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We clarify the undecided case c2 = 3 of a result of Ein, Hartshorne and Vogelaar
[8] about the restriction of a stable rank 3 vector bundle with c1 = 0 on the
projective 3-space to a general plane. It turns out that there are more exceptions
to the stable restriction property than those conjectured by the three authors.
One of them is a Schwarzenberger bundle (twisted by −1); it has c3 = 6. There
are also some exceptions with c3 = 2 (plus, of course, their duals).
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INTRODUCTION

A basic technique for studying stable vector bundles on projective spaces
(over an algebraically closed field k of characteristic 0) is to investigate their re-
strictions to general linear subspaces. The prototypes are the Grauert-Mülich-
Spindler theorem [15] asserting that if E is a semistable vector bundle on Pn,
n ≥ 2, then, for the general line L ⊂ Pn, one has EL ≃

⊕r
i=1 OL(ai), with

a1 ≤ · · · ≤ ar verifying ai+1 − ai ≤ 1, i = 1, . . . , r − 1 and Barth’s restriction
theorem [3] asserting that if E is a stable rank 2 vector bundle on Pn, n ≥ 3,
then its restriction to a general hyperplane is stable unless n = 3 and E is
a (twist of a) nullcorrelation bundle. After Gruson and Peskine reinterpreted
Barth’s arguments, Ein, Hartshorne and Vogelaar [8] were able to prove a sim-
ilar result for stable rank 3 vector bundles (actually, even reflexive sheaves) on
P3. Their result is the following one:

Theorem 0.1 (Ein-Hartshorne-Vogelaar). If E is a stable rank 3 vector
bundle with c1 = 0 on P3 then the restriction of E to a general plane is stable
unless one of the following holds :

(1) c2 ≤ 3 ;

(2) E ≃ S2N , for some nullcorrelation bundle N (in which case c2 = 4 and
c3 = 0) ;
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(3) There is an exact sequence :

0 −→ ΩP3(1) −→ E ′ −→ OH0(−c2 + 1) −→ 0 ,

for some plane H0 ⊂ P3, where E ′ is either E or its dual E∨.

(The easier cases where E has rank 3 and c1 = −1 or −2 had been settled
earlier by Schneider [14].) The three authors also show, in [8, Thm. 4.2], that,
under the hypothesis of the above theorem, c2 ≥ 2 and c3 ≤ c22− c2. Moreover,
for c2 = 2 they prove that the restriction of E to any plane is not stable but
in the case c2 = 3 they assert, after the statement of [8, Thm. 0.1], that they
“do not know exactly which bundles with c2 = 3 have stable restrictions” and
conjecture that the only exceptions are again as in (3).

The aim of this paper is to clarify the case c2 = 3 of the theorem of
Ein, Hartshorne and Vogelaar. Our main result is expressed by the next theo-
rem. As one can see from its statement, there are more exceptions than those
conjectured by the three authors (which shows that this case needs a special
treatment).

Theorem 0.2. Let E be a stable rank 3 vector bundle on P3 with c1 = 0,
c2 = 3 and c3 ≥ 0.

(a) If H0(EH) ̸= 0 for every plane H ⊂ P3 then c3 = 6 and there is an
exact sequence :

0 −→ ΩP3(1) −→ E −→ OH0(−2) −→ 0 ,

for some plane H0.
(b) If H0(E∨

H) ̸= 0 for every plane H ⊂ P3 then one of the following
holds :

(i) c3 = 6 and, up to a linear change of coordinates in P3, E is the cokernel
of the morphism α : 3OP3(−2) → 6OP3(−1) defined by the transpose of
the matrix : X0 X1 X2 X3 0 0

0 X0 X1 X2 X3 0
0 0 X0 X1 X2 X3

 ;

(ii) c3 = 2 and, up to a linear change of coordinates in P3, E is the cohomol-
ogy sheaf of a monad of the form :

0 −→ OP3(−2)
α−→ 6OP3

β−→ 2OP3(1) −→ 0 ,

with α = (X2
2 , X

2
3 , −X0X2 , −X1X3 , X

2
0 , X

2
1 )

t and with β defined by
the matrix : (

X0 a1X1 X2 a1X3 + a3X1 0 a3X3

0 b1X1 X0 b1X3 + b3X1 X2 b3X3

)
,

where a1, a3, b1, b3 are scalars satisfying a1b3 − a3b1 ̸= 0.
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It is clear that the above theorem answers the question of Ein, Hartshorne
and Vogelaar because if c3 < 0 then c3(E

∨) = −c3 > 0.

We recall now, briefly, the results from [8] that we use in the proof of
Theorem 0.2 and then outline the extra arguments that we need to complete
its proof. A more detailed description of our method can be found in Section 1.

Let E be a stable rank 3 vector bundle on P3 with Chern classes c1 =
0, c2, c3. The Riemann-Roch theorem asserts, in this case, that χ(E(l)) =
χ(3OP3(l))−(l+2)c2+c3/2, ∀ l ∈ Z. In particular, c3 must be even. According
to a theorem of Spindler [17] (see, also, [8, Cor. 3.5]), for the general plane
H ⊂ P3 one has h0(EH) ≤ 1 and h0(E∨

H) ≤ 1. One deduces that c2 ≥ 2 and
c3 ≤ c22 − c2 (see [8, Thm. 4.2]). Assume, now, that c2 ≥ 3 and that, for the
general plane H ⊂ P3, one has H0(EH) = 0 and h0(E∨

H) = 1. Applying to E∨

[8, Prop. 7.4(a)] and the first part of the proof of [8, Prop. 6.4], it follows that,
for the general plane H ⊂ P3, there is an exact sequence :

0 −→ (ΩP3(1))H −→ E∨
H −→ OL0(−c2 + 1) −→ 0 ,

for some line L0 ⊂ H. This implies that h1(E∨
L0
) ≥ c2 − 2.

Conversely, if a plane H ⊂ P3 contains a line L0 such that h1(E∨
L0
) ≥

c2 − 2 then EH is not stable. Indeed, if EH were stable then one would have
h1(E∨

H) = c2 − 3, by Riemann-Roch, and h2(E∨
H(−1)) = h0(EH(−2)) = 0 and

this would imply that h1(E∨
L0
) ≤ c2 − 3.

This observation allows one to show quickly that the bundles from The-
orem 0.2(b) are exceptions to the stable restriction property. Indeed, if E is
the bundle from Theorem 0.2(b)(i) let (t0, t1) and (u0, u1) be two linearly in-
dependent elements of k2 and let L ⊂ P3 be the line of equations

∑
t3−i
0 ti1Xi =∑

u3−i
0 ui1Xi = 0. Since the kernel of H0(α∨

L(−1)) contains the linearly inde-
pendent elements (t50, . . . , t

5
1)

t and (u50, . . . , u
5
1)

t it follows that h0(E∨
L(−1)) ≥ 2.

Taking into account that E∨
L(−1) is a subbundle of 6OL, one deduces that

E∨
L(−1) ≃ 2OL ⊕ OL(−3) hence E∨

L ≃ 2OL(1) ⊕ OL(−2). Since any plane
H ⊂ P3 contains such a line [the planes of equation of the form

∑
t3−i
0 ti1Xi = 0,

(t0, t1) ∈ k2 \{(0, 0)}, form a twisted cubic curve Γ in the dual projective space
P3∨ and the secants of Γ fill the whole of P3∨], E is an exception to the stable
restriction property.

If E is one of the bundles from Theorem 0.2(b)(ii), let L be a line joining a
point P0 of the line X0 = X2 = 0 and a point P1 of the line X1 = X3 = 0. Since
X0 and X2 (resp., X1 and X3) vanish at P0 (resp., P1) one deduces, using the
restriction to L of the dual of the monad defining E, that h1(E∨

L) = 1. Since
a general plane contains a line of this kind, E is an exception to the stable
restriction property, too.
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Now, in order to show that the bundles listed in Theorem 0.2 are the
only exceptions to the stable restriction property (in the case c1 = 0, c2 = 3),
we proceed as follows. Using the properties of the spectrum of a stable rank 3
vector bundle on P3 (see Remark 1.6) we describe the Horrocks monad of any
such bundle E with c1 = 0, c2 = 3, c3 ≥ 0 (hence c3 ∈ {0 , 2 , 4 , 6}) that is not
isomorphic to one of the bundles from Theorem 0.2(a). Then we show that,
for the general plane H ⊂ P3, one has H0(EH) = 0. We use, for that, the map
µ : H1(E(−1)) ⊗ OP3∨(−1) → H1(E) ⊗ OP3∨ deduced from the multiplication
map H1(E(−1)) ⊗ H0(OP3(1)) → H1(E). If one would have H0(EH) ̸= 0, for
the general plane H ⊂ P3, then µ would have, generically, corank 1. Since
H1(E) and H1(E(−1)) are k-vector spaces of small dimension (equal, for both,
to 3 − c3/2) one gets readily a contradiction. Note that this settles, already,
the case c3 = 0.

Finally, if E (as above) does not satisfy the stable restriction property
then, for the general plane H ⊂ P3, one must have H0(EH) = 0 and h0(E∨

H) =
1. If c3 = 2 and E has an unstable plane or if c3 = 4 one gets a contradiction
by showing that the general plane H ⊂ P3 contains no line L0 such that
h1(E∨

L0
) ≥ 1. The argument for the case c3 = 4 is a little bit lengthy because

the best we were able to do was to split it into several cases. The analysis of
each case is, however, easy.

If c3 = 2 and E has no unstable plane (resp., c3 = 6) we show that
E is as in Theorem 0.2(b)(ii) (resp., Theorem 0.2(b)(i)). We use, for that,
the morphism µ : H1(E∨(−1)) ⊗ OP3∨(−1) → H1(E∨) ⊗ OP3∨ deduced from
the multiplication map H1(E∨(−1))⊗ H0(OP3(1)) → H1(E∨) and, in the case
c3 = 6, the main result of Vallès [18].

Notation. (i) We denote by Pn the projective n-space over an algebraically
closed field k of characteristic 0. We use the classical definition Pn = P(V ) :=
(V \ {0})/k∗, where V := kn+1. If e0, . . . , en is the canonical basis of V and
X0, . . . , Xn the dual basis of V ∨ then the homogeneous coordinate ring of Pn

is the symmetric algebra S := S(V ∨) ≃ k[X0, . . . , Xn].

(ii) If F is a coherent sheaf on Pn and i ≥ 0 an integer, we denote
by Hi

∗(F ) the graded k-vector space
⊕

l∈ZH
i(F (l)) endowed with its natural

structure of graded S-module. We also denote by hi(F ) the dimension of
Hi(F ) as a k-vector space.

(iii) If Y ⊂ X are closed subschemes of Pn, we denote by IX the ideal
sheaf of OP3 defining X and by IY,X the ideal sheaf of OX defining Y as a
closed subscheme of X, i.e., IY,X = IY /IX . If F is a coherent sheaf on
Pn, we denote the tensor product F ⊗OP OX by FX and identify it with the
restriction F |X of F to X. In particular, if x is a (closed) point of Pn then
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F{x} is just the reduced stalk F (x) := Fx/mxFx of F at x.

(iv) A monad with cohomology sheaf F is a bounded complex K• (usu-
ally, with only three non-zero terms) of vector bundles on Pn such that
H 0(K•) ≃ F and H i(K•) = 0 for i ̸= 0. For Horrocks monads, see Barth
and Hulek [4].

1. PRELIMINARIES

This section is devoted to recalling some well-known facts about stable
rank 3 vector bundles with c1 = 0 on P2 and P3. In particular, we recall the defi-
nition and properties of the spectrum of a stable rank 3 vector bundle on P3 and
Beilinson’s theorem. Then we introduce the new ingredient used in the proof
of Theorem 0.2, namely the morphism µ : H1(E ′(−1))⊗OP3∨(−1) → H1(E ′)⊗
OP3∨ deduced from the multiplication map H1(E ′(−1))⊗S1 → H1(E ′), where
E ′ is a stable rank 3 vector bundle on P3 with c1 = 0, c2 = 3.

Lemma 1.1. Let F be a semistable rank 3 vector bundle on P2 with Chern
classes c1 = 0 and c2 ≥ 1. Then h0(F ) ≤ 2 and if h0(F ) = 2 then F can be
realized as an extension :

0 −→ 2OP2 −→ F −→ IZ −→ 0 ,

for some 0-dimensional subscheme Z of P2.

Proof. Since F has rank 3 and c1 = 0, it is semistable if and only if
H0(F (−1)) = 0 and H0(F∨(−1)) = 0. It is well-known that such a bundle has
c2 ≥ 0 and if c2 = 0 then F ≃ 3OP2 .

Now, under the hypothesis of the lemma, assume that h0(F ) ≥ 2 and
consider two linearly independent global sections s1 and s2 of F . We assert
that the global section s1∧s2 of

∧2 F is non-zero. Indeed, since H0(F (−1)) = 0
the zero scheme Z1 of s1 has codimension at least 2 in P2. If s1 ∧ s2 = 0 then
there exists a regular function f on P2 \ Z1 such that s2 = fs1. But the only
regular functions on P2 \Z1 are the constant ones hence s1 and s2 are linearly
dependent, which contradicts our assumption.

We have
∧2 F ≃ F∨. Since H0(F∨(−1)) = 0, the zero scheme Z of the

global section s1 ∧ s2 of
∧2 F has codimension at least 2 in P2. It follows that

the Eagon-Northcott complex :

0 −→ 2OP2
(s1 , s2)−−−−→ F

s1∧s2∧∗−−−−−→ IZ −→ 0

is exact. Since lengthZ = c2 ≥ 1 one deduces that h0(F ) = 2.
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Lemma 1.2. Let F be a rank 3 vector bundle on P2 with c1 = 0 and such
that H0(F (−2)) = 0 and H0(F∨(−2)) = 0. Then, for the general line L ⊂ P2,
one has FL ≃ 3OL or FL ≃ OL(1)⊕ OL ⊕ OL(−1).

Proof. If H0(F (−1)) = 0 and H0(F∨(−1)) = 0 then F is semistable and
one can apply the theorem of Grauert-Mülich-Spindler [15]. If H0(F∨(−1)) ̸= 0
or H0(F (−1)) ̸= 0 then one has an exact sequence :

0 −→ G(1) −→ F ′ −→ IZ(−1) −→ 0 ,

where F ′ is either F or F∨, Z is a 0-dimensional (or empty) closed subscheme
of P2 and G is a rank 2 vector bundle with c1(G) = −1. Since H0(F ′(−2)) = 0
it follows that H0(G(−1)) = 0. If H0(G) = 0 then G is stable. If H0(G) ̸= 0
then G can be realized as an extension 0 → OP2 → G → IW (−1) → 0, for
some 0-dimensional subscheme W of P2. Using the theorem of Grauert-Mülich
(for the former case) one gets that, for the general line L ⊂ P2 one has GL ≃
OL ⊕ OL(−1). If, moreover, L ∩ Z = ∅ then F ′

L ≃ OL(1)⊕ OL ⊕ OL(−1).

Remark 1.3. We recall, here, a formula that we shall need a couple of
times. If F is a coherent torsion sheaf on Pn then :

c1(F ) =
∑

(lengthFξ) degX ,

where the sum is indexed by the 1-codimensional irreducible components X
of SuppF and ξ is the generic point of X (notice that Fξ is an Artinian
OPn,ξ-module).

Remark 1.4. Let E be a stable rank 3 vector bundle on P3 with c1 = 0.
We recall that a plane H0 ⊂ P3 is an unstable plane for E if H0(E∨

H0
(−1)) ̸= 0.

The largest integer r ≥ 1 for which H0(E∨
H0

(−r)) ̸= 0 is the order of H0. Ein,
Hartshorne and Vogelaar show, in [8, Prop. 5.1], that the following conditions
are equivalent :

(i) H0(EH) ̸= 0 for every plane H and there is an unstable plane for E ;

(ii) There exists a plane H0 ⊂ P3 and an exact sequence :

0 −→ ΩP3(1) −→ E −→ OH0(−c2 + 1) −→ 0 ;

(iii) E has an unstable plane of order c2 − 1.

If the above conditions are satisfied then : (iv) c3 = c22− c2. Moreover, if c2 ≥ 4
then (iv) ⇒ (iii) (hence all four conditions are equivalent). We assert that
conditions (i)–(iii) above are also equivalent (for c2 ≥ 2) to the condition :

(v) There is a non-zero morphism ϕ : ΩP3(1) → E.
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Indeed, let us show that (v) ⇒ (ii). Since ΩP3(1) and E are stable vector
bundles with c1(ΩP3(1)) = −1 and c1(E) = 0, ϕ must have, generically, rank
3. It follows that

∧3 ϕ : OP3(−1) → OP3 is defined by a non-zero linear form
h0. Let H0 ⊂ P3 be the plane of equation h0 = 0. Cokerϕ is annihilated by
h0 hence it is an OH0-module. The Auslander-Buchsbaum relation shows that
depth(Cokerϕ)x ≥ 2, ∀x ∈ H0, hence Cokerϕ is a locally free OH0-module.
One deduces, from Remark 1.3, that it has rank 1, i.e., that Cokerϕ ≃ OH0(a)
for some a ∈ Z. One has 1 = c2(ΩP3(1)) = c2 + a hence a = −c2 + 1.

Notice that condition (v) above is equivalent to the existence of a non-zero
element ξ of H1(E(−1)) such that S1ξ = 0 in H1(E) (use the exact sequence
0 → ΩP3(1) → S1 ⊗ OP3 → OP3(1) → 0).

Lemma 1.5. Let E be a stable rank 3 vector bundle on P3 with c1 = 0,
c2 = 3 and c3 ≥ 0. Assume that H0(EH) = 0 for the general plane H ⊂ P3.
Assume, also, that any line L ⊂ P3 for which h1(E∨

L) ≥ 1 either passes through
one of finitely many points, or is contained in one of finitely many planes,
or belongs to a family of dimension at most 1. Then, for the general plane
H ⊂ P3, one has H0(E∨

H) = 0.

Proof. E does not satisfy the equivalent conditions (i)–(iii) from Re-
mark 1.4 (because H0(EH) = 0 for the general plane H ⊂ P3) and nor does
E∨ (because c3 ̸= −6). One deduces that, for any plane H ⊂ P3, one has
H0(E∨

H(−2)) = 0 and H0(EH(−2)) = 0. Lemma 1.2 implies that, for any plane
H, the family of lines L ⊂ H for which h1(E∨

L) ≥ 1 has dimension at most
1. It follows that the general plane H ⊂ P3 contains no line L0 for which
h1(E∨

L0
) ≥ 1. As we noticed in the Introduction (right after the statement of

Theorem 0.2), this implies the conclusion of the lemma.

Remark 1.6. Let E be a stable rank 3 vector bundle on P3 with c1 = 0.
One of the most important applications of Theorem 0.1 (and of the generalized
Grauert-Mülich theorem of Spindler [15]) is the existence of a non-decreasing
sequence of integers kE = (k1, . . . , km), called the spectrum of E, such that,
putting K :=

⊕m
i=1 OP1(ki), one has :

(I) h1(E(l)) = h0(K(l + 1), for l ≤ −1 ;

(II) h2(E(l)) = h1(K(l + 1)), for l ≥ −3.

We shall need the following properties of the spectrum : m = c2, −2Σki = c3,
the spectrum is connected, i.e., ki+1 − ki ≤ 1, for 1 ≤ i ≤ m − 1, and if
0 does not occur in the spectrum then either km−2 = km−1 = km = −1
or k1 = k2 = k3 = 1. Moreover, by Serre duality, the spectrum of E∨ is
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(−km, . . . ,−k1). Details can be found in the papers of Okonek and Spindler
[12], [13], and in the papers [6], [7] of the author. These papers use the approach
of Hartshorne [10], [11] who treated the rank 2 case. Details can be also found
in Appendix A of the e-print version of this paper arXiv:2103.11723.

It is easy to show that conditions (i)–(iii) from Remark 1.4 are also equiv-
alent to the condition :

(vi) The spectrum of E is (−c2 + 1, . . . ,−1, 0).

Indeed, (ii) ⇒ (vi) by the above definition of the spectrum. On the
other hand, (vi) ⇒ (iii) because the spectrum of E∨ is (0, 1, . . . , c2 − 1) hence
h1(E∨(−c2)) = 1 and h1(E∨(−c2+1)) = 3 hence there exists a non-zero linear
form h0 such that multiplication by h0 : H

1(E∨(−c2)) → H1(E∨(−c2 + 1)) is
the zero map which implies that h0(E∨

H0
(−c2 + 1)) = 1, H0 being the plane of

equation h0 = 0.

Remark 1.7. Let E be a stable rank 3 vector bundle on P3 with c1 = 0,
c2 = 3. According to the previous remark, if c3 = 6 then the possible spectra of
E are (−2,−1, 0) and (−1,−1,−1), if c3 = 4 the spectrum of E is (−1,−1, 0), if
c3 = 2 the spectrum of E is (−1, 0, 0), and if c3 = 0 the possible spectra of E are
(0, 0, 0) and (−1, 0, 1). Assuming that neither E nor E∨ satisfy the equivalent
conditions (i)–(iii) from Remark 1.4 (i.e., that the spectrum of E is neither
(−2,−1, 0) nor (0, 1, 2)), one has H1(E(l)) = 0 for l ≤ −3 and H2(E(l)) = 0
for l ≥ −1. In this case, Beilinson’s theorem [5], with the improvements of
Eisenbud, Fløystad and Schreyer [9, (6.1)] (these results are recalled in [1,
1.23–1.25]), implies that E is the cohomology sheaf of a monad that can be
described as the total complex of a double complex with the following (possibly)
non-zero terms :

H1(E(−2))⊗ Ω2
P3(2) // H1(E(−1))⊗ Ω1

P3(1) // H1(E)⊗ OP3

0 //

OO

H2(E(−3))⊗ Ω3
P3(3) //

OO

H2(E(−2))⊗ Ω2
P3(2)

OO

such that the term H1(E(−1)) ⊗ Ω1
P3(1) has bidegree (0, 0). The horizontal

differentials of this double complex are equal to
∑3

i=0Xi ⊗ ei, Xi acting to
the left on Hp(E(−l)) via the S-module structure of Hp

∗(E) and ei acting to
the right on Ωl

P3(l) by contraction (recall that Ωl
P3(l) embeds canonically into

OP3 ⊗
∧l V ∨).

Lemma 1.8. Let E be a stable rank 3 vector bundle on P3 with c1 = 0,
c2 = 3. Assume that neither E nor E∨ satisfy the equivalent conditions (i)–
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(iii) from Remark 1.4. If H2(E(−2)) = 0 then, for any vector subspace N−1 of
codimension 1 of H1(E(−1)), one has S1N−1 = H1(E).

Proof. Since H2(E(−2)) = 0, the Beilinson monad of E shows that the
morphism δ : H1(E(−1)) ⊗ ΩP3(1) → H1(E) ⊗ OP3 deduced from the map
H1(E(−1))⊗ S1 → H1(E) is an epimorphism. Assume, by contradiction, that
there exists a proper subspace N0 of H1(E) such that S1N−1 ⊆ N0. Then δ
maps N−1⊗ΩP3(1) into N0⊗OP3 . Since there is no epimorphism ΩP3(1) → OP3

one gets a contradiction.

Remark 1.9. Let E be a stable rank 3 vector bundle on P3 with c1 = 0,
c2 = 3. The new ingredient that we use in the proof of Theorem 0.2 is the
analysis of the map :

µ : H1(E ′(−1))⊗ OP3∨(−1) −→ H1(E ′)⊗ OP3∨

deduced from the multiplication map H1(E ′(−1)) ⊗ S1 → H1(E ′), where E ′

is either E or E∨. Notice that the kernel of the reduced stalk of µ at a point
[h] ∈ P3∨ corresponding to a plane H ⊂ P3 of equation h = 0 is isomorphic to
H0(E ′

H).
If the spectrum of E ′ is not (−2,−1, 0) then H2(E ′(l)) = 0 for l ≥ −1

hence, by Riemann-Roch, H1(E ′(−1)) and H1(E ′) have the same dimension,
namely d := 3−c′3/2 (with c′3 = ±c3). If one fixes k-bases of H1(E ′(−1)) and of
H1(E ′) then H0(µ(1)) : H1(E ′(−1)) → H1(E ′)⊗H0(OP3∨(1)) is represented by
a d× d matrix M with entries in H0(OP3∨(1)) = V . Then the d× d matrix Mi

with scalar entries associated to the multiplication map Xi : H
1(E ′(−1)) →

H1(E ′) is obtained by evaluating Xi at the entries of M. It follows that
M =

∑3
i=0Miei.

Notice that the same matrix M defines the horizontal differential

H1(E(−1))⊗ Ω1
P3(1) → H1(E)⊗ OP3

of the Beilinson monad of E (recall that Hom(Ω1
P3(1),OP3) can be identified

with V ).
Assume, now, that H0(E ′

H) ̸= 0, for every plane H ⊂ P3. Then µ
has, generically, corank 1 (by the theorem of Spindler [17] recalled in the
Introduction). Since Kerµ is reflexive of rank 1 it must be invertible, i.e.,
Kerµ ≃ OP3∨(a), for some integer a. Moreover, one must have an exact
sequence :

0 −→ (Cokerµ)tors −→ Cokerµ −→ IY (b) −→ 0 ,

for some integer b and some closed subscheme Y of P3∨, of codimension at least
2. One has the relation :

(1.1) a = −d+ b+ c1 ((Cokerµ)tors) .
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By Remark 1.3, c1 ((Cokerµ)tors) ≥ 0. We conclude with three easy observa-
tions.

(i) One has a ≤ −2. Indeed, if a = −1 then there exists a non-zero
element ξ of H1(E ′(−1)) such that S1ξ = (0) in H1(E ′) which contradicts the
last assertion in Remark 1.4.

(ii) If S1H
1(E ′(−1)) = H1(E ′) then b ≥ 1. Indeed, if b = 0 then one

must have Y = ∅. The kernel of the epimorphism H1(E ′)⊗ OP3∨ → OP3∨ has
the form N0 ⊗ OP3∨ , for some 1-codimensional subspace N0 of H1(E ′). Since
the image of µ is contained in N0 ⊗ OP3∨ it follows that S1H

1(E ′(−1)) ⊆ N0,
which contradicts our assumption.

(iii) Let L be a line and P3 and let L∨ be the line in P3∨ whose points
correspond to the planes containing L. The restriction µ |L∨ : H1(E ′(−1)) ⊗
OL∨(−1) → H1(E ′)⊗OL∨ is defined by the multiplication map H1(E ′(−1))⊗
H0(IL(1)) → H1(E ′). Assume that H2(E ′(−2)) = 0. Tensorizing by E ′ the
exact sequence 0 → OP3(−2) → 2OP3(−1) → OP3 → OL → 0, one gets an
exact sequence :

H1(E ′(−1))⊗H0(IL(1)) −→ H1(E ′) −→ H1(E ′
L) −→ 0 .

If h1(E ′
L) ≥ 1 and if L is contained in a plane H with h0(E ′

H) = 1 (hence
h1(E ′

H) = 1, by Riemann-Roch) one deduces that Coker (µ |L∨) ≃ OL∨ ⊕ T ,
where T is a torsion OL∨-module. This implies that if b ≥ 1 then L must
intersect Y . Consequently, if b ≥ 1 and the general plane H ⊂ P3 contains a
line L0 with h1(E ′

L0
) ≥ 1 then dimY = 1.

2. THE CASE c3= 0

Lemma 2.1. Let E be a stable rank 3 vector bundle on P3 with c1 = 0,
c2 = 3, c3 = 0 and spectrum (0, 0, 0). Then E is the cohomology sheaf of a
Beilinson monad of the form :

0 −→ 3Ω3
P3(3)

γ−→ 3Ω1
P3(1)

δ−→ 3OP3 −→ 0 ,

and of a Horrocks monad of the form :

0 −→ 3OP3(−1)
α−→ 9OP3

β−→ 3OP3(1) −→ 0 .

Proof. One has, by Riemann-Roch, h1(E) = 3. For the first monad see
Remark 1.7 while the second monad can be deduced from the first one and the
exact sequence 0 → Ω1

P3(1) → 4OP3 → OP3(1) → 0.

Proposition 2.2. Let E be a stable rank 3 vector bundle on P3 with
c1 = 0, c2 = 3, c3 = 0 and spectrum (0, 0, 0). Then the restriction of E to a
general plane is stable.
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Proof. Since E∨ has the same Chern classes and spectrum as E, it suffices
to show that, for the general plane H ⊂ P3, one has H0(EH) = 0. Assume,
by contradiction, that H0(EH) ̸= 0, for every plane H. Then the morphism
µ : H1(E(−1))⊗ OP3∨(−1) → H1(E)⊗ OP3∨ from Remark 1.9 has, generically,
corank 1. Using the notation from that remark, one has a ≤ −2 (by observation
(i)) and b ≥ 1 (by observation (ii) because, using the Horrocks monad of E,
one sees that S1H

1(E(−1)) = H1(E)). It follows, from relation (1.1) (in which
one has d = 3), that a = −2 and b = 1. Since IY (1) is globally generated by at
most 3 linear forms, Y must be a point or a line. Y cannot be a point because,
by Lemma 1.1, µ has corank ≤ 2 at every point of P3∨ (EH is semistable for
every plane H because H1(E(−2)) = 0 and H1(E∨(−2)) = 0).

Y cannot be a line, either. Indeed, if Y is a line then the kernel of the
epimorphism H1(E)⊗OP3∨ → IY (1) is isomorphic to OP3∨ ⊕OP3∨(−1), hence
µ factorizes as :

H1(E(−1))⊗ OP3∨(−1)
µ−→ OP3∨ ⊕ OP3∨(−1) −→ H1(E)⊗ OP3∨ .

The kernel of the component H1(E(−1))⊗OP3∨(−1) → OP3∨(−1) of µ has the
form N−1 ⊗ OP3∨(−1), for some 1-codimensional subspace N−1 of H1(E(−1)).
The direct summand OP3∨ of OP3∨ ⊕OP3∨(−1) corresponds to a 1-dimensional
subspace N0 of H

1(E). Since µ maps N−1⊗OP3∨(−1) into N0⊗OP3∨ , it follows
that S1N−1 ⊆ N0, which contradicts Lemma 1.8.

Proposition 2.3. Let E be a stable rank 3 vector bundle on P3 with
c1 = 0, c2 = 3, c3 = 0 and spectrum (−1, 0, 1). Then :

(a) E has an unstable plane of order 1.

(b) The restriction of E to a general plane is stable.

(c) E is the cohomology sheaf of a Horrocks monad of the form :

0 −→ OP3(−2)
α−→ OP3(1)⊕ 3OP3 ⊕ OP3(−1)

β−→ OP3(2) −→ 0 .

Proof. (a) The spectrum of E∨ is (−1, 0, 1), as well. It follows that
h1(E∨(−2)) = 1 and h1(E∨(−1)) = 3. One deduces that there exists a non-zero
linear form h0 such that the multiplication by h0 : H

1(E∨(−2)) → H1(E∨(−1))
is the zero map. If H0 is the plane of equation h0 = 0 then h0(E∨

H0
(−1)) = 1.

(b) It follows from (a) and from [8, Prop. 5.1] (recalled in Remark 1.4)
that H0(EH) = 0, for the general plane H ⊂ P3. Since E∨ has the same Chern
classes and spectrum as E, one deduces that, for the general plane H ⊂ P3,
one has H0(E∨

H) = 0 as well.

(c) We assert that the graded S-module H1
∗(E) is generated by H1(E(−2)).

Indeed, using the spectrum one sees that H1(E(l)) = 0 for l ≤ −3, h1(E(−2)) =
1, h1(E(−1)) = 3 and that H2(E(l)) = 0 for l ≥ −1. Moreover, h1(E) = 3 by
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Riemann-Roch. Since H2(E(−1)) = 0 and H3(E(−2)) = 0, the slightly more
general variant of the Castelnuovo-Mumford Lemma recalled in [1, Lemma 1.21]
implies that H1

∗(E) is generated in degrees ≤ 0.

Since H0(E) = 0, H1(E(−2)) cannot be annihilated by two linearly inde-
pendent linear forms (because if it would be, denoting by L the line defined
by these forms and using the exact sequence 0 → OP3(−2) → 2OP3(−1) →
IL → 0, one would have H0(IL ⊗ E) ̸= 0). It follows that S1H

1(E(−2)) =
H1(E(−1)). On the other hand, by (b), if h is a general linear form then,
denoting by H the plane of equation h = 0, one has H0(EH) = 0 hence multi-
plication by h : H1(E(−1)) → H1(E) is injective hence bijective. Our assertion
is proven.

Since E∨ has the same Chern classes and spectrum as E it follows that
H1

∗(E
∨) is generated by H1(E∨(−2)). One deduces (see Barth and Hulek

[4]) that E is the cohomology sheaf of a Horrocks monad of the form 0 →
OP3(−2) → B → OP3(2) → 0, where B is a direct sum of line bundles. B
has rank 5, H0(B(−2)) = 0 and h0(B(−1)) = h0(OP3(1)) − h1(E(−1)) = 1.
Analogously, H0(B∨(−2)) = 0 and h0(B∨(−1)) = 1. It follows that B ≃
OP3(1)⊕ 3OP3 ⊕ OP3(−1).

3. THE CASE c3 = 2

Lemma 3.1. Let E be a stable rank 3 vector bundle on P3 with c1 = 0,
c2 = 3, c3 = 2. Then :

(a) E is the cohomology sheaf of a monad of the form :

0 −→ OP3(−1)⊕ OP3(−2)
α−→ 6OP3 ⊕ OP3(−1)

β−→ 2OP3(1) −→ 0 .

(b) If E has no unstable plane then it is the cohomology sheaf of a monad
of the form :

0 −→ OP3(−2)
α−→ 6OP3

β−→ 2OP3(1) −→ 0 .

Proof. (a) The spectrum of E must be (−1, 0, 0). One deduces that
H1(E(l)) = 0 for l ≤ −2, h1(E(−1)) = 2, h2(E(−3)) = 4, h2(E(−2)) = 1,
and H2(E(l)) = 0 for l ≥ −1. By Riemann-Roch, h1(E) = 2.

Claim 1. H1
∗(E) is generated by H1(E(−1)).

Indeed, since H2(E(−1)) = 0 and H3(E(−2)) = 0, the Castelnuovo-
Mumford Lemma (in its slightly more general form recalled in [1, Lemma 1.21])
implies that H1

∗(E) is generated in degrees ≤ 0. It remains to show that the
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multiplication map S1⊗H1(E(−1)) → H1(E) is surjective. Assume, by contra-
diction, that it is not. Then its image is contained in a 1-dimensional subspace
A of H1(E). Consider the Beilinson monad of E (see Remark 1.7) :

0 −→ H2(E(−3))⊗ Ω3
P3(3)

γ−→
H2(E(−2))⊗ Ω2

P3(2)
⊕

H1(E(−1))⊗ Ω1
P3(1)

δ−→ H1(E)⊗ OP3 −→ 0 .

By our assumption, the image of the restriction δ2 of δ to H1(E(−1))⊗Ω1
P3(1)

is contained in A⊗OP3 . Let A′ denote the quotient H1(E)/A. Denoting by γ1
the component H2(E(−3))⊗Ω3

P3(3) → H2(E(−2))⊗Ω2
P3(2) of γ, one deduces

that one has an epimorphism Coker γ1 → A′⊗OP3 . But the multiplication map
S1⊗H2(E(−3)) → H2(E(−2)) is surjective (because H3(E(−4)) = 0) hence the

morphism γ1 is non-zero. Since there is no complex OP3(−1)
ϕ→ Ω2

P3(2)
π→ OP3

with ϕ ̸= 0 and π an epimorphism, we have got the desired contradiction.

Claim 2. H1
∗(E

∨) has one minimal generator of degree −2 and at most
one of degree −1.

Indeed, since the spectrum of E∨ is (0, 0, 1), it follows that H1(E∨(l)) =
0 for l ≤ −3, h1(E∨(−2)) = 1, h1(E∨(−1)) = 4, and H2(E∨(l)) = 0 for
l ≥ −2. One deduces that H1

∗(E
∨) is generated in degrees ≤ −1 (because

H2(E∨(−2)) = 0 and H3(E∨(−3)) = 0). Moreover, the multiplication map
S1 ⊗ H1(E∨(−2)) → H1(E∨(−1)) cannot have rank ≤ 2 because in that case
it would exist a line L ⊂ P3 such that H0(IL ⊗ E∨) = 0, which is not true.

The two claims above imply that E is the cohomology sheaf of a (not
necessarily minimal) Horrocks monad of the form

0 → OP3(−1)⊕ OP3(−2) → B → 2OP3(1) → 0,

with B a direct sum of line bundles. B has rank 7, H0(B(−1)) = 0, c1(B) = −1
hence B ≃ 6OP3 ⊕ OP3(−1).

(b) If E has no unstable plane then the multipliction map

S1 ⊗H1(E∨(−2)) → H1(E∨(−1))

is injective and therefore bijective hence H1
∗(E

∨) has no minimal generator of
degree −1.

Lemma 3.2. Let E be a stable rank 3 vector bundle on P3 with c1 = 0,
c2 = 3, c3 = 2. Then, for the general plane H ⊂ P3, one has H0(EH) = 0.

Proof. Assume, by contradiction, that this is not the case. Consider the
morphism µ : H1(E(−1))⊗OP3∨(−1) → H1(E)⊗OP3∨ from Remark 1.9. Using
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the notation from that remark, one has a ≤ −2 (by observation (i)) and b ≥ 1
(by observation (ii) because, by Claim 1 in the proof of Prop. 2.2, one has
S1H

1(E(−1)) = H1(E)). But this contradicts relation (1.1) (in which one has
d = 2).

Proposition 3.3. Let E be a stable rank 3 vector bundle on P3 with
c1 = 0, c2 = 3, c3 = 2. Assume that E has an unstable plane. Then, for the
general plane H ⊂ P3, one has H0(E∨

H) = 0.

Proof. We intend to apply Lemma 1.5. According to Lemma 3.1, E is
the cohomology sheaf of a minimal Horrocks monad of the form :

0 −→ OP3(−1)⊕ OP3(−2)
α−→ 6OP3 ⊕ OP3(−1)

β−→ 2OP3(1) −→ 0 .

The component OP3(−1) → OP3(−1) of α is zero and the component OP3(−2) →
OP3(−1) is defined by a linear form h0. Since H0(α∨) is injective, one has
h0 ̸= 0. Let H0 ⊂ P3 be the plane of equation h0 = 0.

Dualizing the above monad, one deduces that E∨ is the middle cohomol-
ogy sheaf of a complex :

0 −→ 2OP3(−1) −→ 2OP3 ⊕ ΩP3(1)
ε−→ OH0(2) −→ 0 .

ε is defined by two elements f0, f1 of H
0(OH0(2)) and by a morphism ΩP3(1) →

OH0(2) which can be written as a composite map ΩP3(1) → OP3 ⊗ V ∨ ϕ→
OH0(2). Since H0(E∨) = 0 it follows that f0 and f1 are linearly independent.
Put Z := {x ∈ H0 | f0(x) = f1(x) = 0}.

If L is a line not contained inH0 then H1(E∨
L) is isomorphic to the cokernel

of :
H0(εL) : H

0 (2OL ⊕ (ΩP3(1) |L)) −→ H0(OL∩H0(2)) .

If L ∩ Z = ∅ then H0(εL) is surjective hence H1(E∨
L) = 0. Assume,

now, that L ∩H0 consists of a point x belonging to Z. Since ε is an epimor-
phism, the map (ΩP3(1))(x) → (OH0(2))(x) is surjective. But (ΩP3(1))(x) =
H0(I{x}(1)) ⊂ V ∨ and H0(ΩP3(1) |L) = H0(IL(1)) ⊂ H0(I{x}(1)). One de-
duces that for all the lines L passing through x and not contained in H0,
except at most one, the map H0(ΩP3(1) |L) = H0(IL(1)) → OH0(2)(x) =
H0(OL∩H0(2)) induced by ϕ is surjective. Consequently, any line L ⊂ P3 for
which h1(E∨

L) ≥ 1 is either contained in H0 or belongs to a family of dimension
at most 1 (because dimZ ≤ 1). The conclusion of the proposition follows, now,
from Lemma 1.5.

Lemma 3.4. Let V be a 4-dimensional k-vector space and let W be a
4-dimensional subspace of

∧2 V . Then there exists a k-basis v0, . . . , v3 of V
such that W admits one of the following bases :
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(i) v0 ∧ v1, v1 ∧ v2, v2 ∧ v3, v0 ∧ v3 ;

(ii) v0 ∧ v1, v1 ∧ v2, v2 ∧ v3, v0 ∧ v2 + v1 ∧ v3 ;

(iii) v0 ∧ v1, v1 ∧ v2, v2 ∧ v3, v0 ∧ v2.

Proof. Consider the canonical pairing ⟨∗, ∗⟩ :
∧2 V ∨ ×

∧2 V → k and let
W⊥ ⊂

∧2 V ∨ consist of the elements α with ⟨α, ω⟩ = 0, ∀ω ∈ W . Since W⊥

has dimension 2, a well-known result (see, for example, [2, Lemma G.4]) says
that there exists a basis h0, . . . , h3 of V ∨ such that W⊥ admits one of the
following bases :

(1) h0 ∧ h2, h1 ∧ h3 ;

(2) h0 ∧ h3, h0 ∧ h2 − h1 ∧ h3 ;

(3) h0 ∧ h3, h1 ∧ h3.

Let v0, . . . , v3 be the dual basis of V . If W⊥ admits the basis (1) (resp., (2),
resp., (3)) then V admits the basis (i) (resp., (ii), resp., (iii)).

Proposition 3.5. Let E be a stable rank 3 vector bundle on P3 with
c1 = 0, c2 = 3, c3 = 2. Assume that E has no unstable plane. If H0(E∨

H) ̸= 0,
for every plane H ⊂ P3, then E is as in Theorem 0.2(b)(ii).

Proof. According to Lemma 3.1(b), E is the cohomology sheaf of a monad
of the form :

0 −→ OP3(−2)
α−→ 6OP3

β−→ 2OP3(1) −→ 0 .

The spectrum of the dual vector bundle E∨ is (0, 0, 1). It follows that
H1(E∨(l)) = 0 for l ≤ −3, h1(E∨(−2)) = 1, h1(E∨(−1)) = 4, h2(E∨(−3)) = 2,
H2(E∨(l)) = 0 for l ≥ −2. Moreover, by Riemann-Roch, h1(E∨) = 4. By
Remark 1.7, E∨ is the cohomology sheaf of a Beilinson monad of the form :

0 −→
H1(E∨(−2))⊗ Ω2

P3(2)
⊕

H2(E∨(−3))⊗ Ω3
P3(3)

γ−→ H1(E∨(−1))⊗Ω1
P3(1)

δ−→ H1(E∨)⊗OP3 → 0 .

Consider, now, the morphism

µ : H1(E∨(−1))⊗ OP3∨(−1) → H1(E∨)⊗ OP3∨

from Remark 1.9. Using the notation from that remark, one has a ≤ −2 (by
observation (i)) and b ≥ 1 (by observation (ii) because one sees easily, dualizing
the above Horrocks monad, that S1H

1(E∨(−1)) = H1(E∨)).
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Claim 1. b ≥ 2.

Indeed, assume, by contradiction, that b = 1. As we noticed in the
Introduction (after the statement of Theorem 0.2) the general plane H ⊂ P3

contains a line L0 with h1(E∨
L0
) ≥ 1. Observation (iii) in Remark 1.9 implies

that Y has dimension 1. Since IY (1) is globally generated, Y must be a line.
In this case, µ factorizes as :

H1(E∨(−1))⊗ OP3∨(−1)
µ−→ (N0 ⊗ OP3∨)⊕ OP3∨(−1) −→ H1(E∨)⊗ OP3∨ ,

for some subspace N0 of H1(E∨) of dimension 2. The kernel of the component
H1(E∨(−1)) ⊗ OP3∨(−1) → OP3∨(−1) of µ has the form N−1 ⊗ OP3∨(−1) for
some 1-codimensional subspace N−1 of H1(E∨(−1)).

Since µ maps N−1⊗OP3∨(−1) into N0⊗OP3∨ it follows that S1N−1 ⊆ N0

which contradicts Lemma 1.8.

It follows, now, from Claim 1 and from relation (1.1) (with d = 4), that
b = 2 and a = −2. In this case, we have an exact sequence :

0 −→ OP3∨(−2)
κ−→ H1(E∨(−1))⊗ OP3∨(−1)

µ−→ H1(E∨)⊗ OP3∨ .

Choosing a basis of H1(E∨(−1)), κ is defined by four vectors u0, . . . , u3 ∈ V =
H0(OP3∨(1)). We assert that u0, . . . , u3 are linearly independent.

Indeed, if ku0+. . .+ku3 has dimension c < 4 then there is a decomposition
H1(E∨(−1)) = N−1 ⊕N ′

−1, with N−1 of dimension c, such that Imκ ⊂ N−1 ⊗
OP3∨(−1). It follows that Cokerκ ≃ F ⊕ (N ′

−1 ⊗ OP3∨(−1)), where F is a
sheaf defined by an exact sequence :

0 −→ OP3∨(−2) −→ N−1 ⊗ OP3∨(−1) −→ F −→ 0 .

One cannot have c = 1 because, in this case, F is a torsion sheaf and this
contradicts the fact that Cokerκ ≃ Imµ. If c ∈ {2, 3} then, dualizing the
above sequence, one sees that HomOP3∨

(F ,OP3∨) has dimension 1 for c = 2
and dimension 3 for c = 3. One deduces that there exists a subspace N0 of
H1(E∨), of dimension 1 if c = 2 and of dimension 3 if c = 3, such that µ
maps N−1 ⊗OP3∨(−1) into N0 ⊗OP3∨ . This means that S1N−1 ⊆ N0 and this
contradicts the following assertion :

Claim 2. If N−1 is a subspace of H1(E∨(−1)), of dimension 2 or 3,
then the dimension of the subspace S1N−1 of H1(E∨) is > dimkN−1.

Indeed, the image of H0(α∨) : H0(6OP3) → H0(OP3(2)) is a 6-dimensional,
base point free subspace U of H0(OP3(2)). One has H1(E∨(−1)) ≃ H0(OP3(1))
and H1(E∨) ≃ H0(OP3(2))/U . By the first isomorphism, N−1 is identified with
H0(IΛ(1)), for some linear subspace Λ of P3 with codim(Λ,P3) = dimkN−1.
Then S1N−1 ≃ (H0(IΛ(2))+U)/U hence H1(E∨)/S1N−1 is isomorphic to the
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cokernel of the restriction map U → H0(OΛ(2)). Since U is base point free, the
dimension of this cokernel is 0 if dimΛ = 0 and ≤ 1 if dimΛ = 1. The claim
is proven.

It remains that u0, . . . , u3 are linearly independent. This implies that
Cokerκ ≃ TP3∨(−2). µ induces a morphism µ : TP3∨(−2) → H1(E∨) ⊗ OP3∨ .
Since one has S1H

1(E∨(−1)) = H1(E∨), the map

H0(µ∨) : H1(E∨)∨ → H1(E∨(−1))∨ ⊗H0(OP3∨(1))

is injective. It follows that the map H0(µ∨) : H1(E∨)∨ → H0(ΩP3∨(2)) is injec-
tive, too. Its image is a 4-dimensional subspaceW of H0(ΩP3∨(2)) ≃

∧2 V . Us-
ing Lemma 3.4 one sees, now, that, choosing convenient k-bases of H1(E∨(−1))
and H1(E∨), µ is represented by some concrete 4 × 4 matrix M with entries
in V .

We make, at this point, the following observation : the same matrix
M defines the differential δ of the above Beilinson monad of E∨ (see Re-
mark 1.9). The component γ1 : H

1(E∨(−2))⊗Ω2
P3(2) → H1(E∨(−1))⊗Ω1

P3(1)
of the differential γ of the monad is defined by a 4 × 1 matrix (w0, . . . , w3)

t

with entries in V . Since E has no unstable plane, the multiplication map
H1(E∨(−2))⊗S1 → H1(E∨(−1)) is an isomorphism. It follows that w0, . . . , w3

are linearly independent. Moreover, the fact that δ ◦γ1 = 0 is equivalent to the
following relation (for matrices with entries in the exterior algebra

∧
V ) :

(3.1) M∧ (w0 , w1 , w2 , w3)
t = 0 .

The argument splits, now, according to Lemma 3.4 into three cases.

Case 1. W is as in Lemma 3.4(i).

In this case, choosing convenient bases of H1(E∨(−1)) and H1(E∨), µ is
defined by the transpose of the matrix
−v1 0 0 −v3
v0 −v2 0 0
0 v1 −v3 0
0 0 v2 v0

, i.e., by the matrix M :=


−v1 v0 0 0
0 −v2 v1 0
0 0 −v3 v2

−v3 0 0 v0

 .

Recall that the same matrix defines the differential

δ : H1(E∨(−1))⊗ Ω1
P3(1) → H1(E∨)⊗ OP3

of the Beilinson monad of E∨.
It is an elementary fact that if u1, . . . , up are linearly independent vectors

and if u′1, . . . , u
′
p are some other vectors satisfying

∑p
i=1 ui ∧ u′i = 0 then there

exists a p× p symmetric matrix A such that :

(u′1, . . . , u
′
p) = (u1, . . . , up)A .
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In particular, u′i ∈ ku1 + . . .+ kup, i = 1, . . . , p.
One sees, now, easily that relation (3.1) implies that wi ∈ kvi, i = 0, . . . , 3,

i.e., that wi = aivi, i = 0, . . . , 3. One deduces, from the same relation, that
ai = (−1)ia0, i = 1, 2, 3. Consequently, we can assume that wi = (−1)ivi,
i = 0, . . . , 3. Moreover, after a linear change of coordinates in P3, we can
assume that vi = (−1)iei, i = 0, . . . , 3, where e0, . . . , e3 is the canonical basis
of V = k4.

Now, the Beilinson monad of E∨ shows that one has an exact sequence :

0 −→ 2OP3(−1) −→ K −→ E∨ −→ 0 ,

where K is the cohomology sheaf of the monad :

0 −→ Ω2
P3(2)

γ1−→ 4Ω1
P3(1)

δ−→ 4OP3 −→ 0 ,

with δ and γ1 defined by the matrices :

δ =


e1 e0 0 0
0 −e2 −e1 0
0 0 e3 e2
e3 0 0 e0

 , γ1 =


e0
e1
e2
e3

 .

We assert that K is isomorphic to the kernel of the epimorphism
π : 6OP3 → OP3(2) defined by (X2

2 , X
2
3 , −X0X2 , −X1X3 , X

2
0 , X

2
1 ). Indeed,

let K ′ be the kernel of π. The only non-zero cohomology groups Hp(K ′(l))
in the range −3 ≤ l ≤ 0 are H1(K ′(−2)) ≃ S0, H1(K ′(−1)) ≃ S1 and
H1(K ′) ≃ S2/I2, where I2 is the subspace of S2 generated by the monomi-
als defining π. Choosing the canonical bases of S0 and S1 and the basis of
S2/I2 consisting of the classes of the monomials X0X1, −X1X2, X2X3, X0X3

one sees that the Beilinson monad of K ′ is precisely the above monad (the
linear part H1(K ′(−l))⊗Ωl

P3(l) → H1(K ′(−l+1))⊗Ωl−1
P3 (l−1) of a differential

of the Beilinson monad is defined by
∑3

i=0Xi ⊗ ei). It follows that K
′ ≃ K.

Consequently, E∨ is the cohomology sheaf of a monad of the form :

0 −→ 2OP3(−1)
ρ−→ 6OP3

π−→ OP3(2) −→ 0 ,

with π the morphism considered above. H0(π(1)) : H0(6OP3(1)) → H0(OP3(3))
is obviously surjective hence its kernel has dimension 4. It is, therefore, gener-
ated by the elements :

(X0 , 0 , X2 , 0 , 0 , 0)
t , (0 , X1 , 0 , X3 , 0 , 0)

t ,

(0 , 0 , X0 , 0 , X2 , 0)
t , (0 , 0 , 0 , X1 , 0 , X3)

t .

One deduces that ρ must be defined by the transpose of a matrix of the form :(
a0X0 a1X1 a0X2 + a2X0 a1X3 + a3X1 a2X2 a3X3

b0X0 b1X1 b0X2 + b2X0 b1X3 + b3X1 b2X2 b3X3

)
.



19 Stable rank 3 vector bundles 51

Since ρ∨ is surjective at the point [1 : 0 : 0 : 0], one has

∣∣∣∣a0 a2
b0 b2

∣∣∣∣ ̸= 0.

Permuting, if necessary, the rows of the above matrix, one can assume that
a0 ̸= 0. Substracting from the second row the first row multiplied by b0a

−1
0 ,

one gets the matrix :(
a0X0 a1X1 a0X2 + a2X0 a1X3 + a3X1 a2X2 a3X3

0 b′1X1 b′2X0 b′1X3 + b′3X1 b′2X2 b′3X3

)
,

where b′i = a−1
0

∣∣∣∣a0 ai
b0 bi

∣∣∣∣, i = 1, 2, 3. Notice that b′2 ̸= 0. Substracting from the

first row of the new matrix the second row multiplied by a2b
′−1
2 , one gets the

matrix : (
a0X0 a′1X1 a0X2 a′1X3 + a′3X1 0 a′3X3

0 b′1X1 b′2X0 b′1X3 + b′3X1 b′2X2 b′3X3

)
,

where a′i = b′−1
2

∣∣∣∣ai a2
b′i b′2

∣∣∣∣. Finally, multiplying the first (resp., second) row of

the last matrix by a−1
0 (resp., b′−1

2 ), one gets the matrix :(
X0 a′′1X1 X2 a′′1X3 + a′′3X1 0 a′′3X3

0 b′′1X1 X0 b′′1X3 + b′′3X1 X2 b′′3X3

)
.

Since ρ∨ is surjective at the point [0 : 1 : 0 : 0], it follows that

∣∣∣∣a′′1 a′′3
b′′1 b′′3

∣∣∣∣ ̸= 0.

Conversely, if this determinant is non-zero then :

X2
0 , X

2
2 ,

∣∣∣∣a′′1 a′′3
b′′1 b′′3

∣∣∣∣X2
1 ,

∣∣∣∣a′′1 a′′3
b′′1 b′′3

∣∣∣∣X2
3

are among the 2 × 2 minors of the above matrix hence this matrix defines an
epimorphism 6OP3 → 2OP3(1).

Case 2. W is as in Lemma 3.4(ii).

In this case, µ is defined by the matrix :

M :=


−v1 v0 0 0
0 −v2 v1 0
0 0 −v3 v2

−v2 −v3 v0 v1

 .

Recall relation (3.1). One deduces, from this relation, using the elementary
fact recalled at the beginning of Case 1, that w0 ∈ kv0 + kv1, w1 ∈ (kv1 +
kv0)∩ (kv2+kv1) = kv1, w2 ∈ kv2, and w3 ∈ kv2+kv3. Moreover, the relation
−v2 ∧ w1 + v1 ∧ w2 = 0 implies that w1 = −av1 and w2 = av2, for some a ∈ k
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and the relation −v3∧w2+v2∧w3 = 0 implies that w3 = −av3+ bv2, for some
b ∈ k. The coefficient of v1 ∧ v3 in the left hand side of the relation :

−v2 ∧ w0 − v3 ∧ w1 + v0 ∧ w2 + v1 ∧ w3 = 0

is −2a hence a = 0 and this contradicts the fact that w0, . . . , w3 are linearly
independent. Consequently, this case cannot occur.

Case 3. W is as in Lemma 3.4(iii).

In this case, µ is defined by the matrix :

M :=


−v1 v0 0 0
0 −v2 v1 0
0 0 −v3 v2

−v2 0 v0 0

 .

Let h be a non-zero element of V ∨ vanishing in v0, v1, v2 and let H ⊂ P3 be the
plane of equation h = 0. The matrix of the multiplication by h : H1(E∨(−1)) →
H1(E∨) is obtained by applying h to the entries of M. This matrix has rank
1 hence h0(E∨

H) = 3. But this contradicts Lemma 1.1. Consequently, this case
cannot occur.

4. THE CASE c3 = 4

Lemma 4.1. Let E be a stable rank 3 vector bundle on P3 with c1 = 0,
c2 = 3, c3 = 4. Then E is the cohomology sheaf of a Horrocks monad of the
form :

0 −→ 2OP3(−2)
α−→ 3OP3 ⊕ 3OP3(−1)

β−→ OP3(1) −→ 0 .

Proof. The spectrum of E must be (−1,−1, 0) hence H1(E(l)) = 0 for
l ≤ −2, h1(E(−1)) = 1, H2(E(l)) = 0 for l ≥ −1. Moreover, by Riemann-
Roch, h1(E) = 1. Since H2(E(−1)) = 0 and H3(E(−2)) = 0, it follows that
H1

∗(E) is generated in degrees ≤ 0 (by the Castelnuovo–Mumford Lemma, as
formulated in [1, Lemma 1.21]). But, by the last part of Remark 1.4, one has
S1H

1(E(−1)) ̸= (0) hence S1H
1(E(−1)) = H1(E) hence H1

∗(E) is generated by
H1(E(−1)).

On the other hand, the spectrum of E∨ is (0, 1, 1) hence H1(E∨(l)) =
0 for l ≤ −3, h1(E∨(−2)) = 2, h1(E∨(−1)) = 5, H2(E∨(l)) = 0 for l ≥
−2. Moreover, by Riemann-Roch, h1(E∨) = 5. Since H2(E∨(−2)) = 0 and
H3(E∨(−3)) = 0, H1

∗(E
∨) is generated in degrees ≤ −1.

Now, assume that H1
∗(E

∨) has m minimal generators of degree −1, for
some m ≥ 0. Then E is the cohomology sheaf of a monad of the form :

0 −→ mOP3(−1)⊕ 2OP3(−2) −→ B −→ OP3(1) −→ 0 ,
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where B is a direct sum of line bundles. B has rank m+ 6, c1(B) = −m− 3,
H0(B(−1)) = 0 and H0(B∨(−2)) = 0. It follows that B ≃ 3OP3 ⊕ (m +
3)OP3(−1). The component mOP3(−1) → (m + 3)OP3(−1) of the left differ-
ential of the monad is zero, by the minimality of m. Since there is no locally
split monomorphism OP3(−1) → 3OP3 it follows that m = 0.

Lemma 4.2. Let E be a stable rank 3 vector bundle on P3 with c1 = 0,
c2 = 3, c3 = 4. Then there is a point x ∈ P3 such that, for every plane H ⊂ P3,
H0(EH) = 0 if x /∈ H and h0(EH) = 1 if x ∈ H.

Proof. The component β1 : 3OP3 → OP3(1) of the differential β of the
monad of E from Lemma 4.1 is defined by three linearly independent linear
forms (because H0(E) = 0). x is the point where these three forms vanish
simultaneously.

Lemma 4.3. Let E be a stable rank 3 vector bundle on P3 with c1 = 0,
c2 = 3, c3 = 4 and let α2 be the component 2OP3(−2) → 3OP3(−1) of the
differential α of the monad of E from Lemma 4.1. Then, up to automorphisms
of P3, 3OP3 and 2OP3(1), α∨

2 (−1) is defined by one of the following matrices :

(1)

(
X0 X1 X2

0 X0 X1

)
; (2)

(
X0 X1 0
0 X0 X2

)
; (3)

(
X0 0 X2

0 X1 X2

)
;

(4)

(
X0 X1 X2

0 X0 X3

)
; (5)

(
X0 0 X2

0 X1 X3

)
; (6)

(
X0 X1 X2

0 X2 X3

)
;

(7)

(
X0 X1 X2

X1 X2 X3

)
.

Proof. The argument is standard. Let us denote α∨
2 (−1) : 3OP3 → 2OP3(1)

by ϕ. The morphism ϕ is uniquely determined by

H0(ϕ) : H0(3OP3) → H0(2OP3(1))

which can be viewed as a linear map ρ : k3 → (k2)∨ ⊗ V ∨.

Let ψ : 3OP1 → OP1(1)⊗V ∨ be the unique morphism for which H0(ψ) = ρ.
Let u0, u1 be the canonical basis of k2 and T0, T1 the dual basis of (k2)∨. ϕ
is defined by a 2× 3 matrix Φ with entries in V ∨ and ψ is defined by a 4× 3
matrix Ψ with entries in (k2)∨. Since both of these matrices are derived from ρ,
they are related as follows : for i = 0, 1, the i th row of Φ is (X0, . . . , X3)Ψ(ui),
where Ψ(ui) is the 4 × 3 matrix with entries in k obtained by evaluating the
entries of Ψ at ui. Notice that Ψ(ui) defines the reduced stalk of the morphism
ψ at the point [ui] of P1.
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Claim. ψ : 3OP1 → OP1(1)⊗ V ∨ has rank ≥ 2 at every point of P1.

Indeed, the fact that H0(E∨) = 0 implies that H0(α∨) is injective. In
particular, H0(ϕ(1)) is injective. Assume, by contradiction, that there is a
point of P1 where ψ has rank ≤ 1. Up to an automorphism of P1, one can
assume that this point is [0 : 1]. This means that, up to an automorphism of
2OP3(1), ϕ is represented by a matrix of the form :(

h00 h01 h02
h10 h11 h12

)
,

with dimk(kh10 + kh11 + kh12) ≤ 1. Up to an automorphism of 3OP3 one
can assume that h11 = h12 = 0 and this contradicts the fact that H0(ϕ(1)) is
injective.

Consider, now, the morphism ψ∨ : OP1(−1) ⊗ V → 3OP1 . Since P1

has dimension 1 and H1(OP1(−1)) = 0 it follows that the map H0(3OP1) →
H0(Cokerψ∨) is surjective hence h0(Cokerψ∨) ≤ 3. One deduces that if ψ∨

has, generically, rank 3 then Cokerψ∨ is a torsion sheaf of length ≤ 3 gener-
ated, locally, by one element, and if it has rank 2 everywhere then Cokerψ∨

is a line bundle, which must be OP1(2) or OP1(1) (it cannot be OP1 because
H0(ϕ) is injective hence so is H0(ψ)).

Consequently, up to an automorphism of P1, one can assume that Cokerψ∨

is one of the following sheaves :

(i)OP1,P0
/m3

P0
; (ii)OP1,P0

/m2
P0

⊕ OP1,P1
/mP1 ; (iii)

⊕2
i=0OP1,Pi

/mPi ;

(iv)OP1,P0
/m2

P0
; (v)OP1,P0

/mP0 ⊕ OP1,P1
/mP1 ; (vi)OP1,P0

/mP0 ;

(vii) 0; (viii)OP1(2); (ix)OP1(1),

where P0 = [0 : 1], P1 = [1 : 0] and P2 = [1 : −1].

In case (i), choosing the k-basis of OP1,P0
/m3

P0
consisting of the classes of

the regular functions 1, −T0/T1, T 2
0 /T

2
1 , ψ

∨ is defined, up to automorphisms
of 3OP1 and V , by the following matrix :T0 0 0 0

T1 T0 0 0
0 T1 T0 0


hence the matrix Ψ defining ψ is the dual of this matrix. One deduces that
the matrix Φ defining ϕ is as in item (1) from the statement.

Analogously, in the cases (ii)–(vii), Φ is as in the items (2)–(7) from the
statement, respectively. We show, now, that the cases (viii) and (ix) cannot
occur in our context.
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In case (viii), choosing the k-basis T 2
1 , −T0T1, T 2

0 of H0(OP1(2)), ψ∨ is
defined by the matrix :T0 0 0 0

T1 T0 0 0
0 T1 0 0

 hence Φ =

(
X0 X1 0
0 X0 X1

)
.

Consider the line L ⊂ P3 of equations X0 = X1 = 0 and restrict to L the
dual of the monad from Lemma 4.1 :

0 −→ OL(−1)
β∨
L−→ 3OL ⊕ 3OL(1)

α∨
L−→ 2OL(2) −→ 0 .

Let α1 : 2OP3(−2) → 3OP3 be the other component of α and let β1 : 3OP3 →
OP3(1) and β2 : 3OP3(−1) → OP3(1) be the components of β. Since α∨

2 |L = 0,
(α∨

1 |L) : 3OL → 2OL(2) is an epimorphism hence its kernel is isomorphic to
OL(−4). Moreover, (α∨

2 |L) ◦ (β∨2 |L) = 0 hence (α∨
1 |L) ◦ (β∨1 |L) = 0. It

follows that (β∨1 |L) = 0 and this contradicts the fact that β1 is defined by
three linearly independent linear forms (because H0(E) = 0).

Finally, in case (ix), choosing the k-basis of H0(OP1(1)) consisting of
T1, −T0, ψ∨ is defined by the matrix :T0 0 0 0

T1 0 0 0
0 T0 T1 0

 hence Φ =

(
X0 0 X1

0 X0 X2

)
.

But (X1 , X2 , −X0)
t belongs to the kernel of the map 3S1 → 2S2 defined by

Φ and this contradicts the fact that H0(ϕ(1)) is injective.

Proposition 4.4. Let E be a stable rank 3 vector bundle on P3 with c1 =
0, c2 = 3, c3 = 4. Then, for the general plane H ⊂ P3, one has H0(E∨

H) = 0.

Proof. We intend to apply Lemma 1.5. Consider the monad of E from
Lemma 4.1 and let α1 : 2OP3(−2) → 3OP3 and α2 : 2OP3(−2) → 3OP3(−1) be
the components of α. It follows, from Lemma 4.3, that the degeneracy scheme
of α2 is a locally Cohen-Macaulay subscheme Y ⊂ P3 of pure dimension 1,
which is locally complete intersection except at finitely many points and has
degree 3. More precisely, denoting by Lij the line of equations Xi = Xj = 0,
0 ≤ i < j ≤ 3, one can assume that one of the following holds :

(1) Y is the Weil divisor 3L01 on the cone Σ of equation X2
1 −X0X2 = 0 ;

(2) Y = X ∪ L01, where X is the divisor 2L02 on the plane H0 : X0 = 0 ;

(3) Y = L01 ∪ L02 ∪ L12 ;
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(4) Y = X ∪ L01, where X is the divisor 2L03 on the surface

Σ: X1X3 −X0X2 = 0 ;

(5) Y = L01 ∪ L02 ∪ L13 ;

(6) Y = C ∪ L23, where C is the conic of equations

X0 = X1X3 −X2
2 = 0 ;

(7) Y is a twisted cubic curve.

One deduces, using the Eagon-Northcott complex, an exact sequence :

0 −→ 2OP3(−2)
α2−→ 3OP3(−1) −→ IY (1) −→ 0 ,

which, by dualization, produces an exact sequence :

0 −→ OP3(−1) −→ 3OP3(1)
α∨
2−→ 2OP3(2)

π−→ ωY (3) −→ 0 .

The image of H0(π◦α∨
1 ) : H

0(3OP3) → H0(ωY (3)) is a subspaceW of H0(ωY (3)),
which has dimension 3 (because H0(E∨) = 0) and generates ωY (3) globally.
Denoting by Q the cokernel of α, one has exact sequences :

0 −→ OP3(−1)
β
∨

−→ Q∨ −→ E∨ −→ 0 ,

0 −→ OP3(−1) −→ Q∨ −→W ⊗k OP3
ε−→ ωY (3) −→ 0 ,

where ε is the evaluation morphism. Let us denote ωY (3) by L . Consider a
line L that is not a component of Y and passes through none of the points
where Y is not locally complete intersection. One has an exact sequence :

0 −→ OL(a− 1) −→ Q∨
L −→W ⊗k OL

εL−→ LL −→ 0 ,

where a = length (L ∩ Y ) (because LL ≃ OL∩Y ). Since H1(Q∨
L)

∼→ H1(E∨
L) it

follows that h1(E∨
L) ≥ 1 if and only if H0(εL) : W → H0(LL) is not surjective.

In that case one must have a ≥ 2, i.e., L must be a secant of Y . We split, now,
the proof into several cases according to the various possibilities for Y listed
above.

Case 1. Y as in item (1) above.

If L is a secant of Y not passing through the vertex P3 := [0 : 0 : 0 : 1] of
the cone Σ then L is tangent to Σ at a point of L01 \{P3} hence L is contained
in the plane H0 of equation X0 = 0. One applies, now, Lemma 1.5.

The cases 2, 3 and 5 where Y is as in one of the items (2), (3), or (5)
above can be treated similarly.
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Case 4. Y as in item (4) above.

A secant L of Y not passing through the point P2 := [0 : 0 : 1 : 0] where
L03 and L01 intersect is either contained in the plane H0 spanned by L03 and
L01 or is tangent to the nonsingular quadric surface Σ at a point of L03 \ {P2}.
Taking into account Lemma 1.5, it suffices to show that if L is a general tangent
to Σ at a point of L03 \ {P2} then the map H0(εL) is surjective.

Our argument uses two observations. Firstly, let s0, s1, s2 be a k-basis
of W . The morphism (0, 1) : 2OP3 → OL03 induces an epimorphism ωY (1) →
OL03 . Let fi be the image of si into H0(OL03(2)). Since f0, f1, f2 generate
OL03(2) globally, one can assume that f0 and f1 are linearly independent.
Interpreting the restrictions of f0 and f1 to L03 \ {P2} as functions of one
variable, one has, for a general point x of L03 \{P2}, f ′0(x)f1(x)−f0(x)f ′1(x) ̸=
0. This means that the images of f0 and f1 in OL03 , x/m

2
L03 , x

are linearly
independent.

Secondly, let Γ be the “fat point” on Σ at x defined by the ideal sheaf
IΓ := I 2

{x} + IΣ. I{x}/IΓ is a 2-dimensional vector space. If L is a line

tangent to Σ at x then (IL+IΓ)/IΓ is a 1-dimensional subspace of I{x}/IΓ

and in this way one gets all the 1-dimensional subspaces of I{x}/IΓ. If L ̸= L03

then IL +IΓ is the ideal sheaf of the scheme L∩X, while IL03 +IΓ defines
the divisor 2x on L03. Let us denote the scheme associated to this divisor by
D.

Now, according to the first observation, if x is a general point of L03 \
{P2} then one can assume that the images of s0 and s1 in LD are linearly
independent. It follows, from the second observation, that if L is a general
tangent line to Σ at x then the images of s0 and s1 in LL∩X are linearly
independent. This implies that the map H0(εL) is surjective.

Case 6. Y as in item (6) above.

If L is a secant of Y then either L passes through the point P1 := [0 : 1 : 0 : 0]
where C and L23 intersect, or it is contained in the plane H0 of C, or joins a
point x of C \{P1} and a point y of L23 \{P1}. ωY is an invertible OY -module.
Since ωY (1) is globally generated, L = ωY (3) is very ample. SinceW generates
L globally, the restriction maps W → H0(L |C) and W → H0(L |L23) must
have rank at least 2.

Let x be a point of C \ {P1}. The space W ′ := {σ ∈ W |σ(x) = 0}
has dimension 2. By what has been said above, the restriction map W ′ →
H0(L |L23) is non-zero hence, for a general point y ∈ L23 \ {P1}, the space
W ′′ := {σ ∈ W ′ |σ(y) = 0} has dimension 1. If L is the line joining x and y
then the map H0(εL) is surjective.

Finally, the case 7 where Y is as in item (7) above is quite easy.
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5. THE CASE c3 = 6

Lemma 5.1. Let E be a stable rank 3 vector bundle on P3 with c1 = 0,
c2 = 3, c3 = 6 and spectrum (−1,−1,−1). Then one has an exact sequence :

0 −→ 3OP3(−2)
α−→ 6OP3(−1) −→ E −→ 0 .

Proof. The result is due to Spindler [16]. We include, for completeness,
a short argument.

One has H2(E(l)) = 0 for l ≥ −1 (by the spectrum) and H3(E(l)) = 0
for l ≥ −4 (by Serre duality). Moreover, from Riemann-Roch, h1(E) = 0. It
follows that E is 1-regular. Using the spectrum one deduces that H1

∗(E) = 0.
Since, also by Riemann-Roch, h0(E(1)) = 6, one has an epimorphism

6OP3 → E(1). The kernel K of this epimorphism has Hi
∗(K) = 0, i = 1, 2,

hence it is a direct sum of line bundles. Since K has rank 3, c1(K) = −3 and
H0(K) = 0 it follows that K ≃ 3OP3(−1).

Corollary 5.2. Under the hypothesis of Lemma 5.1, H0(EH) = 0, for
every plane H ⊂ P3.

Proposition 5.3. Let E be a stable rank 3 vector bundle on P3 with
c1 = 0, c2 = 3, c3 = 6 and spectrum (−1,−1,−1). If H0(E∨

H) ̸= 0, for every
plane H ⊂ P3, then E is as in Theorem 0.2(b)(i).

Proof. We will show that E has infinitely many unstable planes. Then
the main result of Vallès [18, Thm. 3.1] (see, also, the proof of [18, Prop. 2.2])
will imply the conclusion of the proposition.

Assume, by contradiction, that E has only finitely many unstable planes.
Let Π ⊂ P3∨ be a plane containing none of the points of P3∨ corresponding
to the unstable planes of E. Let H ⊂ P3 be a plane of equation h = 0
such that [h] ∈ Π. One has H0(E∨

H(−1)) = 0 and H0(EH) = 0 by Cor. 5.2.
Applying Lemma 1.1 to F := E∨

H (on H ≃ P2) one gets that h0(E∨
H) ≤ 1 hence

h0(E∨
H) = 1, due to our hypothesis. One deduces that the kernel M and the

cokernel L of the restriction to Π of the morphism

µ : H1(E∨(−1))⊗ OP3∨(−1) → H1(E∨)⊗ OP3∨

from Remark 1.9 are line bundles on Π (H1(E∨(−1)) and H1(E∨) have both
dimension 6) hence L ≃ OΠ(a) and M ≃ OΠ(b), for some integers a, b. One
thus has an exact sequence :

0 → OΠ(b) −→ H1(E∨(−1))⊗ OΠ(−1)
µ|Π−→ H1(E∨)⊗ OΠ −→ OΠ(a) → 0 .

It follows that a = b+6 and χ(OΠ(a−1)) = χ(OΠ(b−1)), i.e., a(a+1) = b(b+1).
Since the equation (b + 6)(b + 7) = b(b + 1) has no integer solution, we have
got a contradiction.
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We recall, finally, that, by the proof of the Proposition on page 72 of [7],
if E is a stable rank 3 vector bundle on P3 with c1 = 0, c2 = 3, c3 = 6 and
spectrum (−2,−1, 0) then H0(E∨

H) = 0 for a general plane H ⊂ P3.
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