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Let X ⊂ CN be open, and let A be an n × n matrix of holomorphic functions
on X. We call a point ξ ∈ X Jordan stable for A if ξ is not a splitting point
of the eigenvalues of A and, moreover, there is a neighborhood U of ξ such
that, for each 1 ≤ k ≤ n, the number of Jordan blocks of size k in the Jordan
normal forms of A(ζ) is the same for all ζ ∈ U . H. Baumgärtel [4, S 3.4] proved
that there is a nowhere dense closed analytic subset of X, which contains the
set of all non-Jordan stable points. We give a new proof of this result. This
proof shows that the set of non-Jordan stable points ist not only contained in
a nowhere dense closed analytic subset, but it is itself such a set, and can be
defined by holomorphic functions, the growth of which is bounded by some power
(depending only on n) of the growth of A. Also, this proof applies to arbitrary
(possibly non-smooth) reduced complex spaces X.

AMS 2020 Subject Classification: 47A56, 15A20, 15A54.

Key words: holomorphic matrices, Jordan normal form.

1. INTRODUCTION

Let X be a connected open subset of CN , and let A be an n× n matrix
of holomorphic functions on X, N,n = 1, 2, . . ..

We call ξ ∈ X a splitting point of the eigenvalues of A if, for each
neighborhood U ⊆ X of ξ, there is a point ζ ∈ U such that A(ζ) has more
distinct eigenvalues than A(ξ). It is well-known (cp. Remark 3.6) that the set
of splitting points of the eigenvalues of A is a nowhere dense closed analytic
subset of X.1

We call ξ ∈ X Jordan stable for A if ξ is not a splitting point of the
eigenvalues of A and, moreover, there is a neighborhood U of ξ such that, for
each 1 ≤ k ≤ n, the number of Jordan blocks of size k in the Jordan normal
forms of A(ζ) does not depend on ζ ∈ U . Let JstA be the set of Jordan stable
points of A.

1Y ⊆ X is called a closed analytic subset of X if, for each ξ ∈ X, there exist a
neighborhood U ⊆ X of ξ and holomorphic functions f1, . . . , fℓ on U such that Y ∩ U =
{f1 = . . . = fℓ = 0}. For N = 1 this means that Y is closed and discrete in X.
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H. Baumgärtel proved that, if X \ JstA ̸= X, then X \ JstA is contained
in some nowhere dense closed analytic subset of X, see [1], [2, Kap. V, §7], [4,
5.7] for N = 1, and [3], [4, S 3.4] for arbitrary N .

In the present paper, we give a new proof for this, which leads to more
precise results. For example, Theorem 6.5 says that, if X \ JstA ̸= X, then
X \ JstA is not only contained in a nowhere dense closed analytic subset of
X, but it is itself such a set. Moreover, there exist holomorphic functions
h1, . . . , hℓ on X such that

X \ JstA =
{
h1 = . . . = hℓ = 0

}
and

|hj(ζ)| ≤ (2n)7n
2
2n

3
(1 + ∥A(ζ)∥)3n3

for all ζ ∈ X and 1 ≤ j ≤ ℓ.

This implies, for example,

– If A is bounded, then X \ JstA can be defined by bounded functions.

– If X is the unit disk and A is bounded, then X \ JstA satisfies the
Blaschke condition.

– If X = CN , and the coefficients of A are holomorphic polynomials, then
X \JstA can be defined by finitely many holomorphic polynomials. For N = 1
this means that X \ JstA is finite.

Also, our proof applies to the more general situation when X is a con-
nected reduced complex space (possibly not smooth).

2. NOTATION

N denotes the set of natural numbers including 0. N∗ = N \ {0}.
If n,m ∈ N∗, then Matn×m(C) is the space of complex n ×m matrices

(n rows, m columns). We write Matn(C) := Matn×n(C) and GL(n,C) is the
group of invertible matrices in Matn(C).

The matrices Φ ∈ Matn×m(C) are often interpreted as linear operators
from Cn to Cm acting by multiplication from the left. Then by ∥Φ∥ we mean
the operator norm of Φ (and not the Hilbert-Schmidt norm), where Cn and
Cm are considered as Hilbert spaces endowed with the Euclidean norm.

If Φ ∈ Matn×m(C), then KerΦ, ImΦ and rankΦ are the kernel, the image
and the rank of Φ, respectively.

The unit matrix in Matn(C) will be denoted by In or simply by I. For
Φ ∈ Matn(C) and λ ∈ C, we usually write λ− Φ instead of λIn − Φ.

By a complex space, we always mean a reduced complex space in the
sense of, e.g., [9], which is the same as an analytic space in the sense of, e.g.,
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[11]. For example, each complex manifold and each analytic subset of a complex
manifold is a complex space in this sense.

By an irreducible complex space, we mean a globally irreducible com-
plex space, i.e., a complex space, for which the manifold of smooth points is
connected, see, e.g., [11, Ch. V.4.5] or [9, Ch. 9, §1]. For example, each
connected complex manifold is an irreducible complex space.

If X is a topological space and Y ⊆ X, then we denote by Y the closure
of Y in X, and we set ∂Y = X \X.

3. SPLITTING POINTS OF THE ZEROS OF MONIC
POLYNOMIALS

First, we collect some (known) facts on the behavior of the zeros of poly-
nomials depending on a parameter. For convenience of the reader, we supply
proofs or precise references.

Definition 3.1. By a polynomial, we mean a function p : C → C of the
form p(λ) = p0 + p1λ+ . . .+ pnλ

n, where n ∈ N and p0, . . . , pn ∈ C. If pn ̸= 0,
then n is called the degree of p, denoted by deg p. If n ≥ 1 and pn = 1, then
P is called monic. If p0 = . . . = pn = 0, then p is called the zero polynomial
(which does not have a degree and is not monic).

Let n ∈ N∗. Then we denote by Pn the complex vector space which
consists of the zero polynomial and all polynomials P which are not identically
zero such that 0 ≤ degP ≤ n. Note that the complex dimension of Pn is n+1.
For example, the polynomials λℓ, ℓ = 0, 1, . . . , n, form a complex linear basis
of Pn.

Proposition 3.2. Let X be a connected topological space and P : X →
Pn, n ∈ N∗, a continuous map all values of which are of degree n and monic.
Suppose, there exists m ∈ {1, . . . , n} such that, for each ζ ∈ X, P (ζ) has m dis-
tinct zeros. Moreover, assume that there are continuous functions λ1, . . . , λm :
X → C such that, for each ζ ∈ X, λ1(ζ), . . . , λm(ζ) are the distinct zeros of
P (ζ).2 Then:

(i) For each 1 ≤ j ≤ m, the order of λj(ζ) as a zero of P (ζ) is the same
for all ζ ∈ X.

(ii) Suppose that there is a second collection of continuous functions λ̃1, ...,
λ̃m : X → C such that also, for each ζ ∈ X, λ̃1(ζ), . . . , λ̃m(ζ) are the distinct
zeros of P (ζ), and moreover, for at least one ξ ∈ X, λ̃j(ξ) = λj(ξ) for all

1 ≤ j ≤ m. Then λ̃j(ζ) = λj(ζ) for all ζ ∈ X and 1 ≤ j ≤ m.

2This means,
{
λ1(ζ), . . . , λm(ζ)

}
is the set of zeros of P (ζ) and λi(ζ) ̸= λj(ζ) if i ̸= j.
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Proof of part (i). Since X is connected, we only have to prove that, for
each ξ ∈ X, there is a neighborhood U of ξ such that, for each j = 1, . . . ,m,
the order of λj(ζ) as a zero of P (ζ) is the same for all ζ ∈ U .

Let ξ ∈ X be given. Choose ε > 0 so small that the disks

(3.1) Dj :=
{
λ ∈ C

∣∣ |λ− λj(ξ)| < ε
}
, 1 ≤ j ≤ m,

are pairwise disjoint. Then P (ξ)(λ) ̸= 0 for

λ ∈ ∂D1 ∪ . . . ∪ ∂Dm.

Since P is continuous and the set

∂D1 ∪ . . . ∪ ∂Dm

is compact, it follows: there is a neighborhood U of ξ such that P (ζ)(λ) ̸= 0
for

ζ ∈ U and λ ∈ ∂D1 ∪ . . . ∪ ∂Dm.

Therefore, if nj is the order of λj(ξ) as a zero of P (ξ), by Rouché’s theorem:

(*) for all ζ ∈ U and j = 1, . . . ,m, counting multiplicities, P (ζ) has exactly
nj zeros in Dj .

On the other hand, also the functions λj are continuous. Therefore,
shrinking U , we can achieve that

|λj(ζ)− λj(ξ)| < ε

for all ζ ∈ U and 1 ≤ j ≤ m. Since the disks (3.1) are pairwise disjoint and,
for each ζ, all zeros of P (ζ) lie in

{
λ1(ζ), . . . , λm(ζ)

}
, this implies that, for all

ζ ∈ U and 1 ≤ j ≤ m, λj(ζ) is the only zero of P (ζ) which lies in the disk{
λ ∈ C

∣∣ |λ− λj(ξ)| < ε
}
.

Together with (*), this implies that, for all ζ ∈ U , nj is the order of λj(ζ) as
a zero of P (ζ). In particular, for j = 1, . . . ,m, the order of λj(ζ) as a zero of
P (ζ) is the same for all ζ ∈ U .

Proof of part (ii). Let M be the set of points ζ ∈ X with λ̃j(ζ) = λj(ζ)

for 1 ≤ j ≤ m. Since λj and λ̃j are continuous, M is closed. By hypothesis,
M ̸= ∅. Therefore, (X is connected) it remains to prove that M is open. Let
ξ ∈M be given. Choose ε > 0 so small that the disks

Dj :=
{
λ ∈ C

∣∣ |λ− λj(ξ)| < ε
}
, 1 ≤ j ≤ m,

are pairwise disjoint. Since the functions λj and λ̃j are continuous, then we

can find a neighborhood Uξ of ξ so small that λj(ζ), λ̃j(ζ) ∈ Dj for all ζ ∈ Uξ

and 1 ≤ j ≤ m. Since all zeros of P (ζ) lie in the set{
λ1(ζ), . . . , λm(ζ)

}
=

{
λ̃1(ζ), . . . , λ̃m(ζ)

}
,

then, for all ζ ∈ Uξ and 1 ≤ j ≤ m, we have the following two statements.
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• λj(ζ) is the only zero of P (ζ) which lies in Dj .

• λ̃j(ζ) is the only zero of P (ζ) which lies in Dj .

Hence λj(ζ) = λ̃j(ζ) for all ζ ∈ Uξ and 1 ≤ j ≤ m, i.e., Uξ ⊆M .

Definition 3.3. Let X be a topological space and P : X → Pn, n ∈ N∗,
a continuous map, all values of which are of degree n and monic. Then ξ ∈ X
is called a splitting point of the zeros of P if, for each neighborhood U of
ξ, there exists ζ ∈ U such that P (ζ) has more zeros than P (ξ) (not counting
multiplicities).

Proposition 3.4. Let X be a topological space and P : X → Pn, n ∈ N∗,
a continuous map, all values of which are monic of degree n. Then ξ ∈ X is
not a splitting point of the zeros of P if and only if there exist a neighborhood
U of ξ and continuous functions λ1, . . . , λm : U → C such that, for each ζ ∈ U ,
λ1(ζ), . . . , λm(ζ) are the distinct zeros of P (ζ).3 Moreover, if X is a complex
space and P is holomorphic, then these functions are holomorphic.

Proof. It is clear that the condition is sufficient. To prove the necessity,
assume that ξ is not a splitting point of the zeros of P , and letm be the number
of zeros of P (ξ) (not counting multiplicities). Then, by definition, there is a
neighborhood Uξ of ξ such that
(3.2)

∀ζ ∈ Uξ : m ≥ the number of zeros of P (ζ), not counting multiplicities.

Let w1, . . . , wm be some enumeration of the distinct zeros of P (ξ), and let nj be
the order of wj as a zero of P (ξ). Choose ε > 0 so small that the closed disks{
λ ∈ C

∣∣ |λ − wj | ≤ ε
}
, 1 ≤ j ≤ m, are pairwise disjoint. Then each of these

disks contains precisely one zero of P (ξ), namely its center wj . Therefore, by
the Rouché theorem, shrinking Uξ, we can achieve that, counting multiplicities,
for each ζ ∈ Uξ, the number of zeros of P (ζ) which lie in

{
λ ∈ C

∣∣ |λ−wj | ≤ ε
}

is equal to nj . In particular, each of these discs contains at least one zero of
P (ζ), which means, by (3.2), that each of these disks contains precisely one
zero of P (ζ), and the order of this zero is nj . We denote it by λj(ζ).

It remains to prove that λj(ζ) depends continuously resp. holomorphi-
cally on ζ ∈ Uξ. For that, for a moment, we fix ζ ∈ Uξ. Since λ1(ζ), . . . λm(ζ)
are the distinct zeros of P (ζ), where the order of λj(ζ) is nj , and since P (ζ) is
monic, then

P (ζ)(λ) = (λ− λ1(ζ))
n1 · . . . (λ− λm(ζ))nm , λ ∈ C,

3By Lemma 3.2 (ii), up to the numbering, these functions are uniquely determined on
each connected component of U .
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and, for the complex derivative P (ζ)′ of P (ζ), we have

P (ζ)′(λ) =

m∑
j=1

nj(λ− λj(ζ))
nj−1 ·

∏
k ̸=j

(λ− λk(ζ))
nk , λ ∈ C.

Choose δ > 0 so small that, for j = 1, . . . ,m, the closed disk {λ ∈ C | |λ −
λj(ζ)| ≤ δ} is contained in {λ ∈ C | |λ− wj | < ε}. Then in a neighborhood of
{λ ∈ C | |λ− λj(ζ)| ≤ δ},

λ
P (ζ)′(λ)

P (ζ)(λ)
=

λnj
λ− λj(ζ)

+ holomorphic terms,

which implies that, for j = 1, . . . ,m,

1

nj

∫
|λ−λj(ζ)|=δ

λ
P (ζ)′(λ)

P (ζ)(λ)
dλ =

∫
|λ−λj(ζ)|=δ

λ

λ− λj(ζ)
dλ

=

∫
|λ−λj(ζ)|=δ

(
λj(ζ)

λ− λj(ζ)
+
λ− λj(ζ)

λ− λj(ζ)

)
dλ = λj(ζ)2πi.

So, for j = 1, . . . ,m and all ζ ∈ Uξ, we have proved the formula

λj(ζ) =
1

nj2πi

∫
|λ−wj |=ε

λ
P (ζ)′(λ)

P (ζ)(λ)
dλ for 1 ≤ j ≤ m.

This formula shows the required continuity, resp., holomorphicity.

The following theorem can be found in [11, Ch. V, §7.1].

Theorem 3.5. Let X be a complex space, and let P : X → Pn, n ∈ N∗,
be a holomorphic map all values of which are of degree n and monic. Then
the set of splitting points of the zeros of P is a nowhere dense closed analytic
subset of X.

Proof. (Cp. [11, Ch. V, §7.1]). Since each complex space is the union of
a locally finite family of irreducible complex spaces, see, e.g., [11, Ch. IV, §2.9]
or [9, Ch. 9, §2.2]), we may assume that X is irreducible (i.e., the manifold of
smooth points of X is connected).

Denote by k(ζ) the number of distinct zeros of P (ζ). Let

m := max
ζ∈X

k(ζ),

and let A be the set of all (λ1, . . . , λm, ζ) ∈ Cm ×X such that λ1, . . . , λm are
zeros of P (ζ). Since P is holomorphic, A is a closed analytic subset of Cm×X.
Let π : A→ X be the restriction to A of the canonical projection Cm×X → X.
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We claim that π is proper (i.e., for each ξ ∈ X, there is a neighborhood Uξ of
ξ such that π−1(Uξ) is relatively compact in A).

Indeed, let ξ ∈ X be given. Take an arbitrary compact neighborhood
Uξ of ξ. Let p0, . . . , pn−1 : X → C be the functions with P (ζ)(λ) = λn +∑n−1

µ=0 pµ(ζ)λ
µ, ζ ∈ X, λ ∈ C. Since P is continuous, then

C := 1 + max
ζ∈Uξ

n−1∑
µ=0

∣∣pµ(ζ)∣∣ <∞.

Hence, if ζ ∈ Uξ and λ is a zero of P (ζ), then |λ| ≤ C. Therefore, π−1(Uξ) is
contained in the compact set

A ∩
{
(λ1, . . . , λm, ζ)

∣∣∣ ζ ∈ Uξ and |λj | ≤ C for 1 ≤ j ≤ m
}

Now letM :=
{
ζ ∈ X | k(ζ) < m

}
, and letM ′ be the set of all (λ1, . . . , λm, ζ) ∈

A such that at least two of the numbers λ1, . . . , λm are equal. Then M ′ is a
closed analytic subset of A and π(M ′) =M . Since π is proper, this implies by
Remmert’s proper mapping theorem (see, e.g., [9, Ch. 10, §6.1] or [11, Ch. V,
§5.1]) that M is a closed analytic subset of X. Since M ̸= X (by definition of
m) and X is irreducible, M is nowhere dense in X.

It remains to observe that M is the set of splitting points of the zeros of
P . Indeed, if ξ is a splitting point, then, by definition of m, k(ξ) < m, i.e.,
ξ ∈ M . Conversely, let ξ ∈ M , i.e., k(ξ) < m. Assume ξ is not a splitting
point. Then there is a neighborhood Uξ of ξ such that k(ζ) ≤ k(ξ) for all
ζ ∈ Uξ. Since k(ξ) < m, this implies that Uξ ⊆ M , which is not possible,
because M is nowhere dense in X.

Remark 3.6. If X is a complex manifold, there are many other sources
for Theorem 3.5 in the literature, see, e.g., [7, Ch. III, Satz 6.5 and Satz 6.12],
[6, Ch. III, Theorems 4.3 and 4.6], [3], [4, S3.1]. There, for the proof, the fact
is used that P can be written as a finite product

(3.3) P = ωr1
1 · . . . · ωrℓ

ℓ ,

where ri ∈ N∗, each ωi is a monic polynomial with coefficients from O(X)
of positive degree, each ωi is prime as an element of the monoid of all monic
polynomials with coefficients from O(X), and ωi ̸= ωj if i ̸= j. Then it is
proved that the discriminant of the polynomial ω1(ζ) · . . . · ωℓ(ζ), ∆, does not
identically vanish, and that {∆ = 0} is the set of splitting points of the zeros
of P .

Note that this proof also shows that the set of splitting points of the zeros
of P , at each point of this set, is of codimension 1 in X.



122 J. Leiterer 8

4. A NEW PROOF OF THEOREM 3.5

Here, we give a new proof of Theorem 3.5, which results in a more precise
statement with estimates. In this proof, we do not use the factorization (3.3)
(also not in the case when X is a complex manifold).

Definition 4.1. Let p be a monic polynomial of degree n ≥ 2. Then we
denote by Φp the complex linear map from Pn−2 ⊕ Pn−1 to P2n−2 defined by

Φp(s, q) = ps− p′q for (s, q) ∈ Pn−2 ⊕ Pn−1,

where p′ denotes the complex derivative of p.

The main tool of our proof is the following lemma, which is known (see
[10, §2, 1, VII] or [8, Theorem 0.1]). For convenience of the reader, we give a
proof.

Lemma 4.2. Let p be a monic polynomial of degree n ≥ 2, and let m be
the number of zeros of p (not counting multiplicities). Then4

(4.1) rankΦp = n+m− 1.

Proof. Let λ1, . . . , λm be the distinct zeros of p, and let kj be the order
of λj as a zero of p. Since p is monic and of degree n, then k1 + . . .+ km = n
and

p(λ) = (λ− λ1)
k1 . . . (λ− λm)km , λ ∈ C.

Set q0(λ) = (λ−λ1) . . . (λ−λm) and s0(λ) =
∑m

j=1 kj(λ−λ1) . . . ĵ
. . . (λ−λm).

Then

(4.2) ps0 = p′q0.

Next, we prove the following

Claim. KerΦp =
{
(s0a, q0a)

∣∣ a ∈ Pn−1−m

}
.

Proof of “⊇” in the Claim: For m = n this is trivial. Let 1 ≤ m ≤ n− 1
and a ∈ Pn−1−m. Since s0 is of degree m − 1 and q0 of degree m, then
(s0a, q0a) ∈ Pn−2 ⊕ Pn−1, and by (4.2), Φp(s0a, q0a) = (ps0 − p′q0)a = 0.

Proof of “⊆” in the Claim: Let (s, q) ∈ KerΦp, i.e., s ∈ Pn−2, q ∈ Pn−1

and

(4.3) ps = p′q.

4One can show that ±det Φp is the discriminant of p (see, e.g., [14, §35]). Therefore, this
lemma in particular contains the well-known fact that p has no multiple zeros if and only if
its discriminant is different from zero.



9 On the Jordan structure of holomorphic matrices 123

Then each λj is a zero of order ≥ kj of p′q. Since the order of λj as a zero of
p′ is < kj (for kj = 1, by this we mean that p′(λj) ̸= 0), it follows that each λj
is a zero of q. Hence, q is of the form

(4.4) q = q0a,

where a is some complex polynomial (possibly, a ≡ 0). Then

(4.5) a ∈ Pn−1−m.

Indeed, for a ≡ 0, this is trivial. If a ̸≡ 0, from (4.4) it follows that deg a =
deg q − deg q0. Since deg q0 = m and deg q ≤ n − 1, this implies that deg a ≤
n− 1−m. Hence, we have (4.5). Moreover, by (4.2), (4.4) and (4.3),

ps0a = p′q0a = p′q = ps.

As p ̸≡ 0, this implies that s = s0a. Together with (4.4) and (4.5) this proves
that (s, q) belongs to

{
(s0a, q0a)

∣∣ a ∈ Pn−1−m

}
. The Claim is proved.

Now, we consider the complex linear map

Ψ : Pn−1−m −→ Pn−2 ⊕ Pn−1

a 7−→ (s0a, q0a).

Since s0 ̸≡ 0 and q0 ̸≡ 0, this map is injective. Hence

dim ImΨ = dimPn−1−m = n−m.

As, by the Claim, ImΨ = KerΦp, it follows that

dimKerΦp = dim ImΨ = n−m.

As rankΦp = 2n− 1− dimKerΦp, this proves (4.1).

Definition 4.3. Let X be a topological space, and let

M : X → Matn×m(C)
be a continuous map. A point ξ ∈ X will be called a jump point of the
rank of M if, for each neighborhood U of ξ, there exists ζ ∈ U such that
rankM(ζ) > rankM(ξ).

Lemma 4.4. Let X be an irreducible complex space5, and let M : X →
Matn×m(C) a holomorphic map which is not identically zero. Set

rmax := max
ζ∈X

rankM(ζ),

and denote by h1, . . . , hℓ be the minors of order rmax of M . Then

(4.6)
{
ζ ∈ X

∣∣h1(ζ) = . . . = hℓ(ζ) = 0
}

is the set of jump points of the rank of M .
5Recall that a complex space is called irreducible if the manifold of smooth points of X

is connected
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Proof. First let ξ be a jump point of the rank of M . Then, by defini-
tion, there exists ζ ∈ X such that rankM(ξ) < rankM(ζ). In particular,
rankM(ξ) < rmax. Hence, all minors of order rmax of M(ξ) vanish, i.e., ξ lies
in (4.6).

Now let ξ ∈ X be a point which lies in (4.6). Since X is irreducible and
M is holomorphic and ̸≡ 0, and, hence, the set (4.6) is nowhere dense in X,
then, for each neighborhood U of ξ, there exists ζ ∈ U which does not belong
to (4.6), i.e., such that at least one of the minors of order rmax of M(ζ) is not
zero, i.e., such that rankM(ζ) > rmax. Hence, ξ is a jump point of the rank of
M .

Now, we are ready to give the announced new proof Theorem 3.5. Actu-
ally, we prove the following more precise theorem.

Theorem 4.5. Let X be a complex space and let P : X → Pn, n ∈ N∗,
be a holomorphic map, all values of which are of degree n and monic.

Then the set of splitting points of the zeros of P is a nowhere dense closed
analytic subset of X.

Moreover, if X is irreducible and there is at least one splitting point of
the zeros of P , then there exist holomorphic functions h1, . . . , hℓ on X, where
ℓ ≤ ((2n− 1)!)2, each of which is a sum of not more than (2n− 1)! products of
(2n− 1)n functions from {±p0, . . . ,±pn}, where p0, . . . , pn are the coefficients
of P , i.e., the holomorphic functions on X functions with

P (ζ)(λ) = p0(ζ) + p1ζ)λ+ . . .+ pn(ζ)λ
n, ζ ∈ X, λ ∈ C,

such that the set of splitting points of the zeros of P is equal to

(4.7)
{
ζ ∈ X

∣∣h1(ζ) = . . . = hℓ(ζ) = 0
}
,

and

(4.8) |hj(ζ)| ≤ (2n)4n max
0≤k≤n

|pk(ζ)|2n−1 for all ζ ∈ X and 1 ≤ j ≤ ℓ.

Proof. If there is no splitting point of the zeros of P , the claim of the
theorem is trivial (as also the empty set is called analytic). Therefore, we
may assume that P has at least one splitting point of the zeros of P . Then
degP ≥ 2 and, hence, n ≥ 2.

First, we moreover assume that X is irreducible.

Let L
(
Pn−2 ⊕ Pn−1,P2n−2

)
be the space of complex linear maps from

Pn−2 ⊕ Pn−1 to P2n−2, and let

F : X → L
(
Pn−2 ⊕ Pn−1,P2n−2

)
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be the holomorphic map defined by F (ζ) = ΦP (ζ), ζ ∈ X (see Def. 4.1), i.e.,

(4.9) F (ζ)(s, q) := P (ζ)s− P (ζ)′q, ζ ∈ X, (s, q) ∈ Pn−2 ⊕ Pn−1.

Let u0, . . . , u2n−2 and v0, . . . , v2n−2 be the polynomials defined as follows:

uj(λ) = λj , λ ∈ C and j = 0, . . . , n− 2,

uj(λ) = λj+1−n, λ ∈ C and j = n− 1, . . . , 2n− 2,

vj(λ) = λj , λ ∈ C and j = 0, . . . , 2n− 2.

Then

(4.10) (u0, 0), . . . , (un−2, 0), (0, un−1), . . . , (0, u2n−1)

is a complex linear basis of Pn−2 ⊕ Pn−1 and

(4.11) v0, . . . , v2n−1

is a complex linear basis of P2n−2. Therefore, and since F is holomorphic,
we have uniquely determined holomorphic functions Mij : X → C, i, j =
0, . . . , 2n− 2, such that, for all ζ ∈ X,

(4.12)

2n−2∑
j=0

Mij(ζ)vj =

{
F (ζ)(ui, 0) for 0 ≤ i ≤ n− 2,

F (ζ)(0, ui) for n− 1 ≤ i ≤ 2n− 2.

By (4.9), this implies that, for all ζ ∈ X,

(4.13)

2n−2∑
j=0

Mij(ζ)vj =

{
P (ζ)ui for 0 ≤ i ≤ n− 2,

−P ′(ζ)ui for n− 1 ≤ i ≤ 2n− 2.

Now let p0, . . . , pn be the holomorphic functions on X such that, for all ζ ∈ X,

P (ζ)(λ) =

n∑
k=0

pk(ζ)λ
k, λ ∈ C.

(Recall that P is of degree n and monic, so that pn ≡ 1.) Then (4.13) takes
the form

2n−2∑
j=0

Mij(ζ)λ
j =


(∑n

k=0 pk(ζ)λ
k
)
λi for 0 ≤ i ≤ n− 2,

−
(∑n

k=1 kpk(ζ)λ
k−1

)
λi+1−n for n− 1 ≤ i ≤ 2n− 2,

i.e., for all ζ ∈ X, we have

2n−2∑
j=0

Mij(ζ)λ
j =

{∑n
k=0 pk(ζ)λ

k+i for 0 ≤ i ≤ n− 2,

−
∑n

k=1 kpk(ζ)λ
k+i−n for n− 1 ≤ i ≤ 2n− 2,

Comparing the coefficients of λj , from this, we see:
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(4.14) Each of the functions Mij is one of the functions

p0, p1, . . . , pn and − 2p2,−3p3, . . . ,−npn.

Let M : X → M2n−1(C) be the holomorphic map such that Mi−1,j−1

is the element in row i and column j. Again using that (4.10) is a basis of
Pn−2 ⊕ Pn−1 and (4.11) is a basis of P2n−2, then it follows from (4.12) that

rankM(ζ) = rankF (ζ) for all ζ ∈ X.

Since, by Lemma 4.2, for all ζ ∈ X, the number of zeros of P (ζ) is equal to
rankF (ζ)− n+ 1, this implies:
(4.15)
for all ζ ∈ X, the number of zeros of P (ζ) is equal to rankM(ζ)− n+ 1.

Hence:

(4.16) The set of splitting points of the zeros of P is equal to

the set of jump points of M.

Set

rmax := max
ζ∈X

rankM(ζ),

and let h1, . . . , hℓ be the minors of order rmax of M , ℓ =
(
2n−1
rmax

)2
.

For all ζ ∈ X, P (ζ) is of positive degree and, therefore, has at least one
zero. By (4.15) this implies that rankM(ζ) ≥ n for all ζ ∈ X. In particular,M
is not identically zero. Therefore, we can apply Lemma 4.4 to M and obtain:{

ζ ∈ X
∣∣h1(ζ) = . . . = hℓ(ζ) = 0

}
is the set of jump points of the rank of M , which means, by (4.16), that (4.7)
is the set of splitting points of the zeros of P .

By (4.14), each of the functions hl, . . . , hℓ is the sum of rmax! products
of rmax functions from

{
p0, p1, . . . , pn,−2p2,−3p3, . . . ,−npn

}
. Therefore, for

j = 1, . . . , ℓ and all ζ ∈ X, we have

|hj(ζ)| ≤ rmax!
(
n max

0≤k≤n
|pk(ζ)|

)rmax!
= rmax!n

rmax! max
0≤k≤n

|pk(ζ)|rmax!.

Since rmax ≤ 2n− 1 and pn ≡ 1 (P is monic), and, hence,

rmax!n
rmax! max

0≤k≤n
|pk(ζ)|rmax! ≤ (2n− 1)!n2n−1 max

0≤k≤n
|pk(ζ)|2n−1 ≤ (2n)4n,

this implies estimate (4.8).

This completes the proof in the case when X is irreducible.

Now, we consider the general case. By the global decomposition theorem
for complex spaces (see, e.g., [11, V.4.6] or [9, Ch. 9, §2.2]), there is a locally
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finite covering {Xi}i∈I of X such that each Xi is an irreducible closed analytic
subset of X. Then, clearly, the set of splitting points of the zeros of P is the
union of the sets of spitting points of the zeros of P |Xi , i ∈ I. Since, as already
proved, each of these sets is a nowhere dense analytic subset of Xi, and the
covering {Xi}i∈I is locally finite, this proves that the set of splitting points of
the zeros of P is a nowhere dense analytic subset of X.

Remark 4.6. A disadvantage of our proof of Theorem 4.5 is that it does
not show that the set of splitting points of the zeros of P is of codimension
1 in X (in distinction to the well-known proof outlined in Remark 3.6). An
advantage is that it shows for in the irreducible case that the set of splitting
points of the zeros of P can be defined by functions satisfyng estimate (4.8).
This implies, for example:

– If P is bounded, then the set of splitting points of the zeros of P can
be defined by bounded functions.

– If X is the unit disk and P is bounded, then the set of splitting points
of the zeros of P satisfies the Blaschke condition.

– If X = CN , and the coefficients of P are holomorphic polynomials,
then set of splitting points of the zeros of p can be defined by finitely many
holomorphic polynomials. For N = 1, this means that P has only a finite
number of splitting points of the zeros (which is well-known from the theory
of algebraic functions).

5. SPLITTING POINTS OF THE EIGENVALUES OF A
MATRIX FUNCTION

Definition 5.1. Let X be a topological space, and let A : X → Matn(C)
be continuous. A point ξ ∈ X is called a splitting point of the eigenvalues
of A if, for each neighborhood U of ξ, there exists ζ ∈ U such that A(ζ) has
more eigenvalues than A(ξ) (not counting multiplicities).

Since, for each Φ ∈ Matn(C), the eigenvalues of Φ are the zeros of the
characteristic polynomial det

(
λ− Φ

)
, λ ∈ C, which is of degree n and monic,

and since the algebraic multiplicity of an eigenvalue of Φ is the order of this
eigenvalue as a zero of the characteristic polynomial, from Propositions 3.2 and
3.4, we immediately obtain the following two lemmas.

Lemma 5.2. Let X be a connected topological space, n ∈ N∗, and let
A : X → Matn(C) be a continuous map such that the number of differ-
ent eigenvalues of A(ζ), denoted by m, is the same for all ζ ∈ X. Sup-
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pose λ1, . . . , λm : X → C are continuous functions such that, for all ζ ∈ X,
λ1(ζ), . . . , λm(ζ) are the distinct eigenvalues of A(ζ).6 Then:

(i) For each 1 ≤ j ≤ m, the algebraic multiplicity of λj(ζ) as an eigenvalue
of A(ζ) is the same for all ζ ∈ X.

(ii) If there is a second collection of continuous functions λ̃1, . . . , λ̃m :
X → C such that also, for each ζ ∈ X, λ̃1(ζ), . . . , λ̃m(ζ) are the distinct
eigenvalues of A(ζ), and if, for at least one point ξ ∈ X, λ̃j(ξ) = λj(ξ) for all

1 ≤ j ≤ m, then λ̃j(ζ) = λj(ζ) for all 1 ≤ j ≤ m and for all ζ ∈ X.

Lemma 5.3. Let X be a topological space, n ∈ N∗, and let A : X →
Matn(C) be a continuous map. Then:

(i) ξ ∈ X is not a splitting point of the eigenvalues of A if and only if there
exist a neighborhood U of ξ and continuous functions λ1, . . . , λm : U → C such
that, for each ζ ∈ U , λ1(ζ), . . . , λm(ζ) are the distinct eigenvalues of A(ζ).7

(ii) Assume that X is a complex space and A is holomorphic. Let Y ⊆ X
be an open set which does not contain splitting points of the eigenvalues of A,
and let γ1, . . . , γm : Y → C be continuous functions such that, for each ζ ∈ Y ,
γ1(ζ), . . . , γm(ζ) are the distinct eigenvalues of A(ζ). Then these functions are
holomorphic on Y .

Theorem 5.4. Let X be a complex space, and let A : X → Matn(C) be
holomorphic. Denote by splitA the set of splitting points of the eigenvalues of
A. Then splitA is a nowhere dense closed analytic subset of X.

Moreover, if X is irreducible and splitA ̸= ∅, then there exist finitely
many holomorphic functions h1, . . . , hℓ : X → C, each of which is a finite sum
of finite products of elements of A, such that

(5.1) splitA =
{
h1 = . . . = hℓ = 0

}
,

and

(5.2) |hj(ζ)| ≤ (2n)6n
2
(
1 + ∥A(ζ)∥

)2n2

for all ζ ∈ X and 1 ≤ j ≤ ℓ.

Proof. Let P (ζ)(λ) := det(λ−A(ζ)), for ζ ∈ X and λ ∈ C, and let splitP
be the set of splitting points of the zeros of P . Since the eigenvalues of A are
the zeros of P , then

splitA = splitP.

Therefore, by Theorem 4.5, splitA is a nowhere dense analytic subset of X.

6By that we mean that
{
λ1(ζ), . . . , λm(ζ)

}
is the set of all eigenvalues of A(ζ) and λi(ζ) ̸=

λj(ζ) if i ̸= j.
7By Lemma 5.2 (ii), up to the numbering, these functions are uniquely determined on

each connected component of U .
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Now, we assume thatX is irreducible and splitA ̸= ∅. Let p1(ζ), . . . , pn(ζ)
be the coefficients of P (ζ). Then, again by Theorem 4.5, there exist holomor-
phic functions h1, . . . , hℓ on X, where ℓ ≤ ((2n−1)!)2, each of which is a sum of
not more than (2n− 1)! products of (2n− 1)n functions from {±p0, . . . ,±pn},
such that

(5.3) splitP =
{
ζ ∈ X

∣∣h1(ζ) = . . . = hℓ(ζ) = 0
}
,

and

(5.4) |hj(ζ)| ≤ (2n)4n max
0≤k≤n

|pk(ζ)|2n for all ζ ∈ X and 1 ≤ j ≤ ℓ.

Since splitA = splitP , then (5.1) follows from (4.7).
Since

∣∣pk(ζ)∣∣ ≤ n!(1 + ∥A(ζ)∥)n for all ζ ∈ X and 0 ≤ k ≤ n, it follows
from (5.4) that, for all ζ ∈ X and 1 ≤ j ≤ ℓ,

|hj(ζ)| ≤ (2n)4n(n!)2n(1 + ∥A(ζ)∥)2n2 ≤ (2n)6n
2
max
0≤k≤n

(1 + ∥A(ζ)∥)2n2
,

i.e., we have (5.2).

Remark 5.5. According to the end of Remark 3.6, the claim of Theorem
5.4 can be completed by the statement that, at each point of splitA which is
a smooth point of X, splitA is of codimension 1 in X.

6. JORDAN STABLE POINTS

Definition 6.1. As usual, by a Jordan block we mean a matrix of the
form λIℓ+(δi,j−1)

ℓ
i,j=1, where δij is the Kronecker symbol, λ ∈ C (the eigenvalue

of the Jordan block) and ℓ ∈ N∗ (the size of the Jordan block).
If Φ ∈ Matn(C) and λ1, . . . , λm are the distinct eigenvalues of Φ, then,

for ℓ ∈ N∗, we denote by ϑℓ
(
Φ, λj) the number of Jordan blocks of size ℓ of the

eigenvalue λj in the Jordan normal forms of Φ, and set

ϑℓ
(
Φ, •) =

m∑
j=1

ϑℓ
(
Φ, λj).

Further, then we define

ΘΦ =
(
λ1 − Φ

)
· . . . ·

(
λm − Φ

)
,

which is correct, for the matrices λ1 − Φ, . . . , λm − Φ pairwise commute.

Lemma 6.2. Let Φ ∈ Matn(C), let λ1, . . . , λm be the different eigenvalues
of Φ, and let nj be the algebraic multiplicity of λj. Then

rank(λj − Φ)k = n− nj for k ≥ nj and 1 ≤ j ≤ m(6.1)
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Θk
Φ = 0 for k ≥ n,(6.2)

(6.3) rankΘk
Φ = n− nm+ rank(λ1 − Φ)k + . . .+ rank(λm − Φ)k

if 1 ≤ k ≤ n− 1,

(6.4) rankΘk
Φ = n−

k∑
ℓ=1

ℓϑℓ
(
Φ, •)− k

n∑
ℓ=k+1

ϑℓ
(
Φ, •) if 1 ≤ k ≤ n− 1,

(6.5) ϑk
(
Φ, λj) = rank (λj − Φ)k−1 + rank(λj − Φ)k+1 − 2 rank (λj − Φ)k

if 1 ≤ k ≤ n and 1 ≤ j ≤ m,

where (λj − Φ)0 := In.

For completeness, we give a proof of this lemma, although the relations
collected there (and in its proof) are well-known, possibly, in somewhat differ-
ent formulations, see, e.g., [2, Kap. II, §8.4] or [4, 2.9.4].

Proof. First recall that, if, for some 1 ≤ j ≤ m, J is a Jordan block of
size ℓ and with eigenvalue λj , then

rank (λj − J)k = ℓ− k for 0 ≤ k ≤ ℓ− 1,

(λj − J)ℓ = 0,

λi − J ∈ GL(ℓ,C) for all 1 ≤ i ≤ m with i ̸= j.

(6.6)

Denote by Ej the algebraic eigenspace of λj , i.e., Ej := Ker(λj − Φ)nj . Then
each Ej is an invariant subspace of each λi − Φ, and, since Φ is similar to a
matrix in Jordan normal form, it follows from (6.6) that

(6.7) Cn = E1 ⊕ . . .⊕ Em, and nj = dimEj for 1 ≤ j ≤ m,

λi − Φ maps Ej isomorphically onto itself if i ̸= j,

(6.8) Ker(λj − Φ)k = Ej for k ≥ nj and 1 ≤ j ≤ m,

(6.9) dimKer(λj − Φ)k =
k∑

ℓ=1

ℓϑℓ
(
Φ, λj) + k

nj∑
ℓ=k+1

ϑℓ
(
Φ, λj)

for 1 ≤ j ≤ m and k ∈ N∗,

and (taking into account that the matrices λj − Φ pairwise commute), for all
k ∈ N∗,

KerΘk
Φ = Ker(λ1 − Φ)k ⊕ . . .⊕Ker(λm − Φ)k,(6.10)

dimKerΘk
Φ = dimKer(λ1 − Φ)k + . . .+ dimKer(λm − Φ)k.(6.11)
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From (6.9) and (6.11) together, we obtain

(6.12) dimKerΘk
Φ =

k∑
ℓ=1

ℓϑℓ
(
Φ, •) + k

n∑
ℓ=k+1

ϑℓ
(
Φ, •), k ∈ N∗.

Now: (6.1) follows from (6.7) and (6.8); (6.2) follows from (6.7), (6.8) and
(6.10); (6.3) follows from (6.11); (6.4) follows from (6.12).

To prove (6.5), we first note that (6.9) holds also for k = 0 – then both
sides are zero. Hence, for k ∈ N∗ and 1 ≤ j ≤ m,

dimKer(λj − Φ)k − dimKer(λj − Φ)k−1

=

( k∑
ℓ=1

ℓϑℓ
(
Φ, λj)−

k−1∑
ℓ=1

ℓϑℓ
(
Φ, λj)

)

+

(
k

nj∑
ℓ=k+1

ϑℓ
(
Φ, λj)− (k − 1)

nj∑
ℓ=k

ϑℓ
(
Φ, λj)

)

= kϑk
(
Φ, λj) +

nj∑
ℓ=k+1

ϑℓ
(
Φ, λj)− (k − 1)ϑk(Φ, λj) =

nj∑
ℓ=k

ϑℓ
(
Φ, λj)

and, therefore,

ϑk
(
Φ, λj) = 2 dimKer(λj − Φ)k − dimKer(λj − Φ)k−1 − dimKer(λj − Φ)k+1,

which implies (6.5).

Lemma 6.3. Let X be a topological space, A : X → Matn(C) a continuous
map, and ξ a point in X which is not a splitting point of the eigenvalues of
A. By Lemma 5.3, then we can find a neighborhood U of ξ and continuous
functions λ1, . . . , λm : U → C such that, for each ζ ∈ U , λ1(ζ), . . . , λm(ζ) are
the distinct eigenvalues of A(ζ).

Then (claim of the lemma) the following conditions are equivalent.

(i) There exists a neighborhood V ⊆ U of ξ such that, for all 1 ≤ j ≤ m
and 1 ≤ ℓ ≤ n, the map

(6.13) V ∋ ζ 7−→ ϑℓ
(
A(ζ), λj(ζ)

)
is constant.

(ii) There exists a neighborhood V ⊆ U of ξ such that, for all 1 ≤ ℓ ≤ n,
the map

(6.14) V ∋ ζ 7−→ ϑℓ
(
A(ζ), •

)
is constant.
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(iii) There exists a neighborhood V ⊆ U of ξ such that, for all 1 ≤ k ≤
n− 1, the map

(6.15) V ∋ ζ 7−→ rank
(
ΘA(ζ)

)k
is constant.

(iv) There exists a neighborhood V ⊆ U of ξ such that, for all 1 ≤ j ≤ n
and 1 ≤ k ≤ n− 1, the map

(6.16) V ∋ ζ 7−→ rank
(
λj(ζ)−A(ζ)

)k
is constant.

(v) There exists a neighborhood V ⊆ U of ξ and a continuous map
T : V → GL(n,C), which is holomorphic if X is a complex space and A
is holomorphic, such that T (ζ)−1A(ζ)T (ζ) is in Jordan normal form for all
ζ ∈ V .

If X is a domain in C and A is holomorphic, the equivalence of conditions
(i), (ii) and (v) is due to G. P. A. Thiesse [13].

Proof. The equivalence of (i) - (iv) follows from Lemma 6.2. Indeed:

(i) ⇒ (ii) is trivial.

(ii) ⇒ (iii) follows from (6.4).

To prove that (iii) ⇒ (iv), we note that, by (6.3),

rank
(
ΘA(ζ)

)k
= const + rank

(
λ1(ζ)−A(ζ)

)k
+ . . .+ rank

(
λm(ζ)−A(ζ)

)k
for all ζ ∈ U and 1 ≤ k ≤ n − 1, and observe that the functions on the
right hand side of this relation are lower semicontinuous in ζ (since the rank
of a continuous matrix function is always lower semicontinuous). Therefore,
constancy of the left hand side is possible only if all functions on the right hand
side are constant.

(iv) ⇒ (i) follows from (6.5).

Moreover, it is clear that (v) ⇒ (i). To complete the proof of the lemma,
therefore it is sufficient to prove that (i) ⇒ (v).

Assume (i) is satisfied.

Denote by nj be the algebraic multiplicity of λj(ξ). Then

nj =
∑
ℓ

ϑℓ
(
A(ξ), λj(ξ)

)
.

Therefore, for each 1 ≤ j ≤ m, we can choose a matrix Nj ∈ Matn(C), which
is a block diagonal matrix with Jordan blocks on the diagonal, each of which
has the eigenvalue 0, and such that, for each ℓ ∈ N∗, exactly ϑℓ

(
A(ξ), λj(ξ)

)
of
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them are of size ℓ. Let J : U → Matn(C) (recall that n1 + . . . + nm = n) be
the map such that J(ζ), ζ ∈ U , is the block diagonal matrix with the diagonal

λ1(ζ)In1 +N1, . . . , λm(ζ)Inm +Nm.

Since the functions λj are continuous, J is continuous. If X is a complex
space and A is holomorphic, then, by Lemma 5.3 (ii), the functions λj are even
holomorphic. Therefore, in this case also, J is holomorphic.

Moreover, by condition (i), there is a neighborhood V ⊆ U of ξ such that,

ϑℓ
(
A(ζ), λj(ζ)

)
= ϑℓ

(
A(ξ), λj(ξ)

)
for all ζ ∈ V,

which means that, for each ζ ∈ V , J(ζ) is a Jordan normal form of A(ζ).
Therefore, for each ζ ∈ V , we can choose a matrix Θζ ∈ GLn(C) with

(6.17) ΘζJ(ζ)Θ
−1
ζ = A(ζ).

Now let End
(
Matn(C)

)
be the space of linear endomorphisms of the

complex vector space Matn(C). Following an idea of W. Wasow [15], we con-
sider the continuous (and holomorphic if A is holomorphic) maps φ,ψ : V →
End

(
Matn(C)

)
defined by

φ(ζ)Φ = ΦA(ζ)− J(ζ)Φ, ζ ∈ V, Φ ∈ Matn(C),
ψ(ζ)Φ = ΦJ(ζ)− J(ζ)Φ, ζ ∈ V, Φ ∈ Matn(C).

Further, for ζ ∈ V , we denote by Tζ the linear automorphism of Matn(C)
defined by

TζΦ = ΘζΦ, Φ ∈ Matn(C).
We claim that

(6.18) dimCKerφ(ζ) = dimCKerψ(ζ) for all ζ ∈ V.

Indeed, let Φ ∈ Kerφ(ζ), i.e., ΦA(ζ) = J(ζ)Φ. By (6.17), this implies
ΦΘζJ(ζ)Θ

−1
ζ = J(ζ)Φ and, hence, ΦΘζJ(ζ) = J(ζ)ΦΘζ . By definition of Tζ ,

this means that (TζΦ)J(ζ) = J(ζ)(TζΦ), i.e., TζΦ ∈ Kerψ(ζ).
So, we have proved that Tζ Kerφ(ζ) ⊆ Kerψ(ζ). Since Tζ is a linear

automorphism of Matn(C), this shows that dimCKerφ(ζ) ≤ dimCKerψ(ζ).
Conversely, let Φ ∈ Kerψ(ζ), i.e., ΦJ(ζ) = J(ζ)Φ. By (6.17), this implies

ΦJ(ζ) = Θ−1
ζ A(ζ)ΘζΦ and, hence, ΘζΦJ(ζ) = A(ζ)ΘζΦ. By definition of Tζ ,

this means that (TζΦ)J(ζ) = A(ζ)(TζΦ), i.e., TζΦ ∈ Kerφ(ζ).
So, we have proved that also Tζ Kerψ(ζ) ⊆ Kerφ(ζ), which shows the

opposite inequality dimCKerψ(ζ) ≤ dimCKerφ(ζ).
(6.18) is proved.
Next, we claim that the map

(6.19) V ∋ ζ 7−→ dimKerψ(ζ) =
{
Φ ∈ Matn(C)

∣∣∣ ΦJ(ζ) = J(ζ)Φ
}
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is constant. Indeed, since λi(ζ) ̸= λj(ζ) if i ̸= j, it follows from [5, Ch. VIII,
§1] that, for all ζ ∈ V , a matrix Φ ∈ Matn(C) satisfies ΦJ(ζ) = J(ζ)Φ if and
only if it is a block diagonal matrix with a diagonal of the form Λ1, . . . ,Λm,
where Λj belongs to the space

ΦJ(ζ) = J(ζ)Φ
{
Φ ∈ Matnj (C)

∣∣∣ Φ(λj(ζ) +Nj

)
=

(
λj(ζ) +Nj

)
Φ
}

=
{
Φ ∈ Matnj (C)

∣∣∣ ΦNj = NjΦ
}
.

Since the latter space is independent of ζ, this means that (6.19) is constant.

Since φ is continuous, and holomorphic if A is holomorphic, the constancy
of (6.19) means that the family {Kerφ(ζ)}ζ∈V is a sub-vector bundle of the
product bundle V ×Matn(C), which is holomorphic if A is holomorphic (see,
e.g., [15, Lemma 1] or [12, Corollary 2]).

Therefore, through each point in this sub-vector bundle goes a local con-
tinuous (resp. holomorphic) section. Since, by (6.17), (ξ,Θ−1

ξ ) is such a point,
it follows that there is a neighborhood V of ξ and a continuous (resp. holomor-
phic) map S : V → Matn(C) with S(ξ) = Θ−1

ξ and S(ζ)A(ζ) = J(ζ)S(ζ) for

all ζ ∈ V . Since Θ−1
ξ is invertible, shrinking V , we may achieve that moreover

S(ζ) ∈ GL(n,C) for all ζ ∈ V . It remains to set T (ζ) = S(ζ)−1 for ζ ∈ V .

Definition 6.4. Let X be a topological space, and A : X → Matn(C) a
continuous map. A point ξ ∈ X is called Jordan stable for A if ξ is not a
splitting point of the eigenvalues of A and and the equivalent conditions (i) -
(v) in Lemma 6.3 are satisfied.

If G is a domain in some CN and A : G → Matn(C) is holomorphic,
H. Baumgärtel proved that there exists a nowhere dense analytic subset B of
G, which contains the splitting points of A, such that all points of G \ B are
Jordan stable for A (he proved that condition (v) in Lemma 6.3 is satisfied),
see [1], [2, Kap. V, §7] and [4, 5.7] if N = 1, and [3] and [4, S 3.4] for arbitrary
N .

In the present section, we give a new proof of Baumgärtel’s theorem,
which gives the following more precise and more general

Theorem 6.5. Let X be a complex space, and let A : X → Matn(C) be
holomorphic. Denote by JstA the set of Jordan stable points of A.

Then X \ JstA is a nowhere dense closed analytic subset of X.

Moreover, if X is irreducible and normal8, and if JstA ̸= X, then there

8For the definition of a normal complex space, see, e.g., [11, Ch. VI, §2]. For example,
each complex manifold is normal.
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exist finitely many holomorphic functions h1, . . . , hℓ : X → C such that

(6.20) X \ JstA =
{
h1 = . . . = hℓ = 0

}
and

(6.21) |hj(ζ)| ≤ (2n)7n
2
2n

3
(1 + ∥A(ζ)∥)3n3

for all ζ ∈ X and 1 ≤ j ≤ ℓ.

Proof. For JstA = ∅, the claim of the theorem is trivial. Therefore, we
may assume that JstA ̸= ∅.

We first consider the case when X is normal and irreducible.
Let splitA be the set of splitting points of the eigenvalues of A, and

let X0 be the manifold of smooth points of X. Since X0 is connected (X is
irreducible) and dense in X, and splitA is a nowhere dense analytic subset of
X (Theorem 5.4), X \ splitA is connected. Therefore, for all ζ ∈ X \ splitA,
the number of distinct eigenvalues of A(ζ) is the same, we denote it by m.

Consider the map

(6.22) X \ splitA ∋ ζ 7−→ ΘA(ζ).

By Lemma 5.3, for each ξ ∈ X \ splitA, we have an open neighborhood

Uξ ⊆ X \ splitA of ξ and holomorphic functions λ
(ξ)
1 , . . . , λ

(ξ)
m : Uξ → C such

that, for all ζ ∈ Uξ, λ
(ξ)
1 (ζ), . . . , λ

(ξ)
m (ζ) are the distinct eigenvalues of A(ζ) and,

hence,

(6.23) ΘA(ζ) =
(
λ
(ξ)
1 (ζ)−A(ζ)

)
· . . . ·

(
λ(ξ)m (ζ)−A(ζ)

)
.

In particular, this shows that (6.22) is holomorphic on X \ splitA.
Moreover, as |λj(ζ)| ≤ ∥A(ζ)∥, from (6.23) it follows that

(6.24)
∥∥ΘA(ζ)

∥∥ ≤ 2m∥A(ζ)∥m for all ζ ∈ X \ splitA.

Since X∩splitA is a nowhere dense analytic subset of X, and X is normal, this
implies that (6.22) extends holomorphically to X. We denote this extended
map by Θ. By (6.24), then

(6.25)
∥∥Θ(ζ)k

∥∥ ≤ 2mk∥A(ζ)∥mk for all ζ ∈ X and 1 ≤ k ≤ n.

Set
rk = max

ζ∈X
rankΘ(ζ)k for 1 ≤ k ≤ n.

First case: r1 = 0. Then
(
ΘA(ζ)

)k
= 0 for all ζ ∈ X \ splitA and k ∈ N∗.

In particular, each ξ ∈ X \splitA satisfies condition (iii) in Lemma 6.3. Hence,
X \ JstA = splitA, and the claim of the theorem follows from Theorem 5.4.

Second case: r1 > 0. Then, by (6.2), n ≥ 2 and there is an integer

1 ≤ k0 ≤ n − 1 with rk0 > 0 and rk0+1 = 0. For 1 ≤ k ≤ k0, let f
(k)
1 , . . . , f

(k)
sk
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be the minors of order rk of Θk which do not vanish identically on X. Since X
is irreducible (i.e., the manifold of smooth points of X is connected), and the

functions f
(k)
j are holomorphic and ̸≡ 0, none of them can vanish identically

on an open subset of X. Hence,

(6.26) Z :=

k0⋃
k=1

{
f
(k)
1 = . . . = f (k)sk

= 0
}

is a nowhere dense analytic subset of X, and ξ ∈ Z if and only if ξ is a jump
point (Def. 4.3) for at least one of the maps Θ1, . . . ,Θk0 . Since Θk ≡ 0 if
k0+1 ≤ k ≤ n− 1, the latter means that ξ ∈ Z if and only if ξ is a jump point
for at least one of the maps Θ1, . . . ,Θn−1. In particular, ξ ∈ Z ∩ (X \ splitA)
if and only if ξ ∈ (X \ split )A and ξ is a jump point of at least one of the maps

X \ splitA 7−→
(
ΘA(ζ)

)1
, . . . , X \ splitA 7−→

(
ΘA(ζ)

)n−1
,

i.e., ξ ∈ Z ∩ (X \ splitA) if and only if ξ ∈ X \ splitA and ξ violates condition
(iii) in Lemma 6.3. Hence

(X \ JstA) ∩ (X \ splitA) = Z ∩ (X \ splitA).

Since splitA ⊆ X \ JstA, it follows that

(6.27) X \ JstA = Z ∪ splitA.

By Theorem 5.4, we have finitely many holomorphic functions g1, . . . , gp :
X → C, each of which is a finite sum of finite products of elements of A, such
that

(6.28) splitA =
{
g1 = . . . = gp = 0

}
,

and

(6.29) |gj(ζ)| ≤ (2n)6n
2
(1 + ∥A(ζ)∥)2n2

for all ζ ∈ X and 1 ≤ j ≤ p.

Now let {h1, . . . , hℓ} be the set of all functions of the form

gµ ·
k0∏
k=1

f (k)κk

with 1 ≤ µ ≤ p and 1 ≤ κk ≤ sk for 1 ≤ k ≤ k0. Then (6.20) follows from
(6.26), (6.27) and (6.28), and

(6.30) |hj(ζ)| ≤ max
µ

|gµ(ζ)|max
k

|f (k)κk
(ζ)|n for all ζ ∈ X and j = 1, . . . , ℓ.

To prove estimate (6.21), we first recall that each f
(k)
κk

is a minor of Θk,
which implies that ∣∣f (k)κk

(ζ)
∣∣ ≤ n!∥Θk(ζ)∥n for all ζ ∈ X,
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and further, by (6.25),∣∣f (k)κk
(ζ)

∣∣ ≤ n!∥Θk(ζ)∥n ≤ n!
(
2mk∥A(ζ)∥mk

)n
≤ n!2mkn∥A(ζ)∥mkn

≤ nn2n
3∥A(ζ)∥mkn ≤ nn2n

3
(
1 + ∥A(ζ)∥

)n3

for all ζ ∈ X.

Together with (6.29) and (6.30), this yields (6.21):

|hj(ζ)| ≤ (2n)6n
2
(1 + ∥A(ζ)∥)2n2

nn2n
3
(1 + ∥A(ζ)∥)n3

≤ (2n)7n
2
2n

3
(1 + ∥A(ζ)∥)3n3

.

Next, we consider the case when X is irreducible, but, possibly, not nor-
mal.

Let π : X̃ → X be the normalization of X (see, e.g., [11, Ch. VI, §4])
and Ã := A ◦ π. Then X̃ is normal and irreducible. Therefore, by part (i) of
the theorem, X̃ \ Jst Ã is a nowhere dense closed analytic subset of X. Since,
clearly,

(6.31) π
(
X̃ \ Jst Ã

)
= X \ JstA,

this implies, by Remmert’s proper mapping theorem (see, e.g., [11, Ch. V,
§5.1])), that X \ JstA is a closed analytic subset of X.

To prove that X \ JstA is nowhere dense in X, let X0 be the manifold of
smooth points of X. Then π is biholomorphic between π−1(X0) and X0, and,
by (6.31),

π
(
π−1(X0) \ Jst Ã

)
= X0 \ JstA.

Since π−1(X0)\Jst Ã is nowhere dense in π−1(X0), this implies that X0 \JstA
is nowhere dense in X0. Since X \X0 is nowhere dense in X, it follows that
X \ JstA is nowhere dense in X.

Finally, we consider the general case.

By the global decomposition theorem for complex spaces (see, e.g., [11,
V.4.6] or [9, Ch. 9, §2.2]), there is a locally finite covering {Xi}i∈I of X such
that each Xi is an irreducible closed analytic subset of X. Then, as already
proved, each Xi \ Jst (A|Xi) is a nowhere dense analytic subset of Xi. Since
the covering {Xi}i∈I is locally finite and, clearly,

X \ JstA =
⋃
i∈I

(
Xi \ Jst (A|Xi)

)
,

this proves that X \ JstA is a nowhere dense analytic subset of X.

Remark 6.6. Estimate (6.21) shows that the claim of Theorem 6.5 can
be completed. For example:
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– If A is bounded, then X \JstA can be defined by bounded holomorphic
functions. In the case of the disk X = {ζ ∈ C | |ζ| < 1}, this implies that
X \ JstA satisfies the Blaschke condition.

– If X = CN and the elements of A are holomorphic polynomials, then
CN \ JstA is the common zero set of finitely many holomorphic polynomials,
i.e., it is affine algebraic. For N = 1 this means that C \ JstA is finite.

Remark 6.7. It is possible (in contrast to Remark 5.5) that the set of
points which are not Jordan stable is of codimension > 1, also at smooth
points. Here is an example. Let

A(z, w) :=

(
zw −z2
w2 −zw

)
for (z, w) ∈ C2.

Then A(z, w)2 = 0 for all (z, w) ∈ C2, and A(z, w) = 0 if and only if (z, w) = 0.
This means that

(
0 0
0 0

)
is the Jordan normal form of A(0, 0), whereas, for all

(z, w) ∈ C2 \{(0, 0)},
(
0 1
0 0

)
is the Jordan normal form of A(z, w). Hence, (0, 0)

is the only point in C2 which is not Jordan stable for A.
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Lehrbücher und Monographien. II. Abteilung: Mathematische Monographien.
Akademie-Verlag, Berlin, 1972.
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Adv. Appl. 15, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1985.

[5] F.R. Gantmacher, The Theory of Matrices. Volume one. AMS Chelsea Publishing, Prov-
idence, 1959.

[6] K. Fritzsche and H. Grauert, From holomorphic functions to complex manifolds. Grad.
Texts in Math. 213, Springer, New York, 2002.
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[12] M.A. Shubin, Holomorphic families of subspaces of a Banach space. Integral Equations
and Operator Theory 2 (1979), 3, 407–420. Translation from Mat. Issled. 5 (1970), 4,
153–165 (Russian).

[13] G.P.A. Thijsse, Global holomorphic similarity to a Jordan form. Results Math. 8 (1985),
78–87.

[14] B.L. van der Waerden, Algebra I. Springer-Verlag, Berlin-Heidelberg-New York, 1971.

[15] W. Wasow, On holomorphically similar matrices. J. Math. Anal. Appl. 4 (1962), 202–
206.

Institut für Mathematik
Humboldt-Universität zu Berlin

Rudower Chaussee 25
D-12489 Berlin, Germany

juergen.leiterer@hu-berlin.de


	Introduction
	Notation
	Splitting points of the zeros of monic polynomials
	A new proof of Theorem 3.5
	Splitting points of the eigenvalues of a matrix function
	Jordan stable points

