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1. INTRODUCTION

Problems arising in differential geometry are often related to finding a
good metric, in some sense, according to the given context of the problem. For
complex analytic geometry, the metrics with the most convenient properties
are Kähler metrics. However, there are topological obstructions to existence
of Kähler metrics, which come from the Hodge decomposition theorem: for a
compact complex space to admit a Kähler metric, it has to have the odd Betti
numbers b2k+1 ≡ 0 (mod 2), for all k ≥ 0. Hence, in non-Kähler geometry,
one has to find a good substitute for Kähler metrics in the class of Hermitian
metrics.

The notion of locally conformally Kähler (lcK) manifolds was introduced
by Vaisman [9]. An lcK manifold is a complex manifold endowed with a Her-
mitian metric whose associated 2-form ω verifies dω = θ∧ω, where θ is a closed
1-form, called the Lee form of ω. Equivalently, we can say that locally, there
exists a smooth function f such that e−fω is Kähler, which explains the name.
Then, the 1-form θ is given by the local 1-forms df . If f can be defined glob-
ally, which means that θ is exact, then ω is called globally conformally Kähler
(gcK). If ω is not gcK, then we call it pure lcK. Another alternative definition
of lcK manifolds can be given via the universal cover: a complex manifold M
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admits an lcK metric if and only if the universal cover M̃ admits a Kähler
metric ω̃ such that for every γ ∈ Deck(M̃/M), we have γ∗ω̃ = cγω̃, where cγ
is a positive constant, and in this case we say that Deck(M̃/M) acts on ω̃ by
positive homotheties. This last characterization is often used to prove that a
complex manifold admits lcK metrics.

Some years after introducing the class of lcK manifolds, Vaisman [10]
proved that on compact complex manifolds, Kähler and pure lcK metrics with
respect to the same complex structure cannot both exist. Hence, for compact
non-Kähler manifolds, it makes sense to ask if there exist at least lcK metrics.

Since then, many more results about lcK metrics have been proved. For
an up-to-date reference on the theme of lcK manifolds, one can check the book
by Ornea and Verbitsky [3].

Kähler forms on singular complex spaces were first introduced by Grauert
[2], using families of locally defined strictly plurisubharmonic functions and
compatibility conditions. In the spirit of Grauert’s idea, we can define lcK
forms on singular spaces, as in [8]:

Definition 1.1. Let X be a complex space.

(K) A Kähler metric on X is the equivalence class (Ui, φi)i∈I
∧

of a family
such that (Ui)i∈I is an open cover of X, φi : Ui −→ R is C∞ and strictly
psh, and i∂∂φi = i∂∂φj on Ui ∩ Uj ∩ Xreg, for every i, j ∈ I. Two such
families are equivalent if their union verifies the compatibility condition on the
intersections, described above.

(lcK) An lcK metric on X is the equivalence class (Ui, φi, fi)i∈I
∧

of a
family such that (Ui)i∈I is an open cover of X, φi : Ui −→ R is C∞ and strictly
psh, fi : Ui −→ R is smooth, and iefi∂∂φi = iefj∂∂φj on Ui ∩ Uj ∩ Xreg, for
every i, j ∈ I. Again, two such families are equivalent if their union verifies the
compatibility condition written above.

Since for lcK forms on singular spaces we also want to define its associated
Lee form, we have the following:

Definition 1.2. Let X be a topological space and consider (Ui, fi)i∈I ,
consisting of an open cover (Ui)i∈I of X and a family of continuous functions
fi : Ui −→ R such that fi − fj is locally constant on Ui ∩ Uj , for all i, j ∈ I.
The class

θ = (Ui, fi)i∈I
∧

∈ Ȟ0
(
X,𝒞⧸R

)
is called a topologically closed 1-form (TC 1-form).

We say that a TC 1-form θ is exact if θ = (̂X, f) for a continuous function
f : X −→ R. In this case, we make the notation θ = df .
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Let ω = (Ui, φi, fi)i∈I
∧

be an lcK metric on a complex space X. Then, the

TC 1-form θ = (Ui, fi)i∈I
∧

is called the Lee form of ω. If θ is exact, then ω is
called globally conformally Kähler (gcK).

In this survey, we present the progress that has been made so far in the
study of lcK spaces. These are mainly results which show that the fundamental
theorems of lcK manifolds are still true for lcK spaces, under some reasonable
additional conditions.

2. KNOWN RESULTS

The first result is the characterization theorem for lcK spaces [6, Theorem
3.10], whose statement is the exact analogue of the one for the smooth case.

Theorem 2.1. Let X be a complex space. Then X admits an lcK metric
if and only if its universal covering X̃ admits a Kähler metric ω̃ such that the
deck group acts on ω̃ by positive homothethies.

The if part is a straightforward adaptation of the proof for manifolds,
so we only have to give an explanation for the only if part. In [6], this is
done only with elementary tools, by defining a function which generalizes the
integral of a closed 1-form along a submanifold of dimension 1, to TC 1-forms
along a given path. However, the most simple proof is given in [7, Theorem
2.6], and is based on the fact that every TC 1-form on the simply connected
complex space X̃ is exact. For this, we consider the short exact sequence

0 −→ R −→ 𝒞 −→ 𝒞⧸R −→ 0,

where R is the sheaf of locally constant functions and 𝒞 is the sheaf of contin-
uous functions. We then pass to the long exact sequence in cohomology:

0 −→ H0(X̃,R) −→ H0(X̃,𝒞) −→ H0(X̃,𝒞⧸R) −→ H1(X̃,R) −→ ...

Now, denote by ω̃ and θ̃ the pull-back to X̃ of ω and θ. Then, θ̃ is the Lee

form of ω̃. We have θ̃ ∈ Ȟ0
(
X̃,𝒞⧸R

)
. Moreover, as X̃ is simply connected,

H1(X̃,R) = 0. We then obtain immediately that θ̃ is exact, which means that
ω̃ is gcK, thus there exists a smooth function f̃ : X̃ → R such that θ̃ = df̃ .

Then, e−f̃ ω̃ is a Kähler metric and since d(f̃ − γ∗f̃) = 0, we get

γ∗(e−f̃ ω̃) = e−γ∗f̃ ω̃ = eaγ−f̃ ω̃ = cγe
−f̃ ω̃,

which shows that we also have the action by positive homotheties on e−f̃ ω̃.

Remark 2.2. Theorem 2.1 remains true, with the same proof, if instead
of the universal cover, there exists a cover X̃ with a Kähler metric ω̃ such that
the deck group acts by positive homotheties on ω̃.



194 O. Preda 4

The next important result is a generalization of Vaisman’s theorem to
complex spaces. For compact complex manifolds, Vaisman [10] proved that
there cannot exist both Kähler and pure lcK metrics with respect to the same
complex structure. Any known proof to this theorem uses the Hodge decompo-
sition or the ∂∂-lemma, which both are unavailable in the context of singular
complex spaces.

In [7], the authors proved that for compact complex spaces the theorem
holds, but with the strong additional assumption of local irreducibility. The
statement is the following:

Theorem 2.3. Let (X,ω, θ) be a compact, locally irreducible, lcK space.
If X admits a Kähler metric, then (X,ω, θ) is gcK.

The proof relies on the original Vaisman theorem for compact manifolds,
the existence of a resolution of singularities by Hironaka, and a theorem of
Fujiki which says that the the blow-up of a Kähler space along a compact
closed subspace admits Kähler metrics. An essential step in the proof is based
on the fact that the blow-up of a locally irreducible complex space is also locally
irreducible.

Furthermore, [7] contains a counterexample constructed by Vuletescu
which shows that the requirement of local irreducibility cannot be dropped.
This counterexample is a compact complex space with only one singular point,
obtained by identifying two distinct points on Pn.

With regard to blow-ups, Ornea, Verbitsky and Vuletescu [4] proved that
the blow-up of an lcK manifold (M,ω, θ) along a closed compact submanifold
Z admits lcK metrics if and only if ω↾Z is gcK. This was generalized to lcK
spaces in [8], with some additional conditions, in the following form:

Theorem 2.4. Let (X,ω, θ) be an lcK space, and Z ⊂ X a compact
complex subspace, which is normal and is a locally complete intersection.

Then, the blow-up of X along Z, denoted X̂, admits an lcK metric if and
only if ω↾Z is gcK.

The proof for the direct implication makes use of Varouchas’ results [11]
which give sufficient conditions under which the image of a Kähler space under
a holomorphic map is also of Kähler type. For this, we need Z to be normal
and the fibers of the canonical projection of the blow-up to be compact com-
plex manifolds of equal dimension. The latter condition is satisfied if Z is a
locally complete intersection. We also use Vaisman’s theorem for lcK spaces
(2.3), for which we need local irreducibility of Z, guaranteed by the normality
assumption.
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Another key element for the proof of the direct implication is [8, Lemma
3.1] about fibrations, which is an adaptation to the singular setting of the
analogue result for the smooth case [4, Lemma 3.1], whose proof involves in-
tegrating along the fibers and is based on the fact that the fibers along the
center of the blow-up are biholomorphic. To still have regular fibers which are
biholomorphic for the singular case, we need again the additional condition
that Z is a locally complete intersection.

The next two results show the importance of the characterization 2.1, as
it is used to prove the existence of lcK metrics without effectively constructing
them. The first one, [6, Theorem 4.1], which the lcK version of [12, Theorem
1], says that the image of an lcK space under a holomorphic map with discrete
fibers admits lcK metrics. Obviously, it is nontrivial only when the map is a
ramified covering, otherwise we can just take the pull-back of the lcK metric.
Its statement is the following:

Theorem 2.5. Let g : X → Y be a holomorphic map between complex
spaces with discrete fibers and assume (Y, ω, θ) is lcK. Then, X also admits an
lcK metric.

Its proof is done by passing to the universal cover, then following the
same main steps as in [12] for constructing a Kähler metric on the universal
cover of X. However, all the elements which are part of this construction must
be chosen such that the deck group of the universal cover of X acts by positive
homotheties on the constructed Kähler metric. This is done by carefully adding
to the proof of [12, Theorem 1] some topological arguments.

An important mention is that the construction of the Kählerian metric
in [12] is not canonical, as it depends on many choices along the way. Since
Theorem 2.5 uses the proof from [12], the construction of the lcK metric on X
is also non-canonical.

The second results which uses an adapted version of 2.1 is about mod-
ifications of compact lcK spaces. Theorem 2.4 shows that blow-up of an lcK
space does not necessarily admit lcK metrics. Hence, we are interested to find
a larger class of metrics which are stable under blow-ups and, more generally,
under modifications. It turns out that this is achieved simply by working with
a more general definition than that of lcK metrics and allowing the strictly
plurisubharmonic functions which locally define the metric to take the value
−∞ on a small set of points. This type of metric will be called a quasi-lcK
metric, inspired by the notion of quasi-Kähler metric introduced by Colţoiu
[1], and later used by Popa-Fischer [5] under the name of generalized Kähler
metric. For our definitions, we also require C∞-regularity, as in [5].
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Definition 2.6. Let X be a complex space. For U ⊂ X and a psh function
φ : U −→ R, we denote {φ = −∞} = Aφ.

(q-K) A quasi-Kähler metric on X is the equivalence class (Ui, φi)i∈I
∧

of
a family such that

(a) (Ui)i∈I is an open cover of X;

(b) φi : Ui −→ [−∞,∞) is strictly psh, φi ̸≡ −∞ on any irreducible
component of Ui, and φi is of class C∞ on Ui \Aφi ;

(c) i∂∂φi = i∂∂φj on (Ui ∩ Uj) \ (Xsing ∪Aφi ∪Aφj ), for any i, j ∈ I;

(d) φi −φj restricted to Ui ∩Uj \ (Aφi ∪Aφj ) is locally bounded around
points of Aφi ∪Aφj , for any i, j ∈ I;

Two such families are equivalent if their union still verifies the compati-
bility conditions (c) and (d).

(q-lcK) A quasi-lcK metric on X is the equivalence class (Ui, φi, fi)i∈I
∧

of a family (Ui, φi, fi)i∈I such that (Ui, φi)i∈I verifies conditions (a) and (b) in
2.6 – (q-K), and moreover:

(e) fi : Ui −→ R is of class C∞ for any i ∈ I;

(f) iefi∂∂φi = iefj∂∂φj on (Ui∩Uj)\(Xsing∪Aφi∪Aφj ), for any i, j ∈ I;

(g) (fi − fj)φi −φj restricted to Ui ∩Uj \ (Aφi ∪Aφj ) is locally bounded
around points of Aφi ∪Aφj , for any i, j ∈ I.

Two such families are equivalent if their union still verifies conditions (f)
and (g).

With this definition, we have [8, Theorem 4.1], with the following state-
ment:

Theorem 2.7. Let p : X → Y be a modification of the compact complex
space Y . Suppose that Y is quasi-lcK. Then, X also admits a quasi-lcK metric.

The proof given in [8] is based on the following strategy: we use [5,
Theorem 2.5] to construct a quasi-Kähler metric ω̃ on the universal cover of
X̃ of X. We show that if all the choices we make in that construction are well
related, then Deck(X̃/X) acts by homotheties on ω̃. Finally, Theorem 2.1 can
be easily adapted to quasi-lcK spaces, so it can be applied to conclude that X
admits a quasi-lcK metric.
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3. SOME QUESTIONS

In this section we formulate some questions which arise naturally when
analyzing the proofs of the theorems stated in the previous section.

Vaisman’s theorem is an essential result for lcK geometry. However, the
proof given in [6] works only for compact spaces which are locally irreducible,
which is a strong restriction. For example, when blowing up a complex space,
the exceptional divisor is not always locally irreducible. Also, fibers of holo-
morphic mappings between complex spaces are not always locally irreducible.
[6, Example 4.5] shows that by identifying two distinct points in Pn, we obtain
a compact complex space with only one singular point, locally reducible in that
point, for which Vaisman’s theorem does not hold. It would be important to
know if the assumption of local irreducibility can be replaced with some weaker
condition. This leads to the following:

Question 3.1. Does every compact, globally irreducible and locally re-
ducible Kähler space admit a pure lcK metric?

A more general construction than identifying two distinct points in a
given Kähler manifold, as in [6, Example 4.5], is to identify two biholomorphic
closed subspaces. However, in this case it is no longer clear how to find, or
even if there exists, a Kähler metric on the new space that is obtained by this
method.

Question 3.2. If (X,ω) is a Kähler manifold and Z1, Z2 ⊂ X are closed
complex submanifolds such that

• Z1 ∩ Z2 = ∅;

• there exists a biholomorphism f : Z1 → Z2

and we consider X ′ to be the complex space obtained by the identification
Z1 ∼ Z2 given by f , does X ′ always admit a Kähler metric?

Theorem 2.4 has two additional conditions on the center of the blow-up,
the subspace Z. The condition of normality of Z is necessary for the proof
given in [8] when using Varouchas’ results [11] on the image of a Kähler space
under a holomorphic mapping, and also for the local irreducibility required
when applying Theorem 2.3, so it would be difficult to replace with something
else. However, it would be interesting to study if the proof can be modified so
that the second condition, that of Z to be a locally complete intersection, can
be weakened or even dropped.

Question 3.3. Does Theorem 2.4 remain true without the assumption
that Z is a locally complete intersection?
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