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INTRODUCTION

Convexity notions arose naturally in the development of several complex
variables. Pseudoconvexity, which is somewhat weaker than the geometric
convexity, appeared in the pioneering works of Hartogs [38] and Levi [50, 51]
to describe geometric properties of the domains of holomorphy. Recall that a
domain Ω over Cn is said to be a domain of holomorphy if Ω is equivalent to a
connected component of the structure sheaf O → Cn. Hartogs observed that
every holomorphic map {(z, w) ∈ D2; |z| > 1

2 or |w| < 1
2} to Ω is extendable

to a holomorphic map D2 → Ω (D := {z ∈ C; |z| < 1}). Levi [50, 51] found
that any domain of holomorphy Ω ⊂ Cn with C2-smooth boundary has a
defining function ρ (i.e. Ω = {z; ρ(z) < 0} and dρ|∂Ω ̸= 0) whose complex
Hessian is positive semi-definite on the complex tangent spaces of ∂Ω. ∂∂̄ρ or
its restriction to the complex tangents of ∂Ω is called the Levi form. Poincaré’s
remark in [72] had already shown the importance of the Levi form by examples.
Another convexity notion, called holomorphic convexity, was introduced by
Cartan and Thullen [16]. A complex manifold M is called holomorphically
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convex if M can be mapped onto a closed complex analytic subset of CN by
a proper holomorphic map. Relations between these convexity notions have
been clarified by Oka based on the study of plurisubharmonic(=psh) functions
introduced in [68] and independently by Lelong [48]. In particular, it was first
established in [69] that every Ω ∈ π0(O) is holomorphically convex and satisfies
H1(Ω,O) = 0. In Oka’s theory, important existence theorems are tied together
by an approximation theorem of Runge type, so that the existence of a psh
exhaustion function is crucial to apply a limiting argument by approximating
a given domain by strongly pseudoconvex subdomains. Y.-T. Siu’s paper [75]
is a well-written survey on the construction of psh functions in this context.

Local geometry of the boundary of pseudoconvex domains is reflected
on the space of holomorphic functions in a somewhat subtler way. In 1933,
Bergman [11] observed that the reproducing kernel BΩ(z, w) of the space of
square integrable (=L2) holomorphic functions on some class of bounded pseu-
doconvex domains Ω ⊂ C2 satisfies

δΩ(z)−2 ≲ BΩ(z, z) ≲ δΩ(z)−3 (δΩ(z) := inf
w/∈Ω

∥z − w∥)

i.e. cδΩ(z)−2 < BΩ(z, z) < CδΩ(z)−3 for some positive constants c and C.
In 1965, Hörmander proved in [41] that, given a domain Ω ⊂ Cn,

lim
z→z0

BΩ(z, z)δΩ(z)n+1

exists and is > 0 if the range of the ∂̄-operator L0,0
(2)(Ω) → L0,1

(2)(Ω) is closed

and ∂Ω is strongly pseudoconvex at z0. Here Lp,q(2)(Ω) denotes the space of L2

(p, q)-forms on Ω. Fefferman [31] refined it for bounded pseudoconvex domains
Ω with C∞-smooth boundary by showing that

BΩ(z, z) = φ(z)δΩ(z)−n−1 + ψ(z) log δ(z)

holds for some C∞ functions φ and ψ on Ω. Recall that the main result of
[31] is the C∞ extendability of any biholomorphic map between two strongly
pseudoconvex domains Ω1 and Ω2 with C∞-smooth boundary, as a diffeomor-
phism from Ω1 to Ω2. On the other hand, by an extension theorem in [67],
BΩ(z, z) ≳ δΩ(z)−2 turned out to be true for any bounded pseudoconvex do-
main Ω with Lipschitz continuous boundary.

In these decades, many results have been obtained for BΩ under various
positivity assumptions on ∂∂̄ρ and under weaker regularity assumptions on
∂Ω. In many of such works the ingredient of the methods has been the combi-
nation of constructing psh functions involving geometric data and solving the
∂̄-equations with corresponding L2 estimates.

The purpose of the present article is to review some of such results at
first and proceed to study questions on the space of weighted L2 holomorphic
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sections of vector bundles on bounded locally pseudoconvex domains Ω in a
complex manifold X. Here the vector bundles with fiber metrics are given over
X. Our main interest is to know how far one can replace the existence of psh
exhaustion functions on Ω by the combination of the mere local pseudoconvex-
ity of Ω and the positivity of the curvature form of the bundle on ∂Ω. A result
to which we would like to give the outline of a proof is the following.

Theorem 1. Let Ω be a bounded locally pseudoconvex domain with C2-
smooth boundary in a complex manifold X and let L → X be a holomorphic
line bundle with a C∞ fiber metric h whose curvature form is positive at every
point of ∂Ω. Then, for any ε > 0 one can find ν0 ∈ N such that

(0.1) lim inf
z→∂Ω

BΩ,Lν (z) · ρ(z)2−ε > 0.

holds for any ν ≥ ν0. Here BΩ,Lν denotes the Bergman kernel for the L2

Lν-valued holomorphic n-forms with respect to hν .

Studies in this direction were suggested by Grauert [34, 35, 36] and results
preceding Theorem 1 have been obtained by Pinney [71] and Asserda [8]. The
methods in [71] and [8] apply to yield (0.1) with ε = 0 if X is compact and
F is a positive line bundle on X. It is very natural to expect that this best
estimate holds in general, but a better understanding of the ∂̄-equation seems
to be necessary to verify it.

1. NOTATION AND PRELIMINARIES

We shall recall a basic result on the L2 ∂̄-cohomology group, which is a
generalization of Kodaira’s vanishing theorem to complete Kähler manifolds,
initiated by Andreotti and Vesentini [5, 6, 7] and finalized by Demailly [22].

Let M be a connected and paracompact complex manifold of dimension n,
let C∞(M) := {f ∈ CM ; f is of class C∞}, let O(M) := {f ∈ C∞(M); ∂̄f = 0}
and let OM → M be the structure sheaf of M . Here ∂̄ denotes the complex
exterior derivative of type (0,1).

Given a holomorphic vector bundle π : E →M , we put

Cp,q(M,E) = {E-valued C∞ (p,q)−forms on M}
and

Hp,q(M,E)= the E-valued ∂̄-cohomology group of M of type (p, q)

:=
Ker(∂̄|Cp,q(M,E))

Im(∂̄|Cp,q−1(M,E))
.

Note that O(M) = H0,0(M), where Hp,q(M) := Hp,q(M,E) with E =
C×M →M .
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By the Dolbeault isomorphism, Hp,q(M,E) is canonically isomorphic to
the sheaf cohomology group Hq(M,Ωp(E)), where Ωp(E) denotes the sheaf of
germs of E-valued holomorphic p-forms. By an abuse of notation, vector bun-
dles are identified with locally free sheaves and Hq(M,Ωp(E)) will be denoted
also by Hq(M,∧p(T 1,0

M )∗ ⊗ E), where T 1,0
M denotes the holomorphic tangent

bundle of M .

We put

Lp,q(2)(M,E, g, h) = {E-valued L2 (p, q)- forms on M w.r.t. (g, h)}

and

Hp,q
(2)(M,E, g, h) = the E-valued ∂̄-cohomology group of M

of type (p, q) w.r.t. (g, h)

:=
Ker(∂̄|Lp,q

(2)
(M,E,g,h))

∂̄(Lp,q−1
(2) (M,E, g, h)) ∩ Lp,q(2)(M,E, g, h)

.

By an abuse of notation, for any open set Ω ⊂M we put

Hp,q
(2)(Ω, E, g, h) := Hp,q

(2)(Ω, π
−1(Ω), g|Ω, h|π−1(Ω)).

Hp,q
(2)(M)(= Hp,q

(2)(M, g)) will stand for Hp,q
(2)(M,E, g, h) if E = C×M and h = 1.

Theorem 2 ([22]. See also [58, 60]). If g is Kähler, rankE = 1 and the
curvature form Θ of h is positive, then Hn,q

(2) (M,E,Θ, h) = 0 for all q ≥ 1.

Here Θ is identified with a metric on M (by an abuse of notation).

Let D be the unit disc centered at 0 in C. We define the set of subharmonic
functions on D by

SH(D) :=

{
u : D −→

u.s.c.
[−∞,∞);u(z) ≤ 1

2π

∫ 2π

0
u(z + reiθ)dθ ∀z ∈ D

}
,

where 0 < r < 1 − |z| and u.s.c.=upper semicontinuous.

Let O(D,M) be the set of holomorphic maps from D to M , i.e.

O(D,M) := {f : D −→
cont.

M ; s ◦ f ∈ OD for any s ∈ OM}.

Then we set

PSH(M) :=
{
u : M −→

u.s.c.
[−∞,∞); f ∈ O(D,M) ⇒ u ◦ f ∈ SH(D)

}
.

Recall that

f ∈ O(M) ⇒ log |f |, |f |p ∈ PSH(M) (p > 0)
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and that λ ◦ φ ∈ PSH(M) holds for any φ ∈ PSH(M) ∩ L∞
loc and any convex

increasing function λ on R. Elements of PSH(M) are called plurisubharmonic
(=psh) functions on M . A subset A of M is called pluripolar if φ|A = −∞ for
some φ ∈ PSH(M) \ {−∞}.

Definition 1. M is called weakly 1-complete if there exists a C∞ psh
function Φ on M such that Mc := {x; Φ(x) < c} ⋐M for all c.

The function Φ will be referred to simply as an exhaustion function of
M . We shall say also that (M,Φ) is a weakly 1-complete manifold.

For any φ ∈ L1
loc(M) a subsheaf Iφ ⊂ OM is defined as the germs of

functions f such that e−φ|f |2 is locally integrable. We put

Hn,0
(2) (M,E, g, e−φh) :=

{
f ∈ Hn,0(M,E);

∣∣∣∣∫
M
e−φh(f) ∧ f

∣∣∣∣ <∞
}
.

Here, in this notation h ∈ Hom(E,E
∗
), which is applied to E-valued

differential forms coefficientwise.
Note that Hn,0

(2) (M,E, g, e−φh) does not depend on the choice of g.

Hp,q
(2)(M,E, g, h) is similarly generalized to Hp,q

(2)(M,E, g, e−φh) for any

(p, q) and φ ∈ L1
loc(M). By analyzing Hn,q

(2) (M,E, g, e−φh) similarly as in The-
orem 2, one has the following.

Theorem 3 (cf. [52] and [24]). Let (M, g) be a weakly 1-complete Kähler
manifold and let (E, h) be a holomorphic Hermitian line bundle and let φ ∈
L1
loc(M). If e−φh is locally equal to e−ψh̃ for some plurisubharmonic ψ and

smooth h̃ such that the curvature form of h̃ is positive,

Hq(M,KM ⊗ E ⊗ Iφ) = 0

holds for q ≥ 1. Here KM denotes the canonical bundle of M .

Remark 1. Predecessors of Theorem 2 are Kodaira’s vanishing theorem
in [46] and its generalizations [4], [53], [5, 6, 7] as well as Hörmander’s L2

solution of the Cousin’s problem in [41]. Generalization to weakly 1-complete
manifolds as in Theorem 3 was initiated by Nakano [54, 55, 56]. (See also [28]
and [76].)

Grauert [36] showed that weakly 1-complete manifolds need not be holo-
morphically convex. For instance, if M is the total space of a holomorphic
line bundle F over a compact and connected Kähler manifold of dimension
≥ 1 such that c1(F ) = 0 (i.e. F is topologically trivial) and that F k is not
trivial for any k ∈ N, it is seen from the maximum principle that M does not
admit any nonconstant holomorphic function. Nevertheless, an existence the-
orem analogous to [35] holds on weakly 1-complete manifolds. Namely, given
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a holomorphic Hermitian line bundle L with curvature form Θ over a weakly
1-complete manifold (M,Φ) and c ∈ R, the equivalence of the following 1) and
2) is an immediate consequence of [57].

1) ∀d > c ∃ m ∈ N and a meromorphic map η from Md := {x; Φ(x) < d}
to CPN (N ≫ 1) by the ratio of holomorphic sections of Lm|Md

s.t. η|Md\Mc

is a holomorphic embedding.

2) Θ|M\Mc
is positive.

Results in [57] implying the equivalence of 1) and 2) can be summarized
as follows.

Theorem 4 (Grauert-type approximation theorem). Let (M,φ) be an
n-dimensional weakly 1-complete manifold and let L → X be a holomorphic
Hermitian line bundle whose curvature form is positive on the complement of
Mc for some c <∞. Then

dimHn,q(M,L) <∞

holds for q ≥ 1 and the restriction homomorphism

Hn,q(M,L) → Hn,q(Mc, L)

has dense image for q ≥ 0.

Recently, Theorem 4 has been extended to describe a relation between
the positivity of Θ|∂Ω and a convexity property of Ω with respect to sections
of Lm|Ω, where Ω is a relatively compact locally pseudoconvex domain with
C2-smooth boundary in a complex manifold X and (L, h) is a Hermitian holo-
morphic line bundle over X (cf. [65]). Theorem 1 will be proved in §4 by
applying the results in [65] which will be recalled there.

Remark 2. As for a condition for weakly 1-complete manifolds to be holo-
morphically convex, Takayama [78] showed that the negativity of KM of M
suffices. It was shown in [64] that M is holomorphically convex if KM is only
assumed to be negative outside a compact subset of M . Given a complex mani-
fold X and a locally pseudoconvex bounded domain Ω in X with C2 boundary,
it had been shown in [63] that Ω can be mapped properly and holomorphically
onto a locally Stein closed complex analytic subset of an open set of CN . (Lo-
cally closed complex submanifolds of CN need not be Stein even if they are
locally Stein, as was known by [21, Remark 3]. See also [20] and [74].) Struc-
ture theorems have been obtained under curvature conditions on the tangent
bundle, when M is compact (cf. [40]). In these works, Theorem 1, Theorem 2
and their refinements play important roles.
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2. HYPERCONVEXITY AND THE BERGMAN KERNEL

In the following, we shall restrict ourselves to the results on a special class
of Stein manifolds which are modelled on homogeneous bounded domains in
Cn. Simple examples are the open balls Bn := {z ∈ Cn; ∥z∥ < 1} and polydiscs
Dn.

For any complex manifold M we put

SPSH(M) :=
{
u ∈ PSH(M);u ∈ C2 and ∂∂̄u > 0

}
.

Here ∂∂̄u is identified with the complex Hessian of u by an abuse of
notation. Recall that a weakly 1-complete manifold (M,Φ) is a Stein manifold
if Φ ∈ SPSH(M) (cf. [35]).

Definition 2. M is said to be hyperconvex if there exists a function Φ ∈
SPSH(M) which maps M properly onto [−1, 0).

If M is hyperconvex, it is easy to show by the L2 method, by applying
Theorem 2 for instance, that the correspondence

M ∋ x 7→ {f ; f(x) = 0} ⊂ Hn,0
(2) (M),

which shall be denoted by ιM , is an embedding into the projective space

(Hn,0
(2) (M))∗/(C \ {0})

if M is hyperconvex.

S. Kobayashi [45] observed that the Fubini-Study metric on

(Hn,0
(2) (M))∗/(C \ {0})

induces the Bergman metric on M by such an embedding. This characteriza-
tion of the Bergman metric implies the following criterion for its completeness.

Theorem 5 ([45, Theorem 9.1]). The embedding ιM induces a complete
metric on M if the following is satisfied: for every infinite sequence S of points
of M which has no adherent point in M and for each f ∈ Hn,0

(2) (M), there exists

a subsequence S′ of S such that

lim
S′

f ∧ f
BM

= 0,

where BM denotes the Bergman kernel of M restricted to the diagonal.

If M is a bounded domain in Cn, Kobayashi’s criterion is satisfied if the
function |BM/(dz ∧ dz)| is exhaustive and O(M)∩L∞ is dense in O(M)∩L2.
Based on this observation, it was shown in [59] that bounded Stein domains
Ω with C1 boundary in Stein manifolds are complete with respect to the
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Bergman metrics ∂∂̄ logBΩ(z, z). Since it was shown by Kerzman and Rosay
[44] that such domains are hyperconvex, it was natural to ask whether or not
the Bergman metrics on hyperconvex manifolds are complete. This was settled
by B.-Y. Chen [17]. Namely,

Theorem 6. The Bergman metrics on hyperconvex manifolds are com-
plete.

Let us recall the works on hyperconvexity before and after [17].

First, we shall recall some basic results on hyperconvexity.
Clearly, (M,− log (−Ψ)) is Stein if (M,Ψ) is hyperconvex. Conversely,

if (M,Φ) is Stein and the length of ∂Φ w.r.t. ∂∂̄Φ is bounded, then it is

easy to see that one can find two constants a, b > 0 such that

(
M,

−b
a+ Φ

)
is

hyperconvex. In other words, a hyperconvex manifold can be identified with
a complete Kähler manifold (M, g) of the form g = ∂∂̄Φ for an exhaustion
function Φ with bounded gradient. Bounded homogeneous domains in Cn are
of this class (cf. [43]). It is known that

Hp,q
(2)(M) = 0 if p+ q ̸= n

holds for such (M, g) (cf. [29]). An open question here is whether or not
Hp,q

(2)(M) ̸= 0 if p+ q = n.

If n = 1, a theorem of Bouligand [13] in 1926 implies that a bounded do-
main Ω ⋐ C is hyperconvex if and only if every element of C0(∂Ω) is extendable
to an element of C0(Ω) harmonically on Ω.

In several complex variables, the notion of hyperconvexity was introduced
by Stehlé [77] in 1975, where the Steinness of analytic fiber bundles over Stein
manifolds was proved for hyperconvex fibers.

After Stehlé’s work, hyperconvexity has been verified under various reg-
ularity assumptions on the boundary. In the study of smoothly bounded pseu-
doconvex domains, Diederich and Fornaess [26] obtained the following in 1977.

Theorem 7. Let X be a Stein manifold and Ω ⊂ X a relatively compact
pseudoconvex domain with Cr-boundary, 2 ≤ r ≤ ∞. Then there is a Cr

defining function ρ on a neighborhood U of Ω, such that for any number η with
0 < η < 1 and η small enough, the function ρ̂ = −(−ρ)η belongs to SPSH(Ω).

By Stehlé’s method of patching psh functions, the following was estab-
lished in [44].

Proposition 1. A bounded domain Ω ⋐ Cn is hyperconvex if and only
if each boundary point of Ω has a neighborhood U in Cn such that U ∩ Ω is
hyperconvex.
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Theorem 7 was extended in [44] as follows.

Theorem 8. Bounded Stein domains with C1-boundary in Stein mani-
folds are hyperconvex.

Theorem 8 was further extended by Demailly [23] to the following.

Theorem 9. Bounded Stein domains with Lipschitz continuous boundary
in Stein manifolds are hyperconvex.

In [62] the following was proved by combining the L2 extension theorem
in [67] and the symmetry property of the Green function.

Theorem 10. Let Ω ⋐ M be a bounded hyperconvex domain in a Stein
manifold M . Then

lim
z→∂Ω

BΩ(z) = ∞.

In 1994, Diederich told the author that Herbort had proved the Bergman
completeness of 1-dimensional hyperconvex manifolds.

In [66], based on a work of Takeuchi [79] and Elencwajg [30], Sibony and
the author extended Theorem 7 as follows.

Theorem 11. Let Ω ⋐ M be a pseudoconvex domain with C2 boundary
in a complete Kähler manifold (M, g). Assume that the holomorphic bisectional
curvature of M is strictly positive. Let r(z) = −dist(z, ∂Ω) =: δ(z) where δ
is computed with respect to the Kähler metric. Then there exists ε > 0 such
that φ = −(−r)ε is plurisubharmonic on Ω and there is a constant cε such that
∂∂̄φ ≥ cε|φ|g.

Harrington [37] generalized Theorems 9 and 11 by showing the following.

Theorem 12. Let Ω ⊂ CPn be a pseudoconvex domain with Lipschitz
boundary. There exist a Lipschitz defining function ρ and an exponent
0 < η < 1 such that i∂∂̄(−(−ρ)η) ≥ C(−ρ)ηω in the sense of currents where
C > 0 and ω is the Kähler form for the Fubini-Study metric on CPn.

Combining Theorem 12 with Theorem 6, one knows that Stein domains
with Lipschitz continuous boundary in CPn have complete Bergman metrics.

Remark 3. Theorem 11 was originally meant to explore the geometry of
pseudoconvex domains in CP2 to verify the nonexistence of Levi flat hypersur-
faces, which still remains as an open question.

Remark 4. Quite recently, Chen [19] proved that BΩ(z, z) ≳ δΩ(z)−2

holds if Ω = {z; ρ(z) < 0} ⋐ Cn for some continuous psh function ρ defined on
a neighborhood of Ω, by exploiting the idea of [15].
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We note that even the quantitative hyperconvexity achieved in Theorem
11 does not seem to imply the Bergman completeness of Ω in a straightforward
way. This difficulty has been overcome by the development of the study of
pluricomplex Green function, the higher dimensional analogue of the Green
function which is most natural in the context of several complex variables. We
shall sketch its elements next.

3. PLURICOMPLEX GREEN FUNCTION AND THE
BERGMAN METRIC

In several complex variables, the following is the most natural generaliza-
tion of the Green function in one complex variable.

Definition 3.

GM (z, w) := sup {u ∈ PSH(M);u < 0 and u(z) − log distg(z, w) ∈ L∞
loc}

is called the pluricomplex Green function of M .

If n = 1, GM (z, w) = GM (w, z) follows from Gauss-Green’s formula and
it is known by Poisson, Schwarz and Perron that

lim
z→w

lim
r→1

1

2π

∫ 2π

0
u(eiθ)

∂

∂r
GD(z, reiθ)dθ = u(w)

holds for all u ∈ C0(∂D) and w ∈ ∂D.

According to Lempert [49],

GΩ(z, w) ≡ GΩ(w, z)

holds if Ω is a bounded convex domain in Cn. However, Bedford and Demailly
[10] showed that

GΩ(z, w) ̸≡ GΩ(w, z)

if Ω is a hyperconvex domain {z = (z1, z2) ∈ C2; ρ(z1, z2) < 0} with

ρ(z1, z2) = max

(
1

2
log

(
|z22 − z21(z1 − a)|

ϵ2

)
, log |z1|

)
(0 < ϵ≪ |a| < 1).

In spite of such an disadvantage, useful properties of GM have been found.
Of particular importance for the Bergman metric is the behavior of the sublevel
sets A(w,M) := {z;GM (z, w) ≤ −1}, which was explored by virtue of the
following.
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Proposition 2 (Carlehed-Cegrell-Wikström [14]). Let Ω ⊂ Cn be a
bounded hyperconvex domain and (wm)m ⊂ Ω a sequence, that converges to
a boundary point. Then there exists a pluripolar set A ⊂ Ω such that

lim sup
m→∞

GΩ(z, wm) = 0

for all z ∈ Ω \A.

The following information on the volume (=:Vol) of A(w,Ω) for the do-
mains Ω ⊂ Cn can be deduced from Proposition 2.

Lemma. Let Ω ⊂ Cn be a bounded hyperconvex domain and (yj)j a se-
quence that converges to a point y0 ∈ ∂Ω. Then there exists a subsequence
(yjℓ)ℓ of (yj)j such that Vol(A(yjℓ ,Ω)) → 0, as ℓ→ ∞.

Then, by combining Theorem 5 with a standard method in [41] one can
prove

Theorem 13 (B locki-Pflug [12], Herbort [39]). The Bergman metric is
complete on bounded hyperconvex domains in Cn.

By a similar method based also on a result in [23], Theorem 13 was
generalized to Theorem 6 in [17].

There exist Bergman complete but non-hyperconvex domains.

Theorem 14 (cf. [39]). The domain

Ω =

{
(z1, z2) ∈ C2; 0 < |z1| < 1, |z2|2exp

(
1

|z1|2

)
< 1

}
is Bergman complete, but not hyperconvex.

More counterexamples are in [42] and [80].

Recently, Chen [18] showed the following.

Theorem 15. Let Ω be a bounded Stein domain in a Stein manifold. If
∂Ω is Hölder continuous, then Ω is hyperconvex.

At this point, the difference between Cn and CPn became apparent, be-
cause there exist non-hyperconvex Stein domains in CPn which have Hölder
continuous boundary if n ≥ 3 (cf. [27]).

Remark 5. Adachi [1] has discovered a hyperconvex manifold M with-
out nonconstant bounded holomorphic functions. It is remarkable that M is
an analytic D-bundle over a compact Riemann surface and function spaces on
some of such manifolds can be analyzed in great detail (cf. [2, 3]). Other kind
of examples have been known in the context of characterizing Stein manifolds
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without nonconstant bounded holomorphic functions (parabolic Stein mani-
folds). Sibony and Wong [73] showed that if the growth of the volume of an
analytic set A ⊂ Cn is slow enough, then every bounded holomorphic function
on A is constant. Such examples contained infinitely many copies of C. (See
also [9].)

4. FINITE-DIMENSIONALITY AND HARMONIC
REPRESENTATION FOR THE L2 COHOMOLOGY

Let (X, g) be a complete Hermitian manifold of dimension n and let (E, h)
be a holomorphic Hermitian vector bundle overX. For any u ∈ Lp,q(2)(X,E, g, h),

the pointwise norm of u with respect to (g, h) is denoted by |u|. Let ωg denote

the fundamental form of g and set dVg =
1

n!
ωng . We put

∥u∥2 =

∫
|u|2dVg.

Let
∂̄ :

⊕
p,q

Lp,q(2)(X,E, g, h) →
⊕
p,q

Lp,q+1
(2) (X,E, g, h)

be the maximal closed extension of the complex exterior differentiation

∂̄ :
⊕
p,q

Cp,q0 (X,E, g, h) →
⊕
p,q

Cp,q+1
0 (X,E, g, h)

of type (0,1), where Cp,q0 (X,E) denotes the set of compactly supported E-
valued C∞ forms on X, equipped with the structure of pre-Hilbert space with
respect to the metrics g and h. Dom∂̄, Im∂̄ and Ker∂̄ will stand for the domain,
the image and the kernel of ∂̄ on ⊕Lp,q(2)(X,E, g, h), respectively.

Let
∂̄∗ :

⊕
p,q

Lp,q(2)(X,E, g, h) →
⊕
p,q

Lp,q−1
(2) (X,E, g, h)

be the adjoint of ∂̄. We put H (X,E, g, h) = Ker∂̄ ∩ Ker∂̄∗.

H (X,E, g, h) ∩ Lp,q(2)(X,E, g, h) ∼=
Ker∂̄ ∩ Lp,q(2)(X,E, g, h)

[Im∂̄] ∩ Lp,q(2)(X,E, g, h)
,

where [Im∂̄] denotes the closure of Im∂̄.
The following is most basic for our purpose.

Proposition 3. dimHp,q
(2)(X,E, g, h) < ∞ if there exist a compact set

K ⊂ X and a constant C > 0 such that

(4.1) ∥u∥2 ≤ C

(∫
K
|u|2dVg + ∥∂̄u∥2 + ∥∂̄∗u∥2

)
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holds for all u ∈ Dom∂̄ ∩ Dom∂̄∗ ∩ Lp,q(2)(X,E, g, h).

Recall that the proof of Proposition 3 is done by combining Rellich’s
lemma and the finite-dimensionality of Banach spaces whose bounded sets are
relatively compact. Note that no estimate for dimHp,q

(2)(X,E, g, h) is obtained
from Proposition 3.

Recall also that (4.1) follows immediately if there exists a compact set
K1 in the interior of K such that dωg = 0 on X \K1 and the curvature form
of h denoted by Θh satisfies Θh ≥ IdE ⊗ g on X \K1. In fact, that (4.1) holds
for u ∈ Cn,q0 (X,E) (q ≥ 1) follows from the equality

((∂̄∂̄∗ + ∂̄∗∂̄ − ∂h∂
∗
h − ∂∗h∂h)u, u) = ∥∂̄u∥2 + ∥∂̄∗u∥2 − ∥∂hu∥2 − ∥∂∗hu∥2

applied to u ∈ Cn,q0 (X \K1, E) through integration by parts, and by combining
this equality with Nakano’s formula

(4.2) ∂̄∂̄∗ + ∂̄∗∂̄ − ∂h∂
∗
h − ∂∗h∂h = [

√
−1Θh, ω

∗
g ]

and the inequality ([
√
−1Θh, ω

∗
g ]u, u) ≥ ∥u∥2 coming from the pointwise one.

Here (, ) denotes the inner product, ∂h denotes the (1,0)-part of the Chern
connection for h, ∂∗h the adjoint of ∂h, and ω∗

g denotes the pointwise adjoint of
u 7→ ωg ∧u. The (1,1)-form Θh is identified with the exterior multiplication by
it from the left hand side.

In general, once the estimate (4.1) is known to hold for Cp,q0 (X,E), it
extends to Dom∂̄∩Dom∂̄∗∩Lp,q(2)(X,E) by the completeness of g. (cf. [32, 33].

See also [5, 6, 7].) One can deduce Theorem 4 by combining this reasoning with
a limiting argument in the proof of Proposition 3.4.5 in [41], which is similar
as in the following.

Proposition 4 (cf. [62]). Let φµ (µ = 1, 2, . . . ) be an increasing sequence
of C∞ functions on X converging to a C∞ function φ on X such that (4.1) for
fixed p, q, K and C holds for all u ∈ rmDom∂̄ ∩Dom∂̄∗∩Lp,q(2)(X,E, g, he

−φµ).
Then there exist µ0 > 0 and C1 > 0 such that

(4.3) ∥u∥2 ≤ C1(∥∂̄u∥2 + ∥∂̄∗u∥2)

holds for those u ∈ Dom∂̄∩Dom∂̄∗∩Lp,q(2)(X,E, g, he
−φµ) which are orthogonal

to H (X,E, g, he−φ) in Lp,q(2)(X,E, g, he
−φ), if µ ≥ µ0.

Proof. The proof is done by contradiction. Assume on the contrary that
there exists no such C1. Then one can find a sequence uµ ∈ Dom∂̄ ∩ Dom∂̄∗ ∩
Lp,q(2)(X,E, g, he

−φµ) (µ = 1, 2, . . . ) with ∥uµ∥ = 1 which has a subsequence

uµk (k = 1, 2, . . . ) such that limk→∞ ∥∂̄uµk∥ = 0, limk→∞ ∥∂̄∗uµk∥ = 0 and
uµk ⊥ H (X,E, g, he−φ). By Rellich’s lemma (or by Sobolev’s embedding
theorem) one has a strongly locally convergent subsequence of uµk whose limit,



182 T. Ohsawa 14

say u∞ is an element of Lp,q(2)(X,E, g, he
−φ) satisfying ∂̄u∞ = 0, ∂̄∗u∞ = 0 and

u∞ ⊥ H (X,E, g, he−φ). But (4.1) for fixed K and C for all uµk implies that
u∞ ̸= 0, which is clearly a contradiction.

Hence we obtain the following by virtue of a fundamental theorem of
Hörmander (cf. [41, Theorem 1.1.4]).

Proposition 5. In the situation of Proposition 4,

dimHp,q
(2)(X,E, g, he

−φµ) <∞

for all µ and the homomorphisms Hp,q
(2)(X,E, g, he

−φµ) → Hp,q
(2)(X,E, g, he

−φν )

(ν ≥ µ) induced by the inclusions are bijective for sufficiently large µ.

5. APPLICATION OF THE FINITE-DIMENSIONALITY TO
BUNDLE-CONVEXITY

It was observed by Grauert [34] that, for any Stein manifold X and any
point x ∈ X, X \{x} admits a complete Kähler metric of the form ∂∂̄φ+∂∂̄ψ,
where φ is a C∞ plurisubharmonic function on X and ψ is a C∞ function on
X \ {x} such that suppψ is relatively compact in X. In order to apply Propo-
sition 5 to obtain nontrivial existence results, we need some additional infor-
mation on the metric for suitable choices of φ and ψ, which can be formulated
as follows.

Proposition 6. Let Ω be a bounded domain in Cn which admits a C∞

psh exhaustion function φ : Ω → [1,∞) satisfying ∂∂̄φ ≥ ∂φ∂̄φ and

(5.1) lim
c→∞

sup
{
Rφz,w; z, w ∈ Ω and |φ(z) − φ(w)| > c

}
= 0,

where Rφz,w :=
log (| log ∥z − w∥| + 1)

φ(w)
.

Then there exists a C∞ strictly psh function Φ on a neighborhood of
Ω and constants A > 0 and B > 0 such that, for any sufficiently large c
and any z0 ∈ Ω satisfying 2c < φ(z0) < 3c, one can find a C∞ function
ψ : Ω \ {z0} → (−∞, 0] satisfying the following conditions.

1) ∂∂̄(Φ + ψ +Aφ) is a complete Kähler metric on Ω \ {z0} satisfying

∂∂̄(Φ + ψ +Aφ) ≥ ∂φ∂̄φ+
1

A
∂ψ∂̄ψ.

2) e−ψ(z) = 2n log
1

∥z − z0∥
+B on {z ∈ Ω \ {z0}; 2c < φ(z) < 3c}.

3) suppψ ⋐ {z ∈ Ω; c < φ(z) < 4c}.
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For the proof, the reader is referred to [65].

Definition 4 (Grauert [36]). Given E → M, M is called strictly E -
convex if

∀K ⋐M ∃K̂ ⋐ E s.t. ∀x ∈M \ 0−1(K̂) and ∀v ∈ Ex

∃s ∈ Γ(M,E) s.t. s(K) ⊂ K̂ and s(x) = v.

Here, 0 : M → E denotes the zero section.

Definition 5 (Pinney [71], Asserda [8]). Given E →M and Ω ⋐M , Ω is
called E -convex if

∀γ ∈ ΩN s.t. γ(N) ̸⋐ Ω ∃s ∈ Γ(Ω, E) s.t. s(γ(N)) ̸⋐ E.

Theorem 16 (Asserda [8]). Suppose thatM ⋐M , rankE = 1 and E > 0.
Then, for any locally pseudoconvex Ω ⋐ M , one can find µ0 ∈ N such that Ω
is Eµ-convex for µ ≥ µ0.

Theorem 17 (Bundle-convexity theorem). Let Ω ⋐ X be a bounded lo-
cally pseudoconvex domain and let (L, h) be a holomorphic Hermitian line bun-
dle over X whose curvature form is positive on ∂Ω. Assume that ∂Ω is a C2

real hypersurface. Then, for any Hermitian holomorphic vector bundle (F, hF )
over X, Ω is (F ⊗ Lµ, hFh

µ)-convex for sufficiently large µ.

Proof. Let X,Ω and (L, h) be as above. Let us fix a fiber metric κ of the
canonical bundle KX of X.

Let us choose a Hermitian metric g on X such that g = Θh on a neigh-
borhood of ∂Ω. Let φ be as in Proposition 6.

Let xν (ν = 1, 2, . . . ) be a sequence of points in Ω which does not have
any accumulation point in Ω. Then, by Proposition 6, for any holomorphic
Hermitian vector bundle (F, hF ) on X, one can find a subsequence xνk of xν ,
an increasing sequence ck ∈ (1,∞) (k = 1, 2, . . . ) satisfying 8ck + 1 < ck+1,
a complete Hermitian metric g̃ on Ω \ {xνk ; k = 1, 2, . . . } and a C∞ function
ψ̃ : Ω \ {xνk ; k = 1, 2, . . . } → (−∞, 0) such that

suppψ̃ ∩
∞⋃
k=1

{x; 8ck < φ(x) < ck+1} = ∅,

ee
−ψ̃

is not integrable around each xνk , and
√
−1(ΘF + IdF ⊗ (−Θκ − ∂∂̄e−ψ̃ + µ∂∂̄(ψ̃ + φ) + µ2Θh)) ≥ IdF ⊗ ωg̃

holds outside a compact subset of Ω\{xνk ; k = 1, 2, . . .} for sufficiently large µ.
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Therefore, by Nakano’s formular and Proposition 3,

dimHn,1
(2) (Ω′,K−1

X ⊗ F ⊗ Lµ
2
, g̃, κ−1 ⊗ hF ⊗ ee

−ψ̃
e−µ(ψ̃+φ)hµ

2
) <∞

holds for sufficiently large µ. Here Ω′ = Ω \ {xνk ; k = 1, 2, . . . } and n = dim Ω.
On the other hand, it is clear in this situation that one can find C∞

sections sℓ (ℓ = 1, 2, . . . ) of F ⊗ Lµ
2

on Ω satisfying

lim
k→∞

|sℓ(xνk)|
hF⊗hµ2 = ∞,

lim
k→∞

∣∣∣∣ sℓ(xνk)

sℓ+1(xνk)

∣∣∣∣ = 0,

and

∂̄sℓ ∈ Ln,1(2) (Ω
′,K−1

X ⊗ F ⊗ Lµ
2
, g̃, κ−1 ⊗ hF ⊗ ee

−ψ̃
e−µ(ψ̃+φ)hµ

2
)

for all ℓ.
Hence one can find a nontrivial linear combination of sℓ, say σ =

∑N
ℓ=1 aℓsℓ

such that there exists a solution to ∂̄s = ∂̄σ with

s ∈ Ln,0(2) (Ω
′,K−1

X ⊗ F ⊗ Lµ
2
, g̃, hF ⊗ ee

−ψ̃
e−µ(ψ̃+φ)hµ

2
).

Clearly σ−s extends to a holomorphic section σ̃ of F⊗Lµ2 which satisfies

lim
k→∞

|σ̃(xνk)| = ∞.

6. PROOF OF THE KERNEL ASYMPTOTICS

In the situation of Theorem 17, it is natural to ask whether one can see
the asymptotic behavior of the Bergman kernels BΩ,Lν for the Bergman spaces

Hn,0
(2) (Ω, Lν , hν) as z → ∂Ω for ν ≫ 1. Recall that BΩ,Lν ,µ(x) on Ω defined by

BΩ,Lν (x) := sup

{
|s(x)|2

∥s∥2
; s ∈ Hn,0

(2) (Ω, Lν , hν) \ {0}
}
.

From the proof of Theorem 17 one cannot directly see the boundary behavior of
BΩ,Lν . Nevertheless, after reducing the question to the case where

√
−1Θh > 0

on Ω, by allowing singularities of h along ∂Ω, such asymptotics can be analyzed
by solving the ∂̄ equations with L2 norm estimates by a standard technique
(cf. [Hm], [Dm-1,3] or [Oh-2,4]). The reduction is done by the following.

Lemma. Let X be a complex manifold and let L → X be a holomorphic
line bundle. If the meromorphic map

σ : X · · · → Proj(H0,0(X,L)) := H0,0(X,L)∗/(C \ {0})
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induced from the correspondence x 7→ {s; s(x) = 0} is proper onto its image,
there exists a complex manifold X̃ with a proper and bimeromorphic holomor-
phic map π : X̃ → X and a divisor A on X̃ with compact support such that
σ ◦ π is holomorphic and

π∗L⊗ [A] = (σ ◦ π)∗O(1),

where O(1) denotes the hyperplane section bundle over Proj(H0,0(X,L)).

Proof. Given such σ as above, by virtue of a theorem of Hironaka, there
exists a succession of blow-ups XN → XN−1 → · · ·X1 → X0 = X which ends
up with a map π : X̃ → X with the required property.

Hence, by applying Theorem 2 after modifying (X,L) to (X̃, L̃) with a
positive line bundle L̃→ X̃ extending L|∂Ω, it is not difficult to prove Theorem
1. It is very likely that Theorem 1 holds also for ε = 0.
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Romanian-Finnish Seminar on Complex Analysis (Proc., Bucharest, 1976), pp. 402–407.
Lecture Notes in Math. 743, Springer, Berlin, 1979.

[29] H. Donnelly and C. Fefferman, L2-cohomology and index theorem for the Bergman met-
ric. Ann. of Math. (2) 118 (1983), 3, 593–618.
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holomorphes avec poids. Ann. Sci. École Norm. Sup. (4), 5 (1972), 545–579.
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