → ∞. So this pressure function has a unique zero, which will appear
in the next Theorem. Denote by Esx the stable tangent space at x ∈ Λ, and by
W s
r (x) the local stable manifold at x.

Theorem 2 (Dimension estimates, [33]). In the setting of Theorem 1,
assume that f is conformal on local stable manifolds on the saddle basic set
Λ, and that µϕ is the equilibrium measure of a Hölder continuous potential ϕ
on Λ; denote Φs(y) := log |Df |Es(y)|, y ∈ Λ. Then there exists a Borel set
K(µϕ) ⊂ Λ such that µϕ(K(µϕ)) = 1, and for every x ∈ Λ we have:

HD
(
W s
r (x) ∩ K(µϕ)

)
≤ tsd∞(f,µϕ)

,

where tsd∞(f,µϕ)
is the unique zero of the pressure function

t→ P (tΦs − log d∞(f, µϕ)).
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3. FINITE CONFORMAL ITERATED SYSTEMS AND
OVERLAP NUMBERS

Let us take a finite set I and a function system S = {ϕi, i ∈ I}, with
ϕi : Ū → Rd, i ∈ I, being conformal and injective maps on the closure Ū
of a bounded open set U ⊂ Rd, which are uniformly contracting on Ū , i.e
∃γ ∈ (0, 1) with |ϕ′i| < γ, ∀i ∈ I (for e.g. [8]). Let Σ+

I denote the 1-sided
symbolic space {ω = (ω1, ω2, . . .), ωi ∈ I, i ≥ 1}, with canonical metric and
topology, equipped with the canonical shift transformation σ : Σ+

I → Σ+
I .

Also, denote by [ω1 . . . ωn] the cylinder {η ∈ Σ+
I , η1 = ω1, . . . , ηn = ωn}. In the

sequel, let us denote by

ϕi1...ip := ϕi1 ◦ ϕi2 ◦ . . . ◦ ϕip ,

for p ≥ 1, i1, . . . , ip ∈ I, and by ϕi1i2... the point given as intersection of the
descending sets ϕi1...ip(U), for p → ∞. Denote by Λ the set of points of type
ϕi1i2..., called the limit set of S,

Λ = π(Σ+
I ),

where π : Σ+
I → Λ, π(ω) = ϕω1ω2..., ω ∈ Σ+

I , is the canonical projection. In
general, the image sets ϕi(Λ), i ∈ I may intersect each other. If there exists an
open nonempty set V (a neighbourhood of Λ) so that ∪

i∈I
ϕi(V ) ⊂ V and the

sets ϕj(V ), j ∈ I are mutually disjoint, then we say that the system S satisfies
the Open Set Condition. In this case, the dimension of Λ and of invariant
measures on Λ can be computed relatively easily (see [8]). Some less restrictive
separation conditions were studied for example in [17]. However, if the sets
ϕi(Λ), i ∈ I intersect arbitrarily, then the problem of dimension for invariant
measures on Λ is much more difficult. We are going to present results in this
direction for systems with arbitrary overlaps. They use the notion of overlap
number of a measure µ, which is an average rate of growth of the number
of µ-generic n-preimages; the overlap number of µ was shown to be related
to the folding entropy of µ. Thus, define first the following skew product
transformation, called the lift endomorphism of S,

Φ : Σ+
I × Λ → Σ+

I × Λ, Φ(ω, x) = (σω, ϕω1(x)), for (ω, x) ∈ Σ+
I × Λ.

For any integer n ≥ 1, we have

Φn(ω, x) = (σn(ω), ϕωn...ω1(x)), (ω, x) ∈ Σ+
I × Λ.

Since σ expands distances locally and ϕi, i ∈ I are contractions, it follows that
Φ has a hyperbolic-type behaviour and a stable foliation with leaves {ω} × Λ,
ω ∈ Σ+

I . Let now a Hölder continuous potential ψ : Σ+
I × Λ → R. Then as

in the case of hyperbolic diffeomorphisms, there exists a unique equilibrium
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measure µψ on Σ+
I × Λ, (for e.g. [4], [16], [43]). Denote also the projection of

µψ on Λ by
νψ := π2∗µψ.

In general, for a Φ-invariant probability µ on Σ+
I × Λ, its Lyapunov exponent

is defined by,

χ(µ) =

∫
Σ+
I ×Λ

− log |ϕ′ω1
(x)| dµ(ω, x) > 0.

In [34], we defined a notion of overlap number o(S, µψ) for an equilibrium
measure µψ of a Hölder continuous potential on Σ+

I × Λ. It represents the
average rate of growth of the number of µψ-generic n-preimages in Λ, given
that points in Λ can be covered many times by the images ϕi1...im(Λ) if the
system S has overlaps. For an arbitrary small τ > 0, and integer n ≥ 1 denote:

∆n((ω, x), τ, µψ) =
{
(η1, . . . , ηn) ∈ In,∃y ∈ Λ, ϕωn...ω1(x) = ϕηn...η1(y),

|Snψ(η, y)
n

−
∫
Σ+
I ×Λ

ψ dµψ| < τ
}
,

where (ω, x) ∈ Σ+
I ×Λ and Snψ(η, y) is the consecutive sum of ψ with respect

to Φ. Denote by

bn((ω, x), τ, µψ) := Card∆n((ω, x), τ, µψ.

We thus defined the overlap number of µψ by the following limit, which was
shown to exist:

Definition 3. The overlap number of S with respect to the measure µψ
is defined by:

o(S, µψ) = lim
τ→0

lim
n→∞

1

n

∫
Σ+
I ×Λ

log bn((ω, x), τ, µψ) dµψ(ω, x).

For the measure of maximal entropy µ0, the topological overlap number
o(S) is equal to o(S, µ0).

The topological overlap number gives the rate of growth of the number
of overlappings at step n in Λ, when n → ∞. We showed in [34] that, if
π : Σ+

I → Λ is the canonical projection to Λ and

βn(x) := Card{(η1, . . . , ηn) ∈ In, x ∈ ϕη1...ηn(Λ)}, n ≥ 1,

then the topological overlap number of S is given by the formula:

(3) o(S) = exp
(
lim
n→∞

1

n

∫
Σ+
I

log βn(πω) dµ
+
max(ω)

)
.

In [34] we proved that o(S, µψ) is related to the folding entropy of µψ with
respect to the skew-product endomorphism Φ (recall the definition in (1)).
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Theorem 3 ([34]). In the above setting, we have

o(S, µψ) = exp(FΦ(µψ)).

The overlap number of a measure represents an average rate of growth
of the number of generic overlaps in S (with respect to the measure), and it
can be used to estimate the Hausdoff dimension of sections through the fractal
limit set Λ. Such a result is the following:

Theorem 4 ([34]). Consider a finite conformal iterated function system
S = {ϕi}i∈I with limit set Λ, π : Σ+

I → Λ be the canonical projection, and let
a Hölder continuous potential ψ : Σ+

I × Λ → R, with its unique equilibrium
measure µψ; and denote by νψ := π2∗µψ the projection of the measure µψ on
the second coordinate. Then,

HD(νψ) ≤ t(S, ψ),

where t(S, ψ) is the unique zero of the pressure function with respect to the
shift σ : Σ+

I → Σ+
I , t→ Pσ(t log |ϕ′ω1

(π(σω))| − log o(S, µψ)).

It is possible to compute or estimate the overlap numbers of measures, and
thus to obtain also dimension estimates. Especially, we estimate topological
overlap numbers in several concrete algebraic cases for Bernoulli convolutions.
Such results were obtained in [26].

Let a probabilistic vector p=(p1, . . . ,p|I|) and associate to p the Bernoulli

measure µ+p on Σ+
I . The projection of µ+p on the limit set Λ of the iterated

function system S is π∗µ
+
p . In fact, the Bernoulli measure µ+p is the equi-

librium measure of the Hölder continuous potential g : Σ+
I → R, g(ω) =

log pω1 , ω ∈ Σ+
I . Thus define the potential ψ := g ◦ π1 : Σ+

I × Λ → R,
which clearly is Hölder continuous; so there exists µψ its unique equilibrium
measure with respect to the endomorphism Φ. In [34] it was shown that
π2∗µψ = π∗π1∗µψ. Hence, for some constant r0, µψ([ω1 . . . ωn] × B(x, r0)) ≈
eSnψ(ω,x)−nPΦ(ψ), with comparability constant independent of n, x, ω. This im-
plies that µψ([ω1 . . . ωn] × Λ) ≈ eSng(ω)−nPσ(g). Denote µg◦π1 by µp, which is
a probability measure on Σ+

I × Λ. From above, π1∗µp satisfies the same esti-
mates on cylinders as the Bernoulli measure µ+p , and then from the uniqueness
of equilibrium measure of ψ, π1∗µp = µ+p . Hence,

(4) π2∗µp = π∗µ
+
p .

In particular, if µ+max denotes the measure of maximal entropy on Σ+
I , namely

the Bernoulli measure corresponding to the probability vector ( 1
|I| , . . . ,

1
|I|)),

then

(5) π2∗µmax = π∗µ
+
max.
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To give examples of overlap numbers, consider the system Sλ = {ϕ−1, ϕ1},
with ϕ−1(x) = λx− 1, ϕ1(x) = λx+ 1. When λ ∈ (12 , 1), Sλ has overlaps, and
its limit set is the whole interval Iλ = [− 1

1−λ ,
1

1−λ ]. When there is no confusion
about λ, this limit set is denoted by Λ.

Example 1. The first example is for reciprocals of Garsia numbers. A
number γ is called a Garsia number if it is an algebraic integer in (1, 2) whose
minimal polynomial has a constant coefficient ±2 and such that γ and all
its conjugates have absolute value larger than 1 (see [13]). Examples of such
minimal polynomials are xn+p−xn− 2 for n, p ≥ 1, with max{p, n} ≥ 2. Thus

in particular, 2
1
n , n ≥ 2, are Garsia numbers.

Theorem 5 ([26]). The topological overlap number of the system Sλ when
1
λ is a Garsia number, is equal to 2λ. Thus in this case o(Sλ) = 2λ > 1.

In particular, for any n ≥ 1, we obtain from Theorem 5 a system Sλ with
λ = 2−1/n, which is asymptotically

n
√
2n−1 -to-1; so this system is asymptoti-

cally irrational-to-1.

Example 2. Consider now systems Sλ associated to reciprocals of Pisot
numbers. A Pisot number is an algebraic integer greater than 1, all of whose
conjugates are strictly less than 1 in absolute value (for e.g. [13]). Pisot
numbers have remarkable properties, for e.g. their powers approach integers
at an exponential rate (a converse is also true). An example of Pisot number

is the golden ratio 1+
√
5

2 . In [26] we found a lower estimate for the topological
overlap number in this case.

Theorem 6 ([26]). The topological overlap number o(Sλ) of the above
system Sλ for λ ∈ (12 , 1) with

1
λ a Pisot number, satisfies the inequality

o(Sλ) ≥ 2λ > 1.

Example 3. Consider now the case when there are exact overlaps in the
iterated system S, so

ϕi1...ip(Λ) = ϕj1...jp(Λ),

for certain maximal tuples (i1, . . . , ip), (j1, . . . , jp). Exact overlaps may appear
after a certain number of iterates, but let us look first at the case p = 1; the
generalization is straightforward. Thus in the system S = {ϕi, 1 ≤ i ≤ m} of
conformal injective contractions, assume that

(6) ϕ1 = . . . = ϕk1 , ϕk1+1 = . . . = ϕk2 , . . . , ϕkp = ϕm,

where there are no overlaps between the different blocks, i.e the system {ϕki , 1 ≤
i ≤ p} satisfies the Open Set Condition. If µ+0 is the measure of maximal en-
tropy on Σ+

m, denote the measure of maximal entropy for Φ on Σ+
m × Λ by
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µmax. Then we proved in [34] that

(7) o(S) = exp
(
lim
n→∞

1

n

∫
Σ+
m

log βn(πω) dµ
+
max(ω)

)
,

where βn(x) := Card{(η1, . . . , ηn) ∈ In, x ∈ ϕη1...ηn(Λ)}. Then we proved the
following formula:

Proposition 1 ([26]). In the above setting from (6), the topological over-
lap number is,

o(S) = o(S, µmax)

= exp
(k1 log k1 + (k2 − k1) log(k2 − k1) + . . .+ (kp − kp−1) log(kp − kp−1)

m

)
.

The above estimates can be extended for the system of p-iterations

{ϕi1...ip , ij ∈ I, 1 ≤ j ≤ p}.

Corollary 2 ([26]). Let the system of conformal injective contractions
S = {ϕi, i ∈ I} with |I| = m, with Λ its limit set. Assume that there exists
a family F ⊂ Ip of p-tuples such that ϕip...i1(Λ) = ϕjp...j1(Λ) for (i1, . . . , ip),
(j1, . . . , jp) ∈ F , and denote Card(F) = N(F). Then

o(S) ≥ exp
(N(F) logN(F)

mp

)
.

However, in general there may exist only partial overlaps at the level of
p-iterates, a case covered by the next Corollaries. They apply also for Bernoulli
convolutions systems Sλ, since then the limit set is an interval Λ = Iλ and we
can estimate the proportion of overlaps at some iterate p.

Corollary 3 ([26]). In the above setting, assume that there is a family
F ⊂ Ip of p-tuples and k ≥ 1 so that for any (i1, . . . , ip) ∈ F , there ex-
ists (j1 . . . jk) ∈ Ik such that ϕi1...ipj1...jk(Λ) ⊂ ∩

(ℓ1,...ℓp)∈F
ϕℓ1...ℓp(Λ). Then, if

N(F) := Card(F), we obtain: o(S) ≥ exp
(N(F) logN(F)

mp+k

)
.

Similarly, for a more general case, we obtained the following:

Corollary 4 ([26]). In the above setting, assume that there are fam-
ilies F1, . . . ,Fs ⊂ Ip of p-tuples and positive integers k1, . . . , ks such that,
for any 1 ≤ j ≤ s and for any (ij1, . . . , ijp) ∈ Fj there exists some kj-tuple
(j1, . . . , jkj ) ∈ Ikj with ϕij1...ijpj1...jkj (Λ) ⊂ ∩

(ℓ1,...,ℓp)∈Fj
ϕℓ1...ℓp(Λ).

Then, if N(Fj) := CardFj , 1 ≤ j ≤ s, we obtain:

o(S) ≥ exp
(N(F1) logN(F1)

mp+k1
+ . . .+

N(Fs) logN(Fs)
mp+ks

)
.
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Definition 4. Let µ be a probability measure on a metric space X. The
upper, respectively lower, pointwise dimension of µ at a point x ∈ X is the
limit,

δ(µ)(x) := lim sup
r→0

logµ(B(x, r))

log r
, δ(µ(x)) := lim inf

r→0

logµ(B(x, r))

log r
.

If the upper and lower pointwise dimension coincide at x, the common value
is called the pointwise dimension of µ at x and it is denoted by δ(µ)(x). We
say that a measure µ is exact dimensional if its pointwise dimension exists at
µ-a.e x ∈ X, and it has a constant value.

Exact dimensional measures are very important in dynamics, since for
them all their dimensions (Hausdorff, pointwise, box) coincide (see [8], [45]).
Many invariant measures were studied from the point of view of dimension
in various settings, and several classes of measures were proved to be exact
dimensional; see for e.g. [3], [7], [8], [9], [10], [11], [28], [31], [37], [45], to name
a few.

Feng and Hu proved that the projections of ergodic measures on the limit
set of any finite conformal iterated system with overlaps, are exact dimensional,
and found a dimension formula.

Theorem 7 (Feng and Hu [11]). Let a finite conformal IFS S, and µ
be an ergodic measure on Σ+

I , and denote its push-forward through the coding
map on the limit set of S by ν := π∗µ. Then,

HD(ν) =
hµ(S)
|χ(µ)|

,

where the projection entropy hµ(S) := Hµ(ξ|σ−1π−1(ϵRq)) − Hµ(ξ|π−1(ϵRq)),
with ξ being the partition of Σ+

I into 1-cylinders, ϵRq is the point partition of
Rq, π−1(ϵRq) is the fiber partition of Σ+

I with respect to π, and χ(µ) is the
Lyapunov exponent of µ.

Overlap numbers were later used in [25], namely in Theorem 8 below,
to prove the exact dimensionality for a class of projection measures, which
includes the self-conformal measures (i.e projections of Bernoulli measures).
Theorem 8 has a different proof than Theorem 7, and it provides a more geo-
metric formula for the dimension of measures.

Theorem 8 ([25]). Let S be a finite conformal iterated function system
with limit set Λ, and ψ be a Hölder continuous potential on Σ+

I with equilib-
rium measure µψ, and let µ̂ψ be the equilibrium measure of ψ ◦ π1 on Σ+

I × Λ
with respect to Φ. Denote by ν2,ψ := π2∗µ̂ψ. Then the measure ν2,ψ is exact
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dimensional, and for ν2,ψ-a.e x ∈ Λ,

HD(ν2,ψ) = δ(ν2,ψ)(x) =
hσ(µψ)− log(o(S, µ̂ψ))

|χs(µ̂ψ)|
.

Thus, from the formula in Theorem 8, we see that the overlap numbers
explain the difference in dimension for projection measures between the case
of IFS with overlaps, versus the case of IFS with Open Set Condition (without
overlaps).

In particular, from Theorem 8, we obtain the exact dimensionality of
self-conformal measures, and a geometric formula for dimension by using their
overlap numbers. Indeed let µ+p be the Bernoulli measure on Σ+

I associated to

the probability vector p, and µ̂p be the lift of µ+p to Σ+
I × Λ. We also showed

in [34] that ν1,p = ν2,p, so δ(ν1,p) = δ(ν2,p), where ν1,p is a self-conformal
measure.

4. COUNTABLE CONFORMAL ITERATED FUNCTION
SYSTEMS WITH OVERLAPS

In contrast to the case of finite iterated function systems (IFS), the case
of countable IFS with overlaps is very different. For instance, the limit set is no
longer necessarily compact, and there may exist no zero for the pressure func-
tion; also, there are infinitely many images of the contractions of the system.
Many of the methods of proof are also different.

On the other hand, there are important examples from Ergodic Number
Theory, generated by countable IFS. For instance, regular continued fractions
are generated by the countable system of maps on [0, 1], given by x→ 1

x+n , x ∈
[0, 1], n ≥ 1 (for e.g. [15]). Also, one can associate countable conformal iterated
function systems to β-maps and to other types of continued fractions ([24],
[31]).

Consider thus a compact connected set X ⊂ Rq, q ≥ 1 with X = IntX.
Let a countable alphabet (set) E, and the system S of conformal injective
contractions ϕe : X → X, e ∈ E, such that there exists a bounded open
connected set W ⊂ Rq with X ⊂ W and all ϕe : X → X extend to conformal
injective maps from W to W , so that the Lipschitz constants of the maps
ϕλe , e ∈ E do not exceed a common value 0 < γ < 1. Recall that Σ+

E is the
1-sided shift on the countable alphabet E (with its canonical metric), and
σ : Σ+

E → Σ+
E is the canonical shift map. Similarly, for the 2-sided shift ΣE .

Denote by Cn−1
0 the set of cylinders in ΣE from 0 to n − 1 positions, n ≥ 1.

If ψ : ΣE → R is a continuous function, then the topological pressure P (ψ) is
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defined by

(8) P (ψ) := lim
n→∞

1

n
log

∑
ω∈Cn−1

0

exp(sup(Snψ|[ω])),

where Snψ denotes the n-consecutive sum of ψ; this limit exists due to a
subadditivity argument. Thermodynamic formalism for countable shifts was
studied for e.g. in [24], [31], [41].

Denote by Λ the fractal limit set in Rq of the system S, namely the set
of all points of type ϕω1 ◦ ϕω2 ◦ . . ., where ω = (ω1, ω2, . . .) ∈ Σ+

E (we use that
all maps ϕi are contractions). Denote by

π : Σ+
E → Λ,

the canonical projection given by the above formula, namely π(ω) = ϕω1 ◦ϕω2 ◦
. . ., for ω ∈ Σ+

E .

Definition 5. Given the countable system S = {ϕe, e ∈ E}, and a σ-
invariant probability measure µ on Σ+

E , define the projectional entropy of µ
and S, as a difference of conditional entropies, by:

hµ(S) := Hµ(ξ|σ−1π−1(ϵRq))−Hµ(ξ|π−1(ϵRq)),

where ξ is the partition of Σ+
E into 1-cylinders, ϵRq is the point partition of Rq,

and π−1(ϵRq) is the fiber partition of Σ+
E with respect to the projection π.

Definition 6. In the above setting, define the Lyapunov exponent of an
ergodic measure µ on Σ+

E with respect to the countable iterated function system
S by:

χµ := −
∫
Σ+
E

log
∣∣(ϕω1)

′(π(σ(ω))
∣∣dµ(ω).

Then, from Birkhoff’s Ergodic Theorem we obtain that for µ-a.e. ω ∈ Σ+
E ,

we have

(9) lim
n→∞

1

n
log

∣∣(ϕω|n)′(π(σn(ω))∣∣ = χµ.

We now state the main Theorem proved in [32] establishing the exact
dimensionality of the projection measure on Λ for any ergodic measure µ on
Σ+
E which satisfies a finiteness condition for the entropy (needed since we work

with a countable system). Denote by ϵΛ the point partition on the limit set
Λ ⊂ Rq and again by ξ the partition in 1-cylinders of Σ+

E .

Theorem 9 ([32]). In the above setting, if µ is ergodic on Σ+
E and

Hµ(ξ|π−1ϵΛ)) < ∞, then for µ-a.e. ω ∈ Σ+
E, we have the exact dimension-

ality of the projection measure π∗µ on Λ, and moreover,

lim
r→0

log(π∗µ(B(π(ω), r)))

log r
=
hµ(S)
χµ

.
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In fact, we proved a more general version of this Theorem for random
countable conformal IFS with arbitrary overlaps. Theorem 9 has applications to
examples from Ergodic Number Theory, such as Kahane-Salem sets, Bernoulli
convolutions, random continued fractions, as shown in [32]. To give an example,
let us denote the continued fraction with positive integer digits a1, a2, . . . by

[a1, a2, . . .] =
1

a1 +
1

a2+
1
...

.

Then, the random continued fractions are defined as [1, X1, 1, X2, . . .], where
the random variables Xi, i ≥ 1 are i.i.d and take the values 0, λ each with
probability 1/2, and where λ is a fixed number in (0,∞). Denote by νλ the
distribution of this random continued fraction, which turns out to be an in-
variant measure for a countable IFS, namely the πλ-projection of the Bernoulli
measure µ(1/2,1/2). Lyons [21] showed that νλ is singular for all λ ∈ (αc, 0.5],
where αc ∈ (0.2688, 0.2689); and in [42] it was shown that νλ is absolutely
continuous for Lebesgue-a.e λ ∈ (0.215, αc). We showed in [32] that for all
parameters λ ∈ (0,∞), the measure νλ is exact dimensional, and that for all

λ ∈ (
√
3−1
2 , 0.5), its Hausdorff (and pointwise) dimension satisfies the estimate

(10) HD(νλ) > 0.174.

Another interesting case is that of countable IFS with overlaps and place-
dependent probabilities. Finite systems with place-dependent probabilities were
studied for e.g. by Barnsley, Demko, Elton and Geronimo ([1]), by using also
the method of chains with complete connections of Onicescu and Mihoc ([35]);
see also their generalization to random systems with complete connections in
[14]. Let thus a system of smooth contractions S =

{
ϕi : V → V

}
i∈I defined

on a compact set V ⊂ RD indexed by countable I, with limit set Λ, and let
the weights pi : V → R, i ∈ I, such that ∀x ∈ V ,

(11)
∑
i∈I

pi(x) = 1.

If i1, . . . , in ∈ I, n ≥ 1, denote by ϕi1...in := ϕi1 ◦ . . . ◦ϕin . Recall that π : Σ+
I →

Λ, π(ω) = lim
n→∞

ϕω0ω1...ωn if ω = (ω0, ω1, . . .) ∈ Σ+
I , is the canonical projection.

Assume that pi(·) are uniformly Hölder continuous, i.e there exist constants
α,C > 0 so that for all x, y ∈ V and all i ∈ I,

(12) |pi(x)− pi(y)| ≤ C|x− y|α.

The transfer probability is defined by P (x,B) :=
∑
i∈I

pi(x)δϕi(x)(B), and
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the transfer operator L : C(V) → C(V) is defined by (see for e.g. [1]),

L(f)(x) =
∫
X
f(y)P (x,dy).

A measure µ on V is called stationary if it is a fixed point of the dual operator
of L,

L∗(ν)(B) =

∫
P (x,B)dν(x) =

∑
i∈I

∫
ϕ−1
i (B)

pi(x)dν(x).

It can be proved that there exist stationary measures, and they are unique
(this is basically due to condition (12) and to the uniqueness of equilibrium
measures). This stationary measure was shown in [30] to be exact dimensional,
and we found an estimate for its Hausdorff (and pointwise) dimension. For an
IFS with place-dependent probabilities S as above, let us define ψ : Σ+

I → R,

(13) ψ(ω) := log pω0(π(σω)), ω ∈ Σ+
I .

From (11) and (12) it follows that ψ has a unique equilibrium measure, denoted
by µψ on Σ+

I .

Theorem 10 ([30]). In the above setting, if the system S = {ϕi, i ∈ I} is
countable and conformal and if the probabilities {pi(·), i ∈ I} satisfy (11) and
(12), then the stationary measure µ̃P for the system S with place-dependent
probabilities P = {pi(·), i ∈ I} is exact dimensional, and

HD(µ̃P ) =
hµψ(S)
χµψ

≤
hµψ(σ)

χµψ
,

where µψ is the equilibrium measure of ψ, and hµψ(S) is the projection entropy
of µψ.

Another type of randomized countable conformal IFS was introduced and
studied in [31], namely the Smale skew product endomorphisms. For these sys-
tems it was proved the exact dimensionality of the projections of fiber measures,
and the global exact dimensionality of the projections of equilibrium measures
from the shift space onto the global basic set (after establishing certain Volume
Lemmas). The methods of proof are different for Smale endomorphisms. These
results were applied in [31] to a large class of systems generated by inverse lim-
its of non-invertible systems, and to examples from Ergodic Number Theory,
including Lüroth maps, expanding Markov-Rényi maps, continued fractions,
Manneville-Pomeau maps, β-maps (for arbitrary β > 1).

In particular, our results on Smale endomorphisms found some surprising
applications in [31] to solving the Doeblin-Lenstra Conjecture, about Diophan-
tine approximation for numbers x ∈ [0, 1] outside of the original set where
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it was solved (see for e.g. [15]), and for a larger class of invariant measures.
Moreover, in [30] Smale endomorphisms were associated to random systems
with complete connections ([14]), and they were applied to unfold countable
conformal IFS with overlaps into families of subfractals.
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Inst. H. Poincaré 24 (1988), 3, 367–394.

[2] L. Barreira, Dimension and Recurrence in Hyperbolic Dynamics. Progr. Math. 272,
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