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POSITIVE CURRENTS ON NON-KÄHLERIAN SURFACES, II
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1. INTRODUCTION

The first systematic study of compact non-kählerian complex surfaces
was done by Kodaira as part of his comprehensive work on the classification of
compact complex surfaces in the sixties. This was followed by the work of M.
Inoue and Ma. Kato in the seventies who constructed examples of new classes
of non-kählerian surfaces. Together with the elliptic surfaces and the Hopf
surfaces, these are the only classes of compact non-kählerian surfaces known to
this day. In fact, the Global Spherical Shell Conjecture claims that any non-
kählerian compact complex surface should belong to one of these classes, [12],
see also [15]. A positive answer to this conjecture would mean finishing the
last step lacking for a complete classification of all compact complex surfaces
up to bimeromorphic equivalence.

One approach to the study of compact non-kählerian surfaces has been
through the algebraic objects they may admit, such as algebraic curves. It
is a problem though to show that such objects exist at all on compact non-
kählerian surfaces. Instead, we know by a result of Harvey and Lawson that
the lack of Kähler metrics is equivalent to the existence of positive currents
which are (1, 1)-components of a boundary, [8]. This result was further refined
in [11] where it is shown that any compact non-kählerian surface admits non-
trivial positive d-exact currents of type (1, 1). In [8] the structure of these
currents was described for elliptic, Hopf and Inoue surfaces. This description
was extended to the other class of known surfaces, that of Kato surfaces, in
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[16]. Inspired by these structural results, by phenomena appearing in the study
of the Kähler rank on surfaces, [5], as well as by Brunella’s postumuous paper
[3], we introduce in [6] an invariant on a class of d-exact positive currents which
helps us to distinguish two classes among the known non-kählerian surfaces,
namely parabolic and hyperbolic surfaces, see Section 2. Hoping that this could
lead to a fruitful approach towards the Global Spherical Shell Conjecture, we
formulate in [6] three conjectures related to the presence of certain d-exact
positive currents on the surface under study. Under the perspective of these
conjectures, we analyse in the present paper further properties of exact positive
(1, 1)-currents on compact non-kählerian surfaces. More precisely, we discuss
the following:

1. If T is an exact positive (1, 1)-current on a compact non-kählerian surface
X, we will examine the set L2

−1(T |X) of points x ∈ X around which T is
locally in L2

−1. We show that on parabolic surfaces L2
−1(T |X) contains

the complement of the union of all divisors of X. We then refine our
previous conjecture 2.5.

2. We establish the existence of a distinguished current related to the Green
function on hyperbolic surfaces. We relate this to our conjecture 2.3.

3. Related to the conjecture 2.4, we show that any exact positive (1, 1)-
current T ∈ L2

−1(X) with I(T ) ̸= 0 induces a singular Gauduchon current
on X of a special form, see Section 2 for notations and terminology.

2. BACKGROUND

We refer the reader to the monograph [1] for general facts on compact
complex surfaces, to the survey paper [12] on more specific facts on non-kähle-
rian compact complex surfaces and to our paper [6] for more recent results on
positive currents on such surfaces.

Let X be non-kählerian compact complex surface. The existence of non-
trivial exact positive (1, 1)-currents on X implies that the natural map j :
H1,1

BC(X,R) → H1,1
A (X,R) from the Bott-Chern cohomology of X in degree

(1, 1) to the corresponding Aeppli cohomology has a non-trivial kernel. It can
be, moreover, shown that this kernel is one-dimensional, cf. [6, Appendix]. We
denote by τ a smooth representative of a class of a non-trivial exact positive
(1, 1)-current in the Bott-Chern cohomology group H1,1

BC(X,R). Its class may

be thought of as a positive generator of Ker(H1,1
BC(X,R) → H1,1

A (X,R)).
We denote by L2

−1(X) the space of (1, 1)-currents on X with coefficients
in L2

−1. The degeneration of the Frölicher spectral sequence at the E1-level for
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compact complex surfaces implies that any exact (1, 1) current T on X admits
a “primitive current”, that is a bidegree (0, 1)-current S such that T = ∂S. It
is not difficult to see that, in this case, we also have ∂̄S = 0, hence T = dS.

In [6], we show that if T is positive of type (1, 1), in L2
−1(X), d-exact and

if S is a primitive current of T as above, then S is in L2(X) and iS̄ ∧ S is
i∂∂̄-closed hence, defines a linear form

Ker(H1,1
BC(X,R) → H1,1

A (X,R)) → R, α 7→
∫
X
α ∧ iS̄ ∧ S.

This linear form depends only on T and not on the chosen primitive current
S. We will denote it by I(T ). When T is moreover smooth the vanishing or
non-vanishing of the form I(T ) served in [5] to distinguish between two funda-
mentally different dynamical behaviours of the induced holomorphic foliation
on X. This distinction is investigated also for T singular in the case when X
is a known non-kählerian compact complex surface and fits to the following
classification proposed in [6].

Definition 2.1 ([6, Definition 3.5]). We say that a non-kählerian compact
complex surfaceX is parabolic if its minimal model belongs to one of the classes:
Hopf surfaces, Enoki surfaces, non-kählerian elliptic surfaces. We say that X is
hyperbolic if its minimal model is either an Inoue surface, an Inoue-Hirzebruch
surface or an intermediate Kato surface.

We may express the results in [6] concerning the vanishing of the forms
I(T ) as follows.

Proposition 2.2. Let X be a non-kählerian compact complex surface.

1. If X is hyperbolic then all its exact positive (1, 1)-currents T are in
L2
−1(X) and have I(T ) = 0.

2. If X is parabolic then X admits exact positive (1, 1)-currents T not in
L2
−1(X). Moreover, all its exact positive (1, 1)-currents T in L2

−1(X)
necessarily have I(T ) ̸= 0.

We recall the following conjectures from [6], which together give a partial
converse to Proposition 2.2.

Conjecture 2.3. If X is a non-kählerian surface, all of whose exact
positive (1, 1)-currents T are in L2

−1(X) and satisfy I(T ) = 0, then X is hy-
perbolic.

Conjecture 2.4. If X is a non-kählerian surface, all of whose exact
positive (1, 1)-currents T are in L2

−1(X) but do not all satisfy I(T ) = 0, then
X admits a cycle of rational curves.
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Conjecture 2.5. If X is a non-kählerian surface admitting an exact
positive (1, 1)-current not in L2

−1(X), then there exists on X some exact pos-
itive current T with a non-vanishing Lelong number at at least one point of
X.

3. THE L2
−1-LOCUS

In this section, we state a refinement of Conjecture 2.5 and show that it
is verified for all parabolic surfaces.

Definition 3.1. For a (1, 1)-current T on a complex surface X we define
its L2

−1-locus, L2
−1(T |X), on X as the set of points on X around which T is

locally in L2
−1.

Conjecture 3.2. If X is a non-kählerian surface admitting an exact
positive (1, 1)-current T not in L2

−1(X) and if x ∈ X \ L2
−1(T |X), then there

exists on X some exact positive (1, 1)-current with non-vanishing Lelong num-
ber at x.

Note that by [6, Proposition 3.6], all exact positive (1, 1)-currents on a
hyperbolic surface X are in L2

−1(X), so the above conjecture automatically
holds for such surfaces.

As remarked in [6, end of Section 4] using a result of [14] we have the
following.

Remark 3.3. Conjecture 3.2 may be reformulated as follows. “If T is
a non-trivial exact positive (1, 1) current on a non-kählerian surface X and
x is a point in X \ L2

−1(T |X), then there exists an effective divisor D on X
homologuous to zero on X and such that x ∈ Supp(D).”

This will be a consequence of the following Propositions.

Proposition 3.4. All non-trivial exact positive (1, 1)-currents on an
Enoki surface X are positive multiples of the current of integration along the
cycle of rational curves on X.

Proposition 3.5. Let X be a non-kählerian elliptic surface and F be
a fiber of its elliptic fibration. Then there exists some exact positive (1, 1)-
current T on X with L2

−1(T |X) = X \F and with vanishing Lelong numbers at
all points of X. On the other hand, the current of integration along F is exact.

Proposition 3.6. Let X be a non-elliptic Hopf surface.

1. If X is of class 0, then all its non-trivial exact positive (1, 1)-currents are
positive multiples of the current of integration along the unique elliptic
curve of X.
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2. If X is of class 1 and C1, C2 are its elliptic curves, then any exact positive
(1, 1)-current T on X has local ∂∂̄-potentials in L∞

1 over X \ (C1 ∪ C2)
and, in particular, one has L2

−1(T |X) ⊃ X \ (C1 ∪ C2). Moreover, there
exist such currents T with L2

−1(T |X) = X \ (C1∪C2) and with vanishing
Lelong numbers at all points of X. On the other hand the current of
integration along C1 ∪ C2 is exact.

Remark 3.7. The above Propositions immediately imply that Conjecture
3.2 holds for minimal parabolic surfaces. Its extension to the non-minimal case
needs a bit of care since the condition T ∈ L2

−1(X) does not behave well under
blow-up. Namely, if p : Y → B is the blow-up of the origin in the unit ball B
in C2 and if T = i∂∂̄φ is a closed positive current on the unit ball in C2 such
that ∂φ ∈ L2(B), then it is not true in general that ∂p∗φ ∈ L2(Y ). See [4],
Section 4.2 for a detailed discussion.

However, on parabolic surfaces, the only interesting case where blowing-
up may occur in a point away from null-homologuous divisors is the case of
Hopf surfaces of class 1 and, in that case, we show that exact positive (1, 1)-
currents T have local ∂∂̄-potentials in L∞

1 , a property which continues to hold
for the pulled-back potentials after blowing up. These will be therefore locally
in L2

1.

We now give the arguments for the above statements.

Proposition 3.4 is exactly [16, Theorem 10 (b)].

Proof of Proposition 3.5. Let X be a non-kählerian minimal elliptic sur-
face and let π : X → Y be its elliptic fibration. Here Y is a smooth curve
and π is known to be a quasi-bundle, which means that all its smooth fibers
are isomorphic to one another and its singular fibers are multiples of smooth
elliptic curves, see [2, Proposition 3.17] for a proof. It is immediate to see
that the integration current along any fiber of π is exact since the De Rham
cohomology class of such a fibre vanishes.

Let F be a fibre of X → Y . We will now show that positive exact (1, 1)-
currents exist onX which are not in L2

−1 along F , are smooth onX\F and have
vanishing Lelong numbers at all points of X. The idea is to adapt an example
of Kiselman [9, Example 3.1] to our situation. We consider the function

z 7→ u(z) := −(− log |z|2)
1
2

on a small disc D centered at the origin of C and compose it with π, where we
suppose that the disc D is embedded as an open subset of Y , that our fibre F
lies over 0 ∈ D and that in suitable local coordinates π is given by (w, z) 7→ zn,
for some n ∈ N \ {0} at points over 0, cf. [1, p.207] with n > 1 when the fibre
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F is singular. There will be no restriction of generality to consider only the
case of a smooth fiber which is what we will do for simplicity. We write the
function u as u(z) = ϕ(log |z|2), where ϕ(t) := −(−t)

1
2 . Then ϕ is increasing

and convex on R<0, so u is subharmonic on D. The current

i∂∂̄u =
idz ∧ dz̄

4|z|2(− log |z|2)
3
2

is positive on D, smooth on D \ {0} and not in L2
−1(D). We may extend it as

a (closed) (1, 1)-current on Y which remains positive and smooth except at 0.
Then its pullback T to X has the desired properties. Indeed, direct compu-
tation shows that with respect to the coordinate systems (w, z) the Kiselman
numbers ν(T, x, (1, 1)) vanish for all x ∈ F and these in turn are equal to the
classical Lelong numbers ν(T, x), [7, III, Corollary 7.3].

The first part of Proposition 3.6 is contained in [8, Theorem 69]. Before
we prove the second part, we first recall some facts on Hopf surfaces of class 1
from [10] and from [8], see also [6, Section 3.1.2].

A Hopf surface is a compact complex surface whose universal covering
space is isomorphic to C2 \ {0}. It is called primary if its fundamental group is
infinite cyclic, and secondary otherwise. Every secondary Hopf surface admits
a finite unramified cover which is a primary Hopf surface. The fundamental
group of a primary Hopf surface is generated by a contraction g : C2 \ {0} →
C2 \ {0} which for suitable global holomorphic coordinates (z1, z2) on C2 has
the following form

(1) g(z1, z2) = (α1z1 + λzm2 , α2z2),

where m ∈ Z>0, α1, α2, λ ∈ C and

(α1 − αm
2 )λ = 0, 0 < |α1| ≤ |α2| < 1.

A primary Hopf surface (C2 \ {0})/⟨g⟩ with g as above is elliptic if and only
if λ = 0 and αk1

1 = αk2
2 for some positive integers k1, k2. A non-elliptic Hopf

surface X is of class 1 if for its primary Hopf cover the coefficient λ in (1)
vanishes. In this case, its fundamental group is isomorphic to Z × (Z/lZ)
where the direct factor Z is generated by a contraction g of the form (1) and
the finite cyclic group Z/lZ is generated by an automorphism of C2 \ {0} of
the form

(z1, z2) 7→ (ϵ1z1, ϵ2z2),
where ϵ1, ϵ2 are primitive l-th roots of unity. Thus, X admits an unramified
cyclic covering of degree l by the primary Hopf surface (C2 \ {0})/⟨g⟩. A Hopf
surface of class 1 has exactly two irreducible compact curves E1, E2 which are
the images by the universal covering map of the coordinate axes {z2 = 0} and
{z1 = 0} in C2 \ {0}. The curves E1, E2 are elliptic.
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We now restrict our attention to the primary non-elliptic Hopf surfaces
of class 1. It will be clear that the properties of exact positive (1, 1)-currents
on secondary Hopf surfaces will be induced by those on their primary Hopf
covers. So let X be a primary non-elliptic Hopf surface of class 1 given by a
contraction g of the form

g(z1, z2) = (α1z1, α2z2),

with 0 < |α1| ≤ |α2| < 1 and such that αk1
1 ̸= αk2

2 ∀(k1, k2) ∈ (N \ {0})2.
Following [8] we set

r =
log |α1|
log |α2|

, r′ =
1

r
,

ϕ, ϕ′ : C2 \ {0} → R, ϕ(z1, z2) := log(|z1|2 + |z2|2r),

ϕ′(z1, z2) := log(|z2|2 + |z1|2r
′
),

η := z2dz1 − rz1dz2, η
′ := z1dz2 − r′z2dz1 = −r′η,

Ω := i∂∂̄ϕ =
|z2|2(r−1)

(|z1|2 + |z2|2r)2
iη ∧ η̄,

Ω′ := i∂∂̄ϕ′ =
|z1|2(r

′−1)

(|z2|2 + |z1|2r′)2
iη′ ∧ η̄′,

V := rz1
∂

∂z1
− z2

∂

∂z2
,

π, π′ : X → [0, 1], π(z1, z2) :=
|z1|2

|z1|2 + |z2|2r
,

π′(z1, z2) :=
|z2|2

|z2|2 + |z1|2r′
,

Ω̃ := (ψ ◦ π)Ω + (ψ ◦ π′)Ω′,

where ψ : [0, 1] → [0, 1] is smooth and equals 1 in a neighbourhood of 0 and
0 in a neighbourhood of 1. The forms Ω, Ω′ might not be smooth along E1

and, respectively, along E2 but Ω̃ is a smooth positive d-closed (1, 1)-form on
X without zeroes on X. Moreover, the holomorphic vector field V defines
a holomorphic foliation F on X, which coincides with the complex foliation
defined by Ω̃ (whose leaves are by definition tangent to ker(Ω̃)). We further
introduce coordinates (ρ, θ1, θ2, θ3) on C∗ × C∗ by setting

z1 = ρerθ3+iθ1 , z2 = eθ3+iθ2



26 I. Chiose and M. Toma 8

with respect to which we get that

g(ρ, θ1, θ2, θ3) = (ρ, θ1 +Arg(α1), θ2 +Arg(α2), θ3 + log |α2|),

the leaves of the foliation F are given by the equations

ρ = constant, θ1 − rθ2 = constant,

π([ρ, θ1, θ2, θ3]) =
ρ2

ρ2 + 1
,

and its fibers are the 3-dimensional real tori T = R3/⟨τ1, τ2, φ⟩, where ⟨τ1, τ2, φ⟩
is the translation group generated by τ1, τ2, φ over Z and

τ1(θ1, θ2, θ3) = (θ1 + 2π, θ2, θ3), τ2(θ1, θ2, θ3) = (θ1, θ2 + 2π, θ3),

τ3(θ1, θ2, θ3) = (θ1, θ2, θ3 + 2π), φ = τ3 +
Arg(α1)

2π
τ1 +

Arg(α2)

2π
τ2.

The irrationality assumption αk1
1 ̸= αk2

2 ∀(k1, k2) ∈ (N \ {0})2 on (α1, α2)
implies that the leaves of F are dense in these tori. We also see that by means of
the coordinate functions (ρ, θ1, θ2, θ3) we get a diffeomorphism X \(E1∪E2) →
R>0 × T.

We next state and prove a lemma which is essentially a rephrasing of [8,
Theorem 58].

Lemma 3.8. Let X be a non-elliptic Hopf surface of class 1 and let T be
a positive d-closed (1, 1)-current on X. If T ′ is the residual current of T with
respect to the Siu decomposition

T = c1[E1] + c2[E2] + T ′,

then T ′ is positive d-exact of type (1, 1) and there exists a non-negative gener-
alized function f on ]0, 1[ such that on X \ (E1 ∪ E2) one has

T ′ = π∗(f)Ω,

where π∗(f) is the pull-back of f through the submersion

π|X\(E1∪E2) : X \ (E1 ∪ E2) →]0, 1[.

Proof. Let T and T ′ as in the statement. Since H2
DR(X,R) = 0 it is

clear that T ′ is d-exact. The form Ω̃ is d-closed so T ′(Ω̃) = 0 and T ′ is a
positive foliation current. It follows that T ′ is of the form T ′ = kΩ̃ where k is
a non-negative generalized function on X.

Now the statement to prove being local over ]0, 1[ and since dπ ∧ Ω̃ = 0,
we may suppose that the support of T ′ lies over some compact subset K of
]0, 1[. We may also suppose by the construction of Ω̃ that over K the forms Ω
and Ω̃ coincide. So, we are left with the task of checking that k = π∗(f) for
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some non-negative generalized function on ]0, 1[. For the reader’s convenience,
we give here an argument which is only a slight modification of that of [8,
Theorem 58].

We set with respect to new coordinate functions y = (u, α, θ2, θ3), where

ζ =
z1
zr2

, u = ρ2 = |ζ|2, α = θ1 − rθ2,

Ω1 :=
iη ∧ η̄

|z2|2(r+1)
= du ∧ dα = idζ ∧ dζ̄

and T ′ = hΩ1. Since Ω1 differs from Ω̃ by a factor which is a function of ρ,
it will be enough to show that h is of the form π∗(f) for some non-negative
generalized function on ]0, 1[. Let ψϵ for ϵ > 0 be regularizing kernels on R4

and let hϵ be the regularization of h by means of ψϵ, i.e.

hϵ(y) :=

∫
R4

ψϵ(x)h(y − x)dx.

It is clear that hϵ is invariant with respect to the translation group generated
by τ1, τ2, ϕ mentioned above and, hence, descends to X \ (E1 ∪ E2). More-
over, the smooth forms Tϵ := hϵΩ1 are closed since the differential operator
h 7→ d(hΩ1) = (dh) ∧ Ω1 has constant coefficients with respect to the chosen
coordinate functions and thus commutes with regularization. It follows that hϵ
is constant on the leaves of the foliation F defined by Ω1. Since these leaves are
dense in the fibers of π, the continuous functions hϵ are constant on these fibers

and thus
∂hϵ
∂θj

= 0 for 1 ≤ j ≤ 3. Making ϵ tend to zero now gives
∂h

∂θj
= 0 as

well. It follows that h is of the form π∗(f) for some non-negative generalized
function f on ]0, 1[, cf. [13, IV.5.Exemple 1].

Proof of Proposition 3.6 (2). Let T be an exact positive (1, 1)-current on
a non-elliptic Hopf surface X of class 1 and let T ′ be the residual part of its
Siu decomposition. We will check that the restriction of T ′ to X \ (E1 ∪ E2),
which we denote again by T ′ has coefficients in L∞

−1. For this, we use the
characterization of such residual currents on X \ (E1 ∪ E2) given by Lemma
3.8. To simplify computations we make use again of our previous notations

ζ =
z1
zr2

, u = ρ2 = |ζ|2, α = θ1 − rθ2 and

Ω1 :=
iη ∧ η̄

|z2|2(r+1)
= du ∧ dα = idζ ∧ dζ̄.

Then for a non-negative generalized function f on ]0, 1[ we have

T ′ = f(u)Ω1.
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We claim that an L∞
1 function h1 in the variable u exists such that i∂∂̄h1 = T ′

over ]0, 1[. Indeed, direct computations give

i∂∂̄h1 = (h′1 + uh′′1)Ω1

so setting h = h′1, we are led to solving the equation

uh′(u) + h(u) = f(u).

Its general solution is of the form

h(u) :=
k0(u) + C

u
,

where C is some real number and k0(u) :=

∫ u

u0

f(t)dt is a fixed primitive of

f . But k0 is locally bounded so h is in L∞
loc(]0, 1[) showing the first part of

Proposition 3.6 (2).
We now construct an example of a current T ′ on X \ (E1 ∪E2) as above

which extends over the curve E1 as a closed positive current T but such that
the trivial extension T no longer has L2

−1 coefficients locally at points of E1.
The current T ′ extends if and only if it is locally of finite mass at points of
E1 if and only if the trace measure T ′ ∧ ω of T ′ with respect to any positive
(1, 1)-form on X \ E2 extends over E1.

Set

ω :=
idz1 ∧ dz̄1

|z1|2
+
idz2 ∧ dz̄2
|z1|2r′

.

We get

ω =

(
du

u
+ 2rdθ3

)
∧ dθ1 +

2dθ3 ∧ dθ2
ur′

hence,

ω ∧ Ω1

ω2
=

(
r2 + 1

ur′

)
dθ3 ∧ dθ2 ∧ du ∧ dθ1

2 du
ur′+1 ∧ dθ1 ∧ dθ3 ∧ dθ2

and T ′ has finite mass along E1, if and only if uf has finite mass around 0 on
[0, 1[. Assuming this to be the case, we now write down under which conditions
T ′ is locally in L2

−1 around points of E1. If we write T ′ = i∂∂̄h1 and h′ = h1
as above, then dh1 = hdu and its pointwise squared norm is h2uΩ1 ∧ ω/ω2, so
dh1 will have L2 coefficients if and only if u2h2 is integrable around 0.

If we now take a ∈
]
−2,−3

2

]
and

f : ]0, 1[→ R, t 7→ −(a+ 1)ta,

we find h(t) = −ta and the current T ′ := f(u)Ω1 has finite mass along E1 but
its trivial extension T across E1 has zero Lelong numbers everywhere and is
not in L2

−1 around any point of E1.
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4. SPECIAL CURRENTS IN THE CASE I = 0

Throughout this section, we assume that X is a non-Kähler compact
complex surface on which all d-exact currents are in L2

−1(X) and satisfy I(T ) =
0. Under these assumptions, we show that there exists a distinguished positive
d-exact current on X.

Denote by P the cone of positive d-exact (1, 1) currents on X. By the
above assumptions, we have P ⊂ L2

−1(X) and if T = ∂S ∈ P, then S is a
∂̄-closed (0, 1) form with L2 coefficients and from the condition I(T ) = 0 it
follows that iS̄ ∧ S is d-exact.

Set

C = {T ∈ P|
∫
X
T ∧ g =

∫
X
iS̄ ∧ S ∧ g}

where g is a fixed Gauduchon metric on X. Note that the set C does not
depend on g. In fact, T and iS̄ ∧ S, being d-exact, they are cohomologous to
a multiple of τ in the Bott-Chern group H1,1

BC(X,R), hence there are c, c′ > 0
and λ and λ′ quasi-plurisubharmonic functions sunch that T = cτ + i∂∂̄λ and
iS̄ ∧ S = c′τ + i∂∂̄λ′. Then T is in C iff c = c′.

Lemma 4.1. There exists C a positive constant which depends on g such
that ∫

X
T ∧ g ≤ C,∀T ∈ C

Proof. Let T = ∂S ∈ P. Then, from Hölder’s inequality, it follows that∫
X
T ∧ g =

∫
X
∂S ∧ g =

∫
X
S ∧ ∂g ≤ ||S||L2 ||∂g||L2 = C1

(∫
X
iS̄ ∧ S ∧ g

) 1
2

and if T ∈ C, then
∫
X T ∧ g =

∫
iS̄ ∧ S ∧ g, hence

∫
X T ∧ g ≤ C2

1

Let c = sup{
∫
X T ∧ g|T ∈ C} <∞.

Proposition 4.2. There exists a unique T ∈ C such that
∫
X T ∧ g = c.

Proof. Let Tn ∈ C such that
∫
X Tn ∧ g → c. Let Tn = ∂Sn, where

Sn ∈ L2
0,1(X). We can assume that Tn → T weakly (as distributions), and that

Sn → S ∈ L2
0,1(X) weakly (in the Hilbert space L2

0,1(X)). Then
∫
X T ∧ g = c,

and we want to show that
∫
X iS̄ ∧S ∧ g = c. Since Sn → S weakly in L2

0,1(X),
it follows that ∫

X
iS̄ ∧ S ∧ g = ||S||2L2 ≤ lim inf ||Sn||2L2 = c
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by the weakly lower semicontinuity of the norm. Set c′ =

∫
X
iS̄ ∧ S ∧ g, so

that the above inequality implies c′ ≤ c. If c′ = 0, then S = 0, hence c = 0,

contradiction. Therefore c′ ̸= 0, and if we consider the current T ′ =
c

c′
T , then

T ′ ∈ C so

∫
X
T ′ ∧ g =

c2

c′
≤ c. This implies that c′ ≥ c, hence T ∈ C.

In order to prove the uniqueness, consider T1 = ∂S1, T2 = ∂S2 ∈ C such
that ∫

X
T1 ∧ g =

∫
X
iS̄1 ∧ S1 ∧ g =

∫
X
T2 ∧ g =

∫
X
iS̄2 ∧ S2 ∧ g = c

and we want to prove that S1 = S2.

Let S =
1

2
(S1 + S2), T = ∂S and

λ =

∫
X T ∧ g∫

X iS̄ ∧ S ∧ g

such that λT ∈ C. Then
∫
X λT ∧ g ≤ c and this implies∫

X
iS̄ ∧ S ∧ g ≥ c =

1

2

∫
X
iS̄1 ∧ S1 ∧ g +

1

2
S̄2 ∧ S2 ∧ g

therefore, ∫
X
i(S̄1 − S̄2) ∧ (S1 − S2) ∧ g ≤ 0.

Hence, the L2 norm of S1 − S2 is 0, so S1 = S2.

Remark 4.3. The current T whose existence was proved above does not
depend on the Gauduchon metric g. It is intrinsic to the compact complex
surface X.

Remark 4.4. We expect the current T in C for which
∫
X T ∧ g = c to

have some additional properties, for instance, we think that it should satisfy
the equation T = iS̄ ∧ S.

5. GAUDUCHON CURRENTS ON NON-KÄHLER SURFACES

In this section, we prove that, given a d-exact positive current T in
L−1
2 (X) such that I(T ) ̸= 0, then there exists a certain pluriharmonic pos-

itive current that dominates some Gauduchon metric. One may call such a
current a Gauduchon current.
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Proposition 5.1. Let X be a non-Kähler surface, g a fixed Gauduchon
metric on X, T ′ a nef positive pluriharmonic current such that

∫
X T ′ ∧ τ > 0,

and T a nef non-zero d-exact positive current. Then there exist ε > 0 and
χ ∈ D′(X,R) a real distribution such that T ′ + T + i∂∂̄χ ≥ εg

Proof. First note that Lemme 1.4 in [11], which is stated for a smooth
(1, 1)-form θ, is also valid in the case of a (1, 1)-current. Hence, according to
this Lemma, it is enough to prove that there exists ε > 0 such that∫

X
(T ′ + T ) ∧ h ≥ ε

∫
X
g ∧ h

for all Gauduchon metrics h on X. Suppose by contradiction, that there exists
a sequence (hn)n of Gauduchon metrics on X such that∫

X
(T ′ + T ) ∧ hn ≤ 1

n

∫
X
g ∧ hn, ∀n ≥ 1.

We can normalize the metrics hn such that
∫
X hn ∧ g = 1 and we can assume,

without loss of generality, that (hn)n converges weakly to a i∂∂̄-closed positive
current R. It follows that

∫
X T ′ ∧ hn → 0 and

∫
X T ∧ hn → 0. Since T is nef

and d-closed, it follows that it is d-exact (Proposition 2.4 in [6]), and hence
there exists c > 0 and λ a quasi-plurisubharmonic function on X such that
T = cτ + i∂∂̄λ. Therefore,

c

∫
X
R ∧ τ = lim

n
c

∫
X
hn ∧ τ = lim

n

∫
X
hn ∧ T = 0

and this implies that R is d-exact (Proposition 2.4 in [6]) and there exists c′ > 0
and λ′ a quasi-plurisubharmonic function on X such that R = c′τ+ i∂∂̄λ′. But
then

⟨{T ′}A, {R}BC⟩ = c′
∫
X
T ′ ∧ τ = lim

n

∫
X
T ′ ∧ hn = 0.

Here, we used Lemma 5.3 in [6]. This is a contradiction with the condition∫
X T ′ ∧ τ > 0. From Lamari’s result, it follows that there exists χ a real
distribution and ε > 0 such that T ′ + T + i∂∂̄χ ≥ εg.

Proposition 5.1 implies the following corollary which can be thought of
as the singular version of formula (2.1) in [5].

Corollary 5.2. Let X be a non Kähler surface and g a Gauduchon
metric on X. Let T = ∂S be a d-exact positive current such that T ∈ L2

−1(X),
I(T ) ̸= 0 and T is nef. Then there exists χ ∈ D′(X,R) a real distribution and
ε > 0 such that T + iS̄ ∧ S + i∂∂̄χ ≥ εg

Proof. Indeed, the current iS̄ ∧ S is i∂∂̄-closed and nef (Proposition 2.2
in [6]), so we can use Proposition 5.1 to prove the existence of χ and ε.
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